Comprehensive resource and integrative model for functional genomics of the adult brain (~5800!!)

Abstract (212)
Understanding how genomic variation influences brain phenotypes and disorders remains a key challenge. To this end, the PsychENCODE consortium has generated large-scale datasets on the adult human brain, including genotyping, RNA-seq, ChIP-seq, ATAC-seq, HiC and single-cell data on healthy and diseased tissues of thousands of individuals with different phenotypes. Using this, we developed a comprehensive resource on functional genomics of adult brain including ~2 million QTLs for expression and chromatin, and ~80k active enhancers. Leveraging the single cell data, we deconvolved tissue-level gene expression and found ~500 QTLs significantly associated with the cell fraction changes for various phenotypes [[mention 85%]]. Comparing this resource with others using spectral analysis, we show that the brain has unique expression and greater non-coding transcription than most other tissues, but not for chromatin. Moreover, we integrated the Hi-C and regulatory data to predict the gene regulatory network linking all possible functional genomic elements including QTLs, regulatory factors and target genes, identifying novel linkages between psychiatric GWAS SNPs and genes.[[what is the key number??]] Finally, based on this, we developed a deep-learning model to predict genotype-phenotype associations with ~5 times accuracy improvement achieved by integrating functional genomics data.[[expl better]] This model highlights intermediate genes and functional modules, revealing potential mechanisms, and also enables quantitative imputation of missing transcriptome and epigenome information from genotype data only.
 
I. Introduction (550)
Disorders of the brain affect nearly a fifth of the world’s population [[ref]]. Decades of research has led to little progress in our fundamental understanding of the molecular causes of psychiatric disorders. This is in contrast to cardiac disease for which lifestyle and pharmacological modification of environmental risk factors has had a profound effect on disease morbidity [[ref]], or cancer which is now understood to be a direct disorder of the genome [[ref]]. Though GWAS studies have identified many genomic variants associated with psychiatric disease risk, a detailed understanding of the precise molecular mechanisms behind these associations remain elusive [[ref]].
 
To this end, a number of genomic studies have recently focused on discovering genomic elements relating to the phenotypes in adult brain. A variety including common and rare variants and genes have been found to be associated with brain and psychiatric disorders \cite{26404826}. For instance, the Psychiatric Genomics Consortia (PGC) identified 142 GWAS loci associated with schizophrenia \cite{25056061}. 
Following a different path, other large consortia have also identified the reference sets of genomic elements across the entire body; e.g., eQTLs and eGenes in GTEx, and enhancers from ENCODE and Epigenomics Roadmap that are associated with various human cells and tissues. Though some of these elements relate to the brain, none of the consortia have specifically tailored their efforts toward comprehensively identifying the functional elements in the brain. [[insert]]There has been some pioneering work by CommonMind \cite{27668389} but this is just on rnaseq and has not reached maximal scale. [[end-insert]] 


[[cut next bit??]] Moreover, in addition to eQTLs and eGenes, most variants for psychiatric disorders have been found to lie in non-coding regions \cite{26404826}. Thus, understanding the cell and tissue specific gene regulation by which these variants control brain gene expression is a critical next step to understand the molecular mechanisms of brain disorders. 
[[para doesn't fit]][[cut]] To address this gap, recent technologies have started to detect the specific molecular activities within the brain, especially for the gene regulatory mechanisms that reveal how the genomic variants affect regulatory regions, control gene expression and drive the phenotypes and disorders. [[end-cut]]

Finally, there are a number of new technologies which have been developed but which have to be employed at scale and fully integrated… For example, recent HiC studies have been used to identify specific chromatin structural and regulatory elements, such as brain-active enhancers. Single-cell sequencing techniques also offer great promise for studying the transcriptome. However, each of the studies that leverage such technologies have generally focused on individual aspects of brain functional genomics; e.g., the Therefore, these data have not yet been fully integrated at scale.
 
[[cut]]In addition to the multi-facet data integration, larger sample sizes and more comprehensive assays are warranted to obtain a fuller view of brain-relevant functional genomics [[refs]]. [[end-cut]]

To this end, we have built a central, publically available comprehensive resource for adult brain functional genomics, including all the raw and uniformly processed data at both tissue and single cell levels from PsychENCODE and other related major projects including single-cell data [refs] with up to XXX samples. By leveraging this resource, our analyses identified various functional genomic elements and quantitative trait loci (QTLs) specific to the adult brain, including novel psychiatric GWAS and gene linkages. We also combined these elements and built an integrated deep-learning model to predict the molecular relationships from genotype to phenotype with high accuracy and impute missing data. The results obtained from this model are then studied in relation to specific brain phenotypes and psychiatric disorders.
[bookmark: _4ik0dwbudyvl]II. Comprehensive resource for adult brain functional genomics (233)
We designed this resource to provide a coherent and comprehensive structure to the data (http://adult.psychencode.org/). Broadly, it organizes a large amount of data for brain functional genomics pyramidally, with a large base of raw data files (much of it as restricted-access data, such as individual genotyping and raw next-generation sequencing data of transcriptomics and epigenomics), a middle layer of uniformly processed and shareable results (such as open chromatin peaks and gene expression quantifications, which are release without privacy restriction), and a compact cap at the top, consisting of an integrative model (based on imputed regulatory networks and QTLs). As shown in Figure 1, to build the base layer, we included all the datasets from PsychENCODE related to the adult brain and merged these datasets with other relevant data from additional projects including ENCODE, CommonMind, GTEx, Epigenomics Roadmap, and recent brain single cell studies. In total, this resource constitutes XXXX data samples derived from 1931 individual adult brains from multiple cohorts, which covers a large representation of brain phenotypes and psychiatric disorders. The major data types include RNA-seq, ChIP-seq, ATAC-seq, HiC, single-cell data, and genotyping.  (The later required large-scale imputation for all the PsychENCODE datasets, and we make full genotype sets available). Furthermore, the PsychENCODE project developed a specific "reference brain" project utilizing many assays on the same set of brain tissues, which we used to develop an anchoring annotation for the entire resource (Supplement).
III. Bulk and single cell transcriptome analysis: deconvolution explains gene expression in terms of cell fraction changes (946)
To identify the genomic elements that exhibit transcriptional activities specific to the adult brain, we used the ENCODE standard pipeline to uniformly process the RNA-seq data of all available samples from PsychENCODE and GTEx. Using these data, we identified interpretable functional elements, such as non-coding regions of transcription (Supplement), sets of differentially expressed and co-expressed genes characterizing various brain regions, phenotypes and disorders, which are provided as part of our resource. In particular, the co-expressed genes are summarized as a list of gene co-expression modules for psychiatric disorders \cite{cap1} and for brain regions after clustering together with other tissues of GTEx (Supplement).
 
Brain tissues has been found to comprise a variety of cell types, including neuronal and non-neuronal cells such as astrocytes. Previous studies have suggested that differences in tissue gene expression is likely attributed to the gene expression variations across cell types in both healthy and diseased tissues \cite{18849986, 27409810} \cite{21614001, 29439242}. Therefore, one question with measuring gene expression changes over a population in our brain tissue samples is reliably determining whether the changes are driven by gene expression in a particular cell type or whether they result from changes in relative proportions of various cell-types. To address this, we integrated single cell transcriptome data to discover how the gene expression from various cell types contribute to bulk gene expression. 

We used two complementary strategies. First, we used the standard pipeline to uniformly process single cell RNA-seq data in PsychENCODE, in conjunction with a number of other single-cell studies on the brain, in order to assemble a list of standard cell types in the brain (i.e., 16 neuronal types, 5 non-neuronal types and 4 additional fetal-related types from PsychENCODE; see Supplement). This list constitutes a matrix (C) of the gene expression signatures of 25 basic cell types, which are mostly concordant with what has been published, with some modifications (Figure Sxxx and Discussion).[[should we say that this is used in cap1 & devcap?]] Across these cell types, we found that a number of genes whose expression levels vary much more substantially than they do across individuals in a population (e.g., the dopamine receptor gene DRD3, Figure xxx). This implies that the variation of cell types can give rise to substantial changes in bulk gene expression at the tissue level. 

[[should we put here]] [[doesn't this get moved - doesn't fit here]]Moreover, we found that our estimated fractions of NEU+/- cells match the experimentally determined fractions for the reference brain samples (r=xxx, Figure xxx), providing an additional source of corroboration.[[end-move]]
 
To explore this further, we performed an unsupervised learning analysis for the bulk tissue expression data to identify the primary components as they relate to different single cell types. In particular, we decomposed the bulk gene expression matrix (B) from our resource using non-negative matrix factorization (NMF, see Methods), and then determined whether the top components (TCs) of the NMF (ie, NMF-TCs) that capture the majority of covariance in the data and the 25 standard gene expression signatures of single cells are consistent. As shown in Figure XX, we found a number of NMF-TCs that are highly correlated with the gene expression signatures of neuronal, non-neuronal and development-related cell types. This demonstrates that an unsupervised analysis derived from the main components of the bulk tissue data roughly matches the single cell data, partially corroborating our standard 25 cell types. In addition, previous studies have identified cell type specific expression patterns from co-expression analysis \cite{18849986}. We found here that some of our NMF-TCs correlate with the eigengenes of gene co-expression modules \cite{cap1}, especially for the cell type modules, supporting again that they connect the cell type information from the bulk tissue data.
 
Second[[is this second??]], previous studies found that the gene expression changes at the tissue level can be significantly associated with various cell types; e.g., the cell type specific gene co-expression modules \cite{18849986, 19829370}, but have not systematically and quantitatively revealed how different cell types contribute to the tissue gene expression changes. Thus, we next used the supervised method to estimate the cell fractions for tissue samples of individuals.  In particular, as shown in Figure xx, we de-convolved the normalized bulk gene expression matrix of tissue, B using the single cell data matrix C to estimate the cell fractions W, by solving the equation “B=WC+e” [[error term?? or apx eq.]](See methods). We found that using the single cell expression signatures weighted by the derived cell fraction can explain much of the population-level expression variation (i.e., across tissue samples of the same brain region taken from different individuals). Specifically, we find 1-||B-WC||2/||B||2>0.85, where ||.|| is the Frobenius norm of matrix (Methods). 

Furthermore, we found cell fraction changes were found to be highly associated with different phenotypes and psychiatric disorders (Figure xxx, Supplement for complete individual cell population estimates). For example, the excitatory and inhibitory neurons (Ex3 and In6) exhibit significantly different fractions between healthy male and female samples. The fraction of Ex3 cell types is also significantly reduced in ASD samples (p<xxx), while non-neuronal cells (e.g., oligodendrocytes) are represented in much greater abundance (Also reduced microglia fractions for Bipolar and increased astrocyte fractions for SCZ; see Supplement). 

Another interesting association we found was that cell fractions change with age. In particular, the fractions of neuronal type(s) (Ex3 and Ex4) are significantly positively correlated with age (r = xxx), but non-neuronal types (oligodendrocytes) are found to be negatively correlated. Furthermore, these age-related cell fraction changes are also potentially associated with differentially expressed genes across age groups (Figure xxx). For example, the gene involved in early growth response is down-regulated in older age groups, whereas the gene ceruloplasmin is down-regulated among middle-aged groups.

IV. Active enhancers in adult brain (288)
In addition to the transcriptome data, we uniformly processed chromatin data in the resource to give uniform quantifications, peak calling lists and single tracks for adult brain epigenomics. 
In particular, we processed the ChIP-Seq (H3K27ac and H3K4me3) and ATAC-Seq data for the reference brain and identified a consistent set of ~80k brain active enhancers in prefrontal cortex, >90% of which overlap with the Epigenomics Roadmap annotation (Supplement). In addition, we have also developed reference sets of active enhancers in other brain regions including CBC (N=xxx) and ACC (N=yyy), overlapping DLPFC by ZZZ% (Supplement). 

We then looked at the epigenetic signal variations across individuals at these enhancers. For this we checked the H3K27ac histone modification signal in DLPFC across 50 healthy individuals. We found that number of enhancers with active H3K27ac signal in an individual person varies largely from 20K to 70K (Mean = ~ 51K). [[discuss - too wide a range!]] Only a small fraction (~7%) of these enhancers bear active H3K27ac signals across all samples, but the majority (~68%) are active in more than half of the population. This can be also observed from the cumulative numbers of active enhancers by increasing the sample size. For example, the cumulative number increase dramatically for the first 20 sample examined, but becomes nearly saturated at the 30th sample to more than 75K. Again, this suggests that enhancer activity varies across individuals, yet the majority of brain enhancers are active in most of the population. We also compared the distribution of the saturation curve on the normal samples (N=50) with the ASD samples (N=43) and found no significant differences in overall enhancer activity. 
 
V. Consistently comparative analysis reveals the brain related transcriptomic and epigenomic activity (474)
One key aspect of our analysis is that we uniformly processed the transcriptomic and epigenomic data across PsychENCODE, ENCODE, GTEx and Roadmap. This allows us to compare the brain to other organs in a consistent fashion in order to delineate gene expression and chromatin activities unique to the brain. We attempted several methods including PCA and tSNE for an appropriate comparison, and finally used the Reference Component Analysis (RCA). PCA, though popular, tends to capture global structures, ignoring most of the local structure, but it can easily be influenced by outliers. On the other hand, t-SNE analysis preserves local structure but “shatters” global structure; [[thought we'd shorten & put in suppl.]] e.g., it separates samples from the same tissue so that the cluster distances on t-SNE space are not proportional to real gene expression dissimilarities. It thus does not give a sense of overall effects.[[end-cut]] RCA, however is capable of capturing local structure while maintaining meaningful distances in global structure space. It projects the gene expression in an individual sample against a reference panel, and then essentially reduces dimensionality of the individual projections. We did RCA consistently for comparing brain and other tissues in terms of their similarities of both the transcriptome and the epigenome.
 
Our comparative analysis for gene expression shows that the brain tends to separate from the other tissues in the first component, showing it has a more distinct expression pattern and, and that all the brain tissue samples from the different projects tend to group together (which is a consequence of our uniformly processing). This difference is accentuated when focusing on the tissue cluster centers and the distributions surrounding them. Inter-tissue differences are much more accentuated than intra-tissue differences. A different picture emerges when one looks at our comparison using chromatin data (i.e., ChIP-seq signals on our consistent set of brain active enhancers). It shows that the chromatin levels are much less distinguishable between brain and other tissues (Figure xxx).
 
Our RCA analysis focuses on inter-tissue differences in well-annotated regions (i.e. genes, promoters and enhancers). In addition to the expression differences in protein-coding genes, a tremendous amount of transcriptional diversity is present across tissues in intergenic and noncoding regions. Thus, we looked at the overall level of transcriptional diversity across tissues. For protein-coding regions, it has previously been demonstrated that testes and lung tend to have the largest transcriptional diversity in terms of the percentage of transcribed regions (Figure SYYY sat’d for genes). However, when we shift to non-coding and unannotated regions, we find that brain tissues (such as cortex and cerebellum) do, to some degree, stand out by exhibiting greater transcription than most other tissues. [[last bit doesn't really relate much]]This transcriptional diversity tends to increase with the number of samples (Figure xxx sat’d). Also, on the primate specific lncRNA regions \cite{ 24463510, 27919067}, the brain transcription even tops others[[TBD]].
 
VI. QTL analysis (590)                   	
To understand how the genotype affects the transcriptome and epigenome in the adult brain, we used the PsychENCODE resource data to identify quantitative trait loci (QTLs) affecting gene expression and chromatin activity. In particular, we calculated the association of SNPs with normalized gene expression and chromatin state (Methods) to find quantitative trait loci associating with gene expression and epigenomic activity in adult brain, including several major categories: expression QTLs (eQTLs), chromatin QTLs (cQTLs), splicing QTLs (sQTLs) and cell fraction QTLs. For the eQTLs, we adopted a standard approach, adhering closely to the established GTEX eQTL pipeline. We identified 2,523,235 eQTLs [[TBU by LD]] and 32893 e-genes including non-coding genes in the DLPFC by using matched genotype and gene expression data of 1452 individuals. This conservative estimate is a substantially larger number of eQTLs and eGenes than previous brain eQTL studies such as CommonMind and reflects the very large sample size and statistical power we have; e.g., thousands in our resource vs. hundreds in CommonMind (Supplement). We believe this eQTL number is close to saturation, in terms of associating almost every variant with some expression modulating characteristic. We also applied the same QTL calculation pipeline to splicing and identified 234,982 sQTLs.[[trans eqTL?? where??]]
 
For the cQTLs, the situation is more complicated. There are no established standard methods for calculating these on a large scale, though previous efforts have detected QTLs associated with various chromatin activities on non-brain context \cite{25799442, 26300125}. 
To properly identify them, we focused on a reference set of enhancers to define the region associated with the activity of the chromatin and then looked at how this activity varies in these enhancers across individuals who have chromatin data available [[UCLA_ASD plus EpiDiff]], correlating this with nearby variants. (See methods). Overall, we were able to identify ~2000 cQTLs in addition to the 6200 cQTLs identified using individuals from CommonMind \cite{ https://doi.org/10.1101/141986}.
 
Next, we were interested to see if any SNVs were associated with changes in the fractions of various cell types. In particular, we used our QTL pipeline to identify 443 distinct SNVs whose genotypes are significantly associated with differential cell fractions across individuals; i.e., cell fraction QTLs (fQTLs). In total, the 443 distinct SNVs constitute 508 different fQTLs between different cell types.[[[DC to update]]] Significant fQTLs are those with associated Bonferroni-corrected p-values of no more than 0.05 -- a very conservative cutoff.[[move to suppl]] Different cell types exhibit a great deal of heterogeneity in terms of their abundance within the set of high-confidence fQTLs. For instance, we identified 45, 15, and 33 significant fQTLs associated with the endothelial cells, astrocytes, and microglia, respectively [[cut??]] Moreover, we also identified XXX SNPs significantly associated with the gene expression changes across individual tissues after factoring out these cell type differences - these eQTLs represent SNP-expression associations unexplained by variation in cell types [[[DC to update]]]].

To further dissect the genomic elements associated with various QTLs we identified, we looked at how they overlapped and annotate them with a variety of different genomic annotations. The distributions of detailed QTL annotations across genomic regions are shown in Figure xxx. For example, we observed a significantly number of predictive QTLs break the TFBSs on the enhancers or promoters (xx%, Figure xxx), and also found xxx e-promoters on which eQTLs lie associating with distal genes. [[[more??]]] As expected, there is a very large amount of overlap between the cQTLs, sQTLs, and eQTLs, and with ~50% of cQTLs also being eQTLs [[[hyper overlap off ZZZ%]]]. Also, fQTLs are very distinct from others, YYY of which overlap with trans eQTLs. [[can we say more?]]


VII. Gene regulatory networks in adult brain (540)
In this section, we provided an integrative analysis at the gene regulation level for the data and genomic elements in the described above and predicted a gene regulatory network revealing how the genotype and regulators control target gene expression in adult brain. To this end, we first process a full, reference Hi-C dataset for adult brain, which provides direct physical evidence for potential interactions between enhancers and promoters (Figure 5A). Specifically, we generated and processed Hi-C data for the same reference adult brain that was used to identify the brain active enhancers, as previously described \cite{27760116} (Supplement). In total, we identified 2,735 topologically associated domains (TADs) which set potential physical boundaries of enhancer-promoter interactions and then 149,097 putative enhancer-promoter interactions in adult DLPFC. This HiC dataset is substantially different than the fetal brain HiC data set (see suppl) highlighting the importance of stage.  

As expected, we found that ~75% of enhancer-promoter interactions occur in the same TADs (Figure 5xx), suggesting that TADs provide physical boundaries for cis-regulatory relationships between enhancers and target genes.[[how?]] Also, as expected, the genes that have more enhancers [[potentially??]] interacting with their promoters tend to express higher (Figure 5xx).
 
We next integrated the Hi-C dataset with eQTLs to assess how much of the common variation-associated gene regulation is mediated by chromatin interactions. Interestingly, 30.7% of e-genes show evidence of chromatin interactions, accounting for 204,008 eQTLs (Figure xxx). To our surprise, eQTLs supported by Hi-C evidence showed stronger associations not only to eQTLs without genomic annotations, but also to exonic and promoter eQTLs, highlighting the importance of incorporating chromatin interactions in deciphering regulatory relationships (Figure 5xx).

As a second step to build a full gene regulatory network, we integrated the TADs with other regulatory elements and relationships such as transcription factors (TFs) and miRNAs (Methods).[[didn’t we already integrate w enhancers and etg links]] In particular, we used Hi-C data to find all possible enhancer-target gene relationships if enhancers and targets’ promoters are in the same TADs. We then found TF binding motifs using ENCODE data and imputed TF-target gene relationships if TFs have enriched binding motifs on the target gene’s promoters and enhancers. In total, we included ~3.2million enhancer-gene[[shouldn’t this be earlier]], xxx TF-gene [[TBU]] and ~1.8million eQTL-gene (FDR<0.05) regulatory linkages, providing a reference wiring network for gene regulation in brain.
 
Finally, using these “wiring” relationships, we inferred the final gene regulatory network linkages, which include the active regulatory links relating QTLs, enhancers, and transcription factors to target gene expression (Methods).  This network also has a few particular characteristics such as scale-free and hierarchical structures, which have been revealed by previous network analyses (Figure Sxx). Given a target gene, we associated coefficients with each of these wiring linkages predicting the target gene’s expression from the activities of their regulatory elements. We model them as simple linear relationships but regularize to minimize the number of connections using an elastic net model (Methods). Overall, we found this model could successfully predict expression of >xx% genes with the minimum mean square errors < xxx. For example, the expression of gene, XXX can be predicted by its TFs expression with accuracy = zzz based on our model [[[TBD]]]. [[cut]].

VIII. GWAS (530) 
Intrigued by the regulatory map built upon Hi-C and eQTLs, we are further interested to predict potential target genes of GWAS variants with psychiatric disorders. First, we found significant associations between eQTLs and GWAS disease traits. In particular, we calculated the enrichment in cis-eQTL SNPs of GWAS SNPs of three brain related disorders (schizophrenia, bipolar disorders and parkinson’s disease) and non-brain related disorders (CAD, asthma and type 2 diabetes). As expected, cis-eQTLs SNPs have more significant enrichment for GWAS SNPs of brain disorders than non-brain disorder GWAS SNPs. Schizophrenia GWAS SNPs have the highest enrichment on Cis-eQTLs SNPs among those three brain disorders. Collectively, these QTLs annotate a larger fraction of GWAS SNPs involving the brain (e.g., 21% in schizophrenia, 18% in bipolar) than previously observed, providing important leads on which genes are affected in disease. This suggests that GWAS SNPs have potential target genes if they overlap with eQTLs.

Thus, to further predict the target genes of GWAS variants, as second step, we exploited the combined Hi-C and eQTL data and the gene regulatory linkages.[[all linkages??]] For example, to identify putative target genes of newly identified 142 schizophrenia GWS loci \cite{27869829}, 

[[move to suppl]] we categorized 5,996 putative causal (credible) SNPs reported in the original study into promoter/exonic and intergenic/intronic SNPs. Promoter/exonic SNPs were directly assigned to the target genes based on the genomic coordinates, while intergenic/intronic SNPs were annotated based on chromatin interactions, which led to the mapping of 92 loci into 377 genes. Credible SNPs colocalize with 2,029 eQTLs associated with 83 e-Genes, 43 of which overlap with those identified by the Hi-C driven approach. To confirm that this overlap is mediated by the shared causal variants in GWAS and eQTLs, we performed a colocalization test (PMID: 24830394), from which we identified 190 genes across 79 loci in which GWAS and eQTLs share common causal variants. [[end to suppl]]

In total, we identified 488 putative schizophrenia-associated genes, hereby referred as SCZ genes, and 99 genes that show evidence both at the level of Hi-C and eQTLs, providing a high-confidence gene list (Figure 5xx). This is a huge increase from the previously annotated 22 genes across 19 loci based on CMC adult brain eQTLs \cite{27869829, 27668389}. The majority of SCZ genes (288 genes, ~59%) were not in linkage disequilibrium (LD, r2>0.6) with index SNPs (Figure xxx), consistent with the previous observations that regulatory relationships often do not follow linear genome organization. 

[[rewrite – see dict. ]] Moreover, we found that these SCZ genes can reveal additional biological mechanisms and functions that GWAS is unable to identify. They were enriched for genes and co-expression modules dysregulated in DLPFC of schizophrenia-affected individuals \cite{27668389}, suggesting that common variation-mediated gene regulation contributes to the gene dysregulation in schizophrenia (Figure 5xx). This also hints that there likely exists shared genetic etiology between common and structural variation since the SCZ genes are often affected by recurrent CNVs in schizophrenia. Also, the SCZ genes are enriched with the loss-of-function mutation intolerant genes \cite{27869829}, translational regulators, cholinergic receptors, calcium channels, and synaptic genes (Figure xxx). We further leveraged our single-cell expression data to examine cell-type specific expression signatures of SCZ genes, and found that they have significantly higher expression levels at neuronal cells than non-neuronal cells.[[end-rewrite]]

[[rewrite para]] We looked at the characteristics of the genes that were associated with the SCZ loci. First, as expected, these genes shared many of the characteristics of known SCZ genes. In particular, they're enriched in copy number variants, lost of function variants associated with functions attributed to schizophrenia. They were also enriched in differentially expressed genes associated with schizophrenia [[Ref 00:44] Capstone 1]. We further integrated this gene list with the single-cell profiles and found, interestingly, they were enriched in a variety of different neural types.

IX. Integrative modeling to relate genotype to molecular and high-level phenotypes in the adult brain (880)
The interaction between genotype and phenotype involves multiple intermediate levels; in this section therefore, we perform another level of integrative analysis by embedding our gene regulatory network from the previous section into a larger model. For this purpose, we introduce an interpretable deep-learning framework, a Deep Structured Phenotype Network (DSPN, Figure 6) [[name]]. This model combines a Deep Boltzmann Machine architecture with conditional and lateral connections derived from the QTLs and gene regulatory connections predicted from our elastic net regression.  As shown (Figure 6a), traditional classification methods such as logistic regression predict the phenotype directly from genotype, without inferring intermediates such as the transcriptome.  We build the DSPN via a series of intermediate models which add layers of structure to a logistic regression model, including a layer for intermediate molecular phenotypes such as gene expression and chromatin state, multiple layers for functional modules and other mid-level phenotypes which may be inferred as hidden nodes in the network, and a layer for high-level phenotypes such as brain traits.  Finally, we use special forms of connectivity (enforcing sparsity and adding lateral intra-level connections) to integrate our knowledge of QTLs, regulatory network structure, and co-expression modules from earlier sections of the paper (Supplement).  By using a generative architecture, we ensure that the model is able to impute intermediate phenotypes when needed, as well as providing a predictive model for high-level traits and phenotypes.
 

Using the full model with genome and transcriptome data provided, we show that adding the extra layers of structure in the DSPN allows us to achieve substantially better prediction of disease and other high-level traits than without (Figure 6b) [[discuss]]. [[should I use this or not??]] In paritcualr, we achieve, prediction of XXX with the extra layers vs XXX without. Further [[or in paritcular?]], comparison with a simple logistic predictor from the genome alone shows that the transcriptome carries significant further trait relevant information, which the DSPN is able to optimally extract (Figure 6a).  For instance, in the case of Schizophrenia, a logistic predictor is able to gain a 2.8 times improvement when using the transcriptome versus the genome (+13% vs. +4.6% from 50% chance), while the DSPN is able to gain a 5 times improvement (+23% vs. 4.6%); this may reflect the need to incorporate non-linear interactions between intermediate phenotypes at multiple layers as in the DSPN. [[enddiscuss]Moreover, the model also enables practical imputation of a subset of the transcriptome and epigenome (xx enhancers), with an accuracy of ~66-72% using Top 50 genes [[TBD]][[maybe a diff stat]] (Figure 6c, Supplement).  We can thus perform joint inference of the imputed intermediate phenotypes (ie the transcriptome and epigenome) and high-level traits from the genotype alone using the DSPN, which achieves between 57.9-66.7% for disease trait prediction (Figure 6c), which is better than XXX. [[[add in]] These results demonstrate the usefulness of even a limited amount of functional genomics information for unraveling gene-disease relationships, and that the structure learnt from such data can be used to make more accurate predictions of high-level traits even when absent.
 
[[we need to discuss]]We transform the results above to the liability scale in order to compare with heritability estimated on this scale using GCTA (Figure 6d).  Using the PsychENCODE cohort, we estimate that common SNPs and eSNPs explain x% and x% of liability for Schizophrenia respectively, which is comparable to previous estimates. [[[fill in]]] The imputation-based DSPN model explains a comparable level of variance to the eSNPs (4.5%), although we note that the DSPN may be capturing epistatic interactions not modeled in SNP-based heritability.[[[explain]]]  The full DSPN model estimates that the transcriptome-based liability for the DLPFC is ~32.8%. Although we expect that a large portion of this will overlap with the common SNP based liability (which has previously been estimated as 25.6%) and genetically determined non-linear interactions, it may also include environmental and trait-influenced contributions (see Supplemental Figure), meaning that it is an upper-bound on the genetically determined liability modeled by the DSPN.  Similar estimates of the liability explained for Bipolar and ASD by the DSPN (imputation and full models) are given (Figure xxx).
 
We examined the connections learnt by the DSPN between intermediate and high-level phenotypes for potentially relevant biological interactions. We included specific known co-expression modules and submodules as in the model, and examined which of these the DSPN prioritized as well as new sets of genes associated with the DSPN latent nodes that were uncovered at each hidden layer using a common prioritization scheme (Supplement). For instance, in Schizophrenia, we found that the highest prioritized module in the DSPN was associated with Dopaminergic and Glutamatergic synapse and calcium signaling pathways, with other modules associated with Oligodendrocyte markers, and the Complement cascade pathways, which confirms and extends previous smaller scale analyses [[refs]]. Further, we found that excitatory neuronal markers were enriched in the highest prioritized module for age, while the gene NRGN occurred in many of the top prioritized modules/submodules, in agreement with the earlier analyses.  We further used eQTLs and cQTLs to link SNPs to the genes/enhancers of each module, and show that the modules prioritized by the DSPN are strongly enriched for GWAS variants (Supplement).  Examples showing specific associations between modules, genes and variants for schizophrenia are shown (Figure 6e), and we provide a full summary of the functional enrichment analysis for all disease and high-level traits in supplement (Supp section xx).
 
IX. Discussion (532)
[bookmark: _GoBack]We integrated PsychENCODE datasets with other resources, and developed a comprehensive resource consisting of various functional genomic elements for the adult brain including data from 1931 individuals. This resource serves as an important step for gaining biological insights from genomic functional data in neuroscience. Overall, our study has identified a very large-scale set of eQTLs and eGenes for adult brain, several folds more than previous studies, almost achieving saturation of protein coding genes. Therefore, we suspect that larger population studies will not significantly expand on these. However, there exist other aspects of brain QTLs that can be extended in the future, in addition to eQTLs. [[shorten rest of para by 50%]]The first would be chromatin QTLs. Increasing the sample size may potentially help identify more cQTLs, which also can be further interrelated to eQTLs . Moreover, the enhancers that this study used for cQTLs are defined from the current techniques such as ATAC-seq and ChIP-seq, especially from K27AC. In the future, methods such as STARR-seq may provide more accurate definitions on enhancers, and thus can be further used to better identify chromatin associated variants. [[end-shorten]]
 
Another area of future development is single cell analysis. Current techniques suffer from the low capture efficiency, and so it remains challenging to reliably quantify low-abundant transcripts/genes and interrogate biological variation \cite{26949524, 25053837}. In this study, we found that 25 basic and known cells could explain large expression variations across tissues. However, there still exist the gene expression heterogeneities even among the same cell types (Figure Sxx_magic), implying potential additional cell types in the adult brain. Thus, increasing single cell data and more advanced techniques in the future are expected to identify a considerable number of novel cell types, which might contribute to the unexplained variation. [[expl next 2 sent]]Also, given the issue of RNA decay in single cell RNA-seq, we intend to relate this resource to recent in situ transcriptomic data such as the spatial gene expression by optogenetic techniques, allowing us to find consistent expressed genes driving the brain phenotypes at the cellular and tissue levels. In addition, recent single-nucleus RNA sequencing techniques have emerged to complement the gene expresison measurement at the whole cell level that can be impacted by various aspects such as intercellular interactions \cite{28729663, 29227469}. 
 
[[cut para or do better]]More accurate cQTLs and fQTLs can be input into our deep learning model, which is expected to improve the model performance. Also, the integrative model is readily expandable to include additional data types such as imaging and medical data, allowing a broader range of intermediate phenotypes to explain the connection between genotype and high-level traits. Furthermore, while providing better prediction, some model connections are deliberately set based on prior knowledge from the other analyses, such as the gene regulatory networks linkages, to make the model more interpretable and easier to use. Thus, another major goal of the model is to provide a useful compression of the resource as a whole; e.g., XXX KB for the model representation vs. XXX TB for the original functional genomic brain datasets. [[[[jw/dc better]]]
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