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Abstract: Multiple mutational processes fuel carcinogenesis and leave 

characteristic signatures in cancer genomes. Identifying operative mutational 

processes by signatures helps understand cancer initiation and development. 

The task is to delineating cancer mutations by nucleotide context into a linear 

combination of mutational signatures. Past mutational signature studies suggest 

the solution should be sparse to be biologically interpretable. Previously 

published methods use empirical forward selection or iterate signature 

combinations by brutal force. Here, we alternatively formulate the problem as a 

LASSO linear regression and accordingly developed a software tool, SigLASSO. 

By parsimoniously assigning signatures to cancer genome mutation profiles, the 

solution becomes sparse and more biologically interpretable. Additionally, 

SigLASSO integrates biological prior knowledge into the solution by fine-tuning 

penalties on coefficients. Compared with subseting signatures before fitting, our 

method leaves leeway for noises and unknown signatures. Last, the model 

complexity is informed by the size and complexity of the data through 

parameterizing using cross-validation and subsampling.  

 
 
Introduction 
 

Mutagenesis is the fundamental process for cancer development. Examples 

include spontaneous deamination of cytosine, ultraviolet light inducing pyrimidine 

dimer and alkylating agents crosslinking guanines. Multiple endogenous and 

exogenous mutational processes drive cancer mutagenesis and leave distinct 

fingerprints. Noticeably, these processes have characteristic mutational 

nucleotide context biases. Mutation profiling of cancer sample at manifestation 

finds all mutations accumulate over lifetime, including somatic alterations both 
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before cancer initiation and during cancer development. In a generative model, 

over time multiple latent processes generate mutations drawing from their 

corresponding nucleotide context distributions (“mutation signature”). In cancer 

samples, mutations from various mutation processes are mixed and observable 

by sequencing.  

 

Applying unsupervised methods such as non-negative matrix factorization (NMF) 

and clustering to large-scale cancer studies, researchers have identified at least 

30 mutational processes [REF]. Many processes are recognized and linked with 

known etiologies, for example aging, smoking or ApoBEC activity. Investigating 

the fundamental underlying processes helps understand cancer initiation and 

development.  

 

One prominent task in nowadays cancer research is to leverage on signatures 

studies on large-scale cancer cohorts and efficiently assign active signatures for 

new cancer samples [REF]. Although scientists do not have the ground truth of 

mutational signatures in cancer samples, they do have some reasonable and 

logical expectations about the solution. In this work, we aim to design a 

computational framework to achieve these expectations. For example, we 

believe the solution should be sparse as past studies indicate it is not possible to 

have all signatures active in a single sample or even a given cancer type. An 

apparent example is, UV-associated signatures should not be observed in 

tissues that are not exposed.  

 

 

Previously published methods use forward selection with an empirical stopping 

criterion or iterate all combinations (brutal force). Here, we alternatively formulate 

it as a more mathematically rigorous LASSO linear regression problem. Out 

approach is the first one that explicitly penalizes the model complexity in 

optimization. We use L1 norm as the regularizer as L0 norm (cardinality of active 

signatures) is designed but cannot be effectively optimized. L2 norm, on the 
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other hand, leads to many small, non-zero coefficients. By penalizing the L1 

norm of coefficients, the algorithm is efficient and produces sparse and 

biologically interpretable solutions. Additionally, this approach is able to 

organically integrate biological prior knowledge into the solution by fine-tuning 

penalties on the coefficients. Compared with current approach of subseting 

signatures before fitting, our soft prior method leaves leeway for noises and 

unidentified signatures. Last, unlike previous methods, SigLASSO is aware of 

data complexity such as mutational number and patterns. Our method is 

automatically parameterized based on cross-validation and subsampling, 

allowing data complexity to inform model complexity. This approach promotes 

results replicability and fair comparison across datasets. 

 

 

Material and methods 
Signature identification problem 
Different mutational processes leave mutations in the genome with distinct 

nucleotide contexts. In particular, we consider the mutant nucleotide context and 

look one nucleotide ahead and behind. This divides mutations into 96 

trinucleotide contexts. Each mutational process carries its unique signature, 

which is represented by a mutational trinucleotide context distribution (Fig 1A). 

30 signatures are identified by nonnegative matrix factorization (NMF) and 

clustering from large-scale pan cancer analysis (REF). Here our objective is to 

leverage on the pan cancer analysis and decompose mutations observed in new 

samples into a linear combination of signatures. Mathematically, the problem is 

formulated as the following nonnegative regression problem: 

 min
!∈!!

𝑆𝑊 −𝑀 ! 

The mutation matrix, M, contains mutations of each sample broken down into 96 

nucleotide contexts. S is a 96×30 signature matrix, containing the mutation 

probability in 96 trinucleotide contexts of the 30 signatures. W is the weights 

matrix, representing the contributions of 30 signatures in each sample. 

 



SigLASSO workflow 
To promote sparsity and interpretability of the solution, SigLASSO uses LASSO 

regression, adding an L1 norm regularizer on the weights (i.e. coefficients) of the 

signatures. LASSO is mathematically justified and can be computationally 

efficiently solved by using least-angle regression (REF). Mathematically, LASSO 

is equivalent to a Bayesian linear regression framework with Laplace prior.  

min
!∈!!

( 𝑆𝑊 −𝑀 ! +  𝜆𝛪 𝑊 ) 

𝜆 is parameterized by 10-fold cross validation. We use the smallest 𝜆 that gives 

mean square error (MSE) within 3 standard deviances (SD) of the minimum.  

 

Mutation count is an important factor affecting signature identification. To assess 

the solution stability and adjust for lower signature ascertainment when fewer 

mutations are observed, SigLASSO performs subsampling. At each subsampling 

step, it samples 50% mutations, solves the regression problem and finds active 

(i.e. with nonnegative coefficients) signatures. In the end, we only retain 

signatures that are active in more than 𝜏 fraction of all subsampling trials. 𝜏 can 

be set empirically between 0.6 to 0.9 (REF). In our study, we use 0.6 and set 

subsampling to 100 times unless otherwise specified. 

A schematic illustration of the SigLASSO workflow is shown here (Fig 1B). 

 
 
Fig1: A: Mutational processes have different mutational contextual spectrums 

(mutational signature) and contribute with different weights (loadings) to the final 

observable mutation spectrum in cancer. B: A schematic illustration of 

SigLASSO workflow.  

 

 
Data simulation and model evaluation 
First we downloaded 30 previously identified signatures 

(http://cancer.sanger.ac.uk/cosmic/signatures, REF).  We created simulated 

dataset by randomly and uniformly drawing signatures (2 to 8 signatures) and 



corresponding weights (minimum: 0.02). Noise was simulated at various levels 

with a uniform distribution on 96 trinucleotide contexts. Then we summed up all 

the signatures and noise to form a mutation distribution. We randomly drew 

mutations from this distribution with different mutation counts.  

We ran deconstructSigs according to the original publication (REF). To evaluate 

the performances, we compared the inferred signature distribution with the 

simulated distribution and calculated mean square error (MSE). We also 

measured the number of false positive signatures in the solution as well as the 

false negative ones.  

 

Illustrating on real dataset 
To assess the performance of our method on real world cancer dataset, we use 

TCGA somatic mutations from various cancer types. VCF files are downloaded 

from Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/). A 

detailed list of files used in this study can be found in Appendix X.  

The signature composition results were compared with previous pan cancer 

signature analysis (http://cancer.sanger.ac.uk/cosmic/signatures, REF). Priors 

used in SigLASSO were also extracted from this source. 

 

SigLASSO software suite 
SigLASSO accepts (vcf files or) processed mutational spectrums. It allows the 

users to specify biological priors, subsampling steps and subsampling cutoff. 

SigLASSO uses the 30 COSMIC signatures by default. Users are given the 

option to also supply customized signature files. LASSO is computationally 

efficient. Using default settings, the program could successfully decompose a 

cancer sample data in a few seconds on a regular laptop (3 GHz i7 CPU, 16 GB 

DDR3 memory).  

SigLASSO is released as an R package (SigLASSO). Updated code is also 

distributed on GitHub (https://github.com/ShantaoL/SigLASSO). 

 

 



Results 
1. Performance on simulated dataset 
Both SigLASSO and deconstructSigs perform better with higher mutation number 

and lower noise (Fig 2). In general, the MSE is below 0.02 with high mutations 

and low noise (0.1). This performance is remarkably good for both programs. 

Even a program that recovers all signatures perfectly but also oblivious about the 

noise, MSE will be the square of noise level, which is 0.01 in this case. Likewise, 

MSE should be 0.04 when noise level rises to 0.2. And this is what we observe 

generally in both programs. 

 

Fig2: Performance of sigLASSO and deconstructSigs in four different scenarios, 

with high/low noise and high/low mutation counts. Error bars indicate one 

standard deviation (SD) of ten repeats.  

 

When mutation number decreases, we introduce uncertainty in sampling, which 

is negligible in high mutation number cases. As expected, the MSE jumped into 

the 0.1 to 0.3 range for both low and high noise. Clearly, the error here is 

dominated by undersampling, not the noise we embedded.  

 

[[Also want to do a simulation to show benchmark on individual signatures, and 

how prior helps to improve performance]] 

 
 

2. Performance on real dataset 
 
Then we moved from synthetic datasets to real cancer mutational profiles. One of 

the problem in cancer signature research is the ground truth of real samples 

cannot be obtained. Previous large-scale signature studies largely replies on 

mutagen exposure association from patient records and biochemistry expertise 

about mutagenesis. Here, we illustrated the outputs of different models and 

simply compared the results with existing signature knowledge.  



Although there is no golden standard to evaluate the performance, we do have a 

few reasonable expectations about the solution.  

1) One or more signatures should be active in a given cancer sample and type. 

However, not all signatures are active in a given cancer sample or type. An 

obvious example is the UV signature should not be observed in tissues 

unexposed.  

2) We expected to find divergent signature distributions in different cancer types. 

Various tissues are exposed to diverse mutagens and undergo mutagenesis in 

different fashions. Signature patterns should be able to distinguish cancer types. 

3) The solution should be biological interpretable. Because signatures are not 

orthogonal, simple regression might lead to solutions that change erratically 

when small perturbation is made in the observation. Mathematical optimization 

also might pick the wrong signature. Especially in case of collinearity, LASSO 

does not provide guarantee to pick the correct predictor. Researchers now solve 

this problem by simply taking away the majority of predictors they believe to be 

inactive. SigLASSO allows users to supply domain knowledge to guide the 

variable selection in a soft manner.  

4) The solution should reflect the level of ascertainment. Especially in WXS, low 

mutation count is often a severe obstacle for assigning signatures due to 

undersampling. Care should be taken to not overfit the data. 

 

These expectations are not quantitative, but they help direct us to find the most 

plausible solution as well as the less favorable ones. 

 
 

2.1 WGS scenario: renal cancer datasets, prior matters 
We benchmarked the two methods using 35 Whole-genome sequenced papillary 

kidney cancer samples (Figure 3, REF). The median mutation count is 4528 

(range: 912-9257). We found without prior, both SigLASSO and deconstructSigs 

showed high contribution from signature 3 and 8, which were thought not active 



in pRCC from previous studies and currently there lacks biological support to 

rationalize them existence in pRCC (REF).  

 

However, if we just “subset” the signatures and take the ones are active from 

previous studies, the signature profile is completely dominated by signature 5 

with only roughly 30-40% mutations assigned with signature, indicating possible 

underfitting.  

When sigLASSO takes into prior knowledge of active signatures, the assignment 

increases to around 70% in most cases. The backbone signature is signature 5, 

which is in line with previous reports. SigLASSO also assigned a small portion of 

mutations to signature 3 and 13.  

  

Fig 3: SigLASSO and deconstructSigs performance on 35 WGS papillary renal 

cell carcinoma samples. Bars represent the fraction of mutation assigned with 

signatures. Samples are sorted by the fraction of signature SigLASSO assigned. 

Pie charts show the total signature contribution when summing up all 35 samples.  

 

 

2.2 WXS scenario: esophageal carcinoma, our method is sensitive to 
mutation counts 
Then we moved to run the two methods on 181 whole-exome sequenced 

esophageal carcinoma samples with at least 20 mutations. The median mutation 

count is 78 (range: 23-1001), which is a low mutation counts situation. No prior is 

used because COSMIC does not have active signatures in esophageal cancers.  

SigLASSO only assigns signatures to 20-40% of the mutations. There is a weak 

but significant positive correlation between mutation count and fraction of 

mutation with signature inferred (correlation = 0.07, p<0.001, Supplement 1).  In 

contrast, deconstructSigs assigns signatures to more than 80% and often 100% 

of the total mutation. The fractions of signatures assigned have no significant 

correlation with total mutation counts (p>0.05). 

 



Signature 5 (“age”) dominates the solution from SigLASSO, followed by signature 

3, 25, 9 and 1 (Fig 4A). In deconstructSigs, the dominating signature is 25, 

followed by 3, 1, 9 and 24. According to COSMIC, signature 5 and 1 are the 

aging signature. They are the only two signatures that are active in all cancers 

shown on COSMIC. We expected age signature to be also active in non-

pediatric, esophageal cancers. Meanwhile, the etiology for signature 25 is 

unknown but only observed in Hodgkin’s lymphomas cell line. Similarly, signature 

9 is linked with AID activity in leukemia and lymphoma. We believe these two 

signature assignments are not biologically interpretable.  

 

Last, we demonstrated SigLASSO could help distinguish different histological 

types of esophageal cancer (Fig 4B). In the Adenocarcinoma type, SigLASSO 

found more signature 5 but less signature 3. DeconstructSigs found slightly more 

signature 3 but less signature 25. ANOVA showed … 

 

Real cancer mutational profiles are likely noisier than our simulation and exhibit 

highly nonrandom distribution of signatures. They might explain the performance 

disparity on simulated and read datasets. 

 

Fig 4: SigLASSO and deconstructSigs performance on 181 WXS esophageal 

carcinoma samples. A: Top two panels: bars represent the fraction of mutation 

assigned with signatures. Samples are sorted by the fraction of signature 

SigLASSO assigned. Pie charts show the total signature contribution when 

summing up all samples. Bottom panel: bars represent the according mutation 

counts in samples. B: Pie charts show the total signature contribution in two 

different histological subtypes assigned by sigLASSO and deconstructSigs. 

 

 

 

 

2.3 Performance on 8,893 TCGA samples 



We ran SigLASSO with step-by-step set-ups and deconstructSigs on 8,893 

TCGA tumors (34 cancer types, Supplemental X) that have >20 mutations. The 

results are shown in figure X.  

 

We noticed, after applying either subsampling or L1 penalty, the results became 

sparser compared to single regression. Combining both leaded to even higher 

sparsity. Yet, without giving priors, signature 3 and 25 contributed large portions 

to the mutations in almost every cancer. Based on previous studies, signature 3 

and 25 are believed to be inactive in most cancers. This issue is also observed, 

to a greater extent, in deconstructSigs.  After adding in cancer type-specific 

priors from large-scale signature studies, sigLASSO results showed significant 

improvement, with “aging” signature 1 and 5 dominating.  

 

SigLASSO provided better clustering of cancer types based on the signature 

distribution as shown in the PCA plot (Fig5B? STL2MG: I pasted them below, we 

should have another figure pack discussion). ANOVA shows the cancer types 

show distinguishable signature patterns… 
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Fig5: A heat map of step-by-step SigLASSO performance and deconstructSigs 

on 34 cancer types.  

 

 

 

Discussion 
Recently, decomposing cancer mutations into a linear combination of signatures 

provides invaluable insights in cancers (REF). Though inferring mutational 

signatures and the latent mutational processes, researchers are able to start 

better understanding one of the fundamental driving force of cancer initiation and 

development: mutagenesis.  

 

How to leverage on results from large-scale signature studies and apply to a 

small set of samples is a very practical problem for many researchers. While this 

might seem to be a simple regression problem at first, the core question is how to 

promote sparsity and prevent over- and underfiting. Researchers learned from 

signature studies in large-scale cancer datasets that mutational signatures are 

not all active in one sample. In most tumor cases, only a few signatures 

dominate. A recent signature study summary shows 2-to-13 known signatures 

are observed in a given cancer type, which might include hundreds and even 

thousands samples. Moreover, the solution should be aware of data complexity 

and parameterize accordingly to avoid over- and underfiting. Last, mutational 

signatures are not orthogonal due to their biological nature. Colinearity of the 

signatures will lead instable fittings that change erratically with even slight 

perturbation of the observation.  

 

DeconstructSigs is the first tool to identify signatures even in a single tumor. 

Here, we developed SigLASSO, providing a more mathematically rigorous 

alternate. Unlike deconstructSigs paving a forward selection path, SigLASSO 

uses L1 to penalize the coefficients for signature selection and promoting 
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sparsity. By fine-tuning the penalizing terms, SigLASSO is able to further exploit 

previous signature studies from large cohorts and promote signatures that are 

believed to be active.  

 

Moreover, under the current model, cancer draws mutations from a multinomial 

distribution of all active cancer signatures and then further draw from the 

multinomial nucleotide context distribution given by the signature. The sampling 

is usually stable with abundant mutations in whole genome sequencing.  

However, in whole exome sequencing, cancer samples having less than 50 

mutations are common. Thoese mutations are first divided into several 

signatures and then categorized further into 96 types based on the nucleotide 

composition. With mutation number less then a few hundreds; undersampling 

becomes a significant obstacle for reliable signature identification.   

 

SigLASSO tries to take a conservative approach and utilizes subsampling to 

assess the signature inference ascertainment. So that the number of assigned 

signatures (model complexity) is informed by the data complexity. Likewise, 

SigLASSO does not specify a noise level explicitly beforehand (in contrast, 

deconstructSigs specifies a noise level of 0.05 to derive the cut-off of 0.06 for 

stopping) but uses cross validating to parameterize. In general, SigLASSO let 

data itself control the model complexity. 

 

Last, due to the colinearity nature of the signatures, pure mathematical 

optimization might lead to picking wrong signatures that are highly correlated with 

the true active ones. To overcome this problem, SigLASSO allows researchers to 

incorporate domain knowledge to guide signature identification. We showcased 

its performance on real cancer dataset. Although we lack the ground truth of the 

operative mutational signatures in the tumors, nonetheless we have several 

reasonable believes about the signature solution. SigLASSO produced signature 

solutions that are more biologically interpretable, better align with our current 



knowledge and believes about mutational signatures and well distinguish cancer 

types and histological subtypes.  

 


