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Abstract 

The Pan-cancer Analysis of Whole Genomes (PCAWG) project provides an unprecedented 

opportunity to comprehensively characterize a vast set of uniformly annotated coding and non-

coding mutations present in thousands of cancer genomes. Classical models of cancer 

progression posit that only a small number of these mutations strongly drive tumor progression 

and that the remaining ones (termed “putative passengers”) are inconsequential for 

tumorigenesis. In this study, we leveraged the comprehensive variant data from PCAWG to 

ascertain the molecular functional impact of each variant, including putative passengers. The 

predicted functional impact distribution of PCAWG mutations shows that, in addition to 

predicted high- and low-impact mutations, there is a group of predicted medium-impact putative 

passengers predicted to influence gene expression or activity. Moreover, we found that predicted 

functional impact relates to the underlying mutational signature: different signatures confer 

divergent impact, differentially affecting distinct regulatory subsystems and categories of genes. 

We also find that functional impact varies based on subclonal architecture (i.e., early vs. late 

mutations) and can be related to patient survival. Finally, we note that insufficient power due to 

limitation in cohort sizes precludes identification of weak drivers using standard recurrence-

based approaches. To address this, we adapted an additive effects model derived from complex 

trait studies to show that aggregating putative passenger variants (i.e. including yet undetected 

weak drivers) provides significant predictability (12.5% additive variance) for cancer phenotypes 

beyond the PCAWG identified driver mutations. This framework allowed us to estimate the 

frequency of potential weak driver mutations in the subset of PCAWG samples that lack well 

characterized driver alterations.   

 

 

  

 



 

Introduction 

Previous studies have focused on characterizing variants within coding regions of cancer 

genomes1. However, the extensive Pan-cancer Analysis of Whole Genomes (PCAWG) dataset2, 

which includes variant calls from more than 2500 uniformly processed whole-cancer genomes, 

offers an unparalleled opportunity to investigate the overall molecular functional impact of 

variants influencing both coding and non-coding genomic elements. Given that the majority of 

cancer variants lie in non-coding regions3, this variant dataset serves as a substantially more 

informative resource than the many existing datasets focused on exomes. Moreover, it also 

contains a full spectrum of variants, including somatic copy number alterations (SCNAs) and 

large structural variants (SVs), in addition to single-nucleotide variants (SNVs) and small 

insertions and deletions (INDELs). 

Of the 30 million SNVs in the PCAWG variant data set, several thousand (less than 

5/tumor4) are identified as driver variants (i.e., positively selected variants that favor tumor 

growth) by recurrence-based driver detection methods. The remaining ~99% of SNVs are termed 

passenger variants (referred to as putative passengers in this work), with poorly understood 

molecular consequences and fitness effects. Recent studies have proposed that, among putative 

passengers, some may weakly affect tumor cell fitness by promoting or inhibiting tumor growth. 

In prior studies, these variants have been described as “mini-drivers”5 and “deleterious 

passengers”6, respectively. 

  In this work, we explored the landscape of putative passengers in various cancer 

cohorts by leveraging uniformly generated extensive pan-cancer variant calls7,8, driver mutation 

catalog9, transcriptome profile10, mutational signatures [cite pcawg7] and subclonal status [cite 

pcawg11] of more than 2500 samples generated as part of PCAWG. Additionally, the driver 

discovery exercise in PCAWG suggests absence of driver events in few PCAWG samples 

despite large number of non-coding alterations. Thus, we closely inspected cumulative effect of 

putative passengers in PCAWG samples. More specifically, we built on and applied existing 

tools to annotate and score the predicted molecular functional impacts of variants in the pan-

cancer dataset. This systematic annotation and impact prediction effort generated an exhaustive 

compendium of PCAWG variants, thereby providing a valuable resource. Furthermore, we 

integrated the annotation and predicted impact score of each variant to quantify their overall 



impact on various genomic elements in different cancer cohorts. We observed that disruption of 

genetic regulatory elements in non-coding elements correlates with altered gene expression. 

Moreover, as elucidated by our signature analysis, various mutational processes have differential 

predicted impacts on coding genes and regulatory elements. We found that the predicted 

molecular functional impact burden of variants correlates with patient survival time and tumor 

clonality. We also observed differences in predicted impacts of putative passengers that may 

impact tumor progression. However, these putative passenger mutations may be driven purely by 

background processes or may suggest non-neutral effects. Hence, we also considered ways of 

assessing possible non-neutral roles for putative passengers.  

We found that putative passengers provide significant predictive power (beyond common 

driver mutations) to distinguish cancer from non-cancer phenotypes, even after controlling for 

known mutational signatures and background mutation rates as possible confounders. We 

determined that this effect is likely prominent among tumors without known drivers, or with 

fewer driver variants than expected. Although the effects of these possible driver variants can 

only be detected in aggregate by our model, it motivates future searches for these variants among 

putative passengers, especially within in non-coding regions of the genome. Finally, we note that 

selection acting on somatic cells is dynamic in nature. Thus, putative passengers may act as 

driver mutations at some later phase during tumor progression, when treatment is given or the 

clone spreads to another organ. Therefore, it is valuable to characterize the functional impact of 

putative passengers, even if their predicted functional effects are not of selective consequence 

currently. 

 

Overall molecular functional impact 

In order to characterize the landscape of putative passenger mutations (non driver mutations 

based on PCAWG driver catalog9,11) in PCAWG, we first surveyed the predicted molecular 

functional impact (quantified by funseq score12) of somatic variants in different cancer genomes. 

The predicted functional impact distribution varies among different cancer types and for different 

genomic elements. A closer inspection of the pan-cancer impact score distributions for non-

coding variants demonstrated three distinct regions. The upper and the lower extremes of this 

distribution are presumably enriched with high-impact strong drivers and low-impact neutral 



passengers, respectively. In contrast, the middle range of this distribution corresponds to putative 

passengers with intermediate molecular functional impact (Fig 1a).   

Subsequently, we investigated whether the frequency of medium- and high-impact 

noncoding putative passengers (see supplement section 1.4 for classification threshold) in a 

cancer cohort is proportionate to its total mutational burden. For a uniform mutation distribution, 

we expect that the fraction of these putative passengers would remain constant as cancer samples 

accumulate more mutations. In contrast, we observed that tumors with high SNV frequencies 

tend to have lower fraction of medium-and high-impact putative passengers. This trend is 

particularly strong in CNS medulloblastoma (p < 4e-8), lung adenocarcinoma (p < 3e-4), and a 

few other cancer cohorts (Fig 1b & supplement Fig. S4). 

In addition to SNVs, large structural variations (SVs) also play important role in cancer 

progression. Thus, we quantified the putative functional impact of SVs (deletions and 

duplications). Briefly, we built a machine learning framework, which utilizes conservation, 

epigenomics signals and overlap with known cancer genes to assign SV impact score 

(supplement section 4.2). A close inspection of both SV and SNV impact scores suggest that 

certain cancer subtypes tend to harbor a large number of high-impact SVs, while others 

contained large frequency of high-impact SNVs (Fig 1c). Many of these correlations have 

previously been observed13. For example, it is known that large deletions(on  chromosome 17 in 

TP53 and BRCA1) play the role of drivers in ovarian cancer13, whereas clear cell kidney cancer 

is often driven by SNVs. However, we also find new associations, such as the predominance of 

high-impact large deletions compared to impactful SNVs in the bone leiomyoma cohort. 

Similarly, a close inspection of high impact large duplication and high impact SNVs suggest 

their differential acclivity toward different cancer cohorts (see supplement Fig. S5). 

 

Burdening of different genomic elements 

Furthermore, we investigated the overall mutational burden observed among different genomic 

elements in various cancer cohorts. Naively, one might assume that the overall burden of 

putative passengers in a cancer genome would be uniformly distributed across different 

functional elements and among different gene categories. In contrast, we observed that the 

predicted molecular impact burden in certain cancers is concentrated in particular regulatory 

regions and gene categories. This is easiest to understand in terms of coding loss-of-function 



variants (LoFs), where the putative molecular impact is most intuitive. We thus examined the 

fraction of deleterious LoFs affecting genes across seven categories of cancer-related functional 

annotation (Fig 2a & supplement Fig. S6-S7). Driver LoF variants (included in PCAWG driver 

catalog) showed significant overlap with six categories of cancer-related genes (cell cycle, 

immune response, cancer pathway, apoptosis, DNA repair and essential genes) relative to a 

uniform genome-wide expectation (p < 0.001). Conversely, non-driver LoFs displayed a small 

but significant depletion relative to a uniform genome-wide expectation in each of these 

categories except in metabolic and immune response genes, for which they showed slight 

enrichment compared to the genome-wide expectation (p < 0.001). We note that differential 

tendency towards mutation generation or mutation repair among these gene categories may 

contribute to these observations (e.g. higher expression among essential genes may lead to both 

increased transcription-coupled damage and transcription-coupled repair14). 

As with LoF variants, we can also quantify the overall burden of the noncoding SNVs in 

a cancer genome. However, for the majority of noncoding SNVs, predicted molecular functional 

impact is less easy to gauge. For instance, coding and noncoding variants occupying the terminal 

region of the gene or intronic regions would most likely have little functional consequence. In 

contrast, the molecular functional impact of transcription factor binding site (TFBS) variant is 

clearly manifested through the creation or destruction of transcription factor (TF) binding motif 

(gain or loss of motif). In both cases (gain or loss), we observed significant differential 

burdening of TFBS among different cancer cohorts. For instance, based on uniform background 

model, we detected significant enrichment of variants creating new motifs in various TFs 

including GATA, PRRX2 and SOX10 (Fig 2b & supplement Fig. S8-S9) across major cancer 

types, compared with genome-wide expectation. Similarly, variants breaking motifs were highly 

enriched in TFs such as IRF, POU2F2, NR3C1and STAT (Fig 2b & supplement Fig. S8-S9) in 

the majority of cohorts. This selective enrichment or depletion suggests distinct alteration 

profiles associated with different components of regulatory networks in various cancers. 

Furthermore, for a particular TF family, one can identify the associated target genes 

affected due to the bias towards creation or disruption of specific motifs in their regulatory 

elements (promoters and enhancers). For instance, the TERT gene shows the largest alteration 

bias for ETS motif creation across a variety of cancer types (Fig 2c & supplement Fig. S10-

S11). Other genes (such as BCL6) showed a similar bias, albeit in fewer cancers. Moreover, the 



enrichment of SNVs in selective TF motifs leads to gain and break events in promoters that 

significantly perturb the overall downstream gene expression (Fig 2d & supplement Fig. S10-

S12). For example, ETS family transcription factor at the regulatory region of TERT and BCL2 

gene displayed a strong motif creation bias and a significant change in gene expression (with p-

value TERT=5.49e-5 and p-value BCL2=3.4e-4). In contrast, RPS27 shows an alteration bias 

towards disruption of ETS motifs driven by skin melanoma, which coincides with a strongly 

significant down-regulation of RPS27. Similarly, while aggregating expression of all 

downstream genes affected by the same TF motif change, we found several motif events are 

highly significant (supplement Fig. S13-14). For instance, motif gain in ZBTB14 and E2F in 

lung adenocarcinoma, ETS motif gain in thyroid adenocarcinoma and TFAP2E and TFAP motif 

loss in lymphoma. 

Finally, we also analyzed the overall burden of structural variants (SVs) in various 

genomic elements and compared the pattern of somatic SV (large deletions and duplications) 

enrichment in cancer genomes with those from the germline (Fig 2e). As expected, we observed 

that somatic SVs were more enriched among functional regions compared to germline SVs, 

because the latter ones will be under negative selection for disrupting functional regions (Fig 2e 

& supplement Fig. S15). Furthermore, we observed a distinct pattern of enrichment for SVs that 

split a functional element versus those that engulf it. As has been previously noted, there is a 

greater enrichment of germline SVs that engulf an entire functional element rather than for those 

that break a functional element partially15. Interestingly, we observed the same pattern among 

somatic SVs (Fig 2e & supplement Fig. S15).  

 

Mutational processes analysis  

The differential burdening of various genomic elements may be attributed to an underlying 

stochastic but biased mutational processes. Thus, we closely inspected the underlying mutational 

processes generating SNVs in both coding and non-coding regions of cancer genomes. First, we 

looked into the most impactful event, loss-of-function mutations in coding regions. We would 

anticipate premature stop codons to show strong mutational contextual bias due to the nature of 

codon composition. Indeed, we found premature stop mutations carry a specific mutational 

spectrum, which differs significantly from the overall tumor mutational spectrum. In particular, 

some mutations (e.g. T>Cs) cannot create premature stop as we expected. However, when 



compared with the pan-cancer premature stops, individual cancer shows a spectrum shift. For 

example, premature stops in RCCs (renal cell carcinomas) show a higher percentage of T>As 

compared to all cancers (18% versus 8%) (Fig 3a). Our observation can be explained by the 

divergence of mutational processes in individual cancer types and implies mutational processes 

confer distinct effects in coding regions. 

Similarly, the disproportionate functional load on certain TFs in cancers can be related to 

the underlying mutational spectrum influencing their binding sites. Different transcription factors 

have varying nucleotide context in their binding sites (TFBS). These variations may facilitate the 

role of different mutational processes and will be reflected in their mutational spectrum. For 

instance, the mutational spectrum of motif breaking events observed in SP1 TFBS suggests a 

major contribution from C>T and C>A mutations (Fig 3a). In contrast, motif-breaking events at 

the TFBS of HDAC2 and EWSR1 have relatively uniform mutational spectrum profiles.  

Based on the mutational context, we can further decompose all observed mutations into a 

linear combination of mutational signatures, which presumably represent the mutational 

processes16,17. Every signature (cite pcawg7) has varying influence depending on the cancer type 

and in a given cancer type, different signatures disproportionally burden the genome. Comparing 

the signature composition of low-and high-impact putative passengers in certain cancer-cohorts 

can help us to distinguish between mutational processes that generate distinct variant impact 

classes. For instance, in the chRCC (chromophobe renal cell carcinoma) cohort, although the 

majority of putative passenger variants can be explained by signature 39, high-impact and low-

impact putative passengers have a different proportion of signature 5 and signature 1(Fig 3b). 

We also scrutinized LoFs in coding regions, which carry the highest molecular function impact. 

Compared to noncoding putative passengers, signature 1 and 23 together contribute a relatively 

higher fraction to premature stops. We further generalized this analysis across multiple cohorts in 

PCAWG. Similar to Kidney-chRCC cohort, we observed distinct signature distributions for the 

low-and high-impact non-coding putative passengers in Liver-HCC, Prost-AdenoCA, Eso-

AdenoCA and Ovary-AdenoCA cohorts (Fig 3c). In addition to mutational signatures, we 

observed that cancer samples with microsatellite instability (MSI) due to failure of DNA 

mismatch repair, have higher percentage of high impact non-coding putative passengers 

(supplement Fig. S16). Collectively, these findings suggest that various mutational processes 

shape and disproportionally burden cancer genomes.  



Subclonal architecture and cancer progression 

Cancer is an evolutionary process, often characterized by the presence of different sub-clones. 

These can be further categorized as early and late subclones based on the overall subclonal 

architecture of a cancer sample. Thus, we explored the relative population of high- and low-

impact putative passengers in different sub-clones of a tumor sample (cite pcawg11) to decipher 

their progression during tumor evolution. Intuitively, one might hypothesize that high-impact 

mutations achieve greater prevalence in tumor cells if they are advantageous to the tumor, and a 

lower prevalence if deleterious. As expected, we observe this to be true among driver variants. 

However, interestingly, we observe that high-impact putative passengers in coding regions have 

greater prevalence among parental subclones (Fig 4a) – an effect driven by high-impact putative 

passenger SNVs in tumor suppressor and apoptotic genes (Fig 4a). In contrast, high-impact 

putative passenger SNVs in oncogenes appear slightly depleted in parental subclones. Similarly, 

high-impact putative passengers in DNA repair genes and cell cycle genes are depleted in early 

subclones (Fig 4a). We obtained similar results when we simply categorized mutations on the 

basis of variant allele frequency (VAF) (supplement Fig. S17). We note that different signatures 

between and early and late subclone mutations have limited contribution to the observed 

variations18. 

In non-rearranged genomic intervals, the VAF of a mutation is expected to be 

proportional to the fraction of tumor cells bearing that mutation. Previous studies19 have 

measured the divergence in VAFs to indirectly quantify heterogeneity in mutational burden 

among different sub-clones in a cancer. Here, we quantified this heterogeneity among low-, 

medium- and high-impact putative passengers for different cancer cohorts (see supplement 

section 6.2). We generally observe lower mutational heterogeneity among high-impact putative 

passenger SNVs. This observation is consistent for both coding and non-coding putative 

passenger variants (Fig 4b). 

Furthermore, we correlated the predicted molecular functional impact (measured by 

GERP score here) of each variant with their corresponding cellular prevalence measured by VAF 

(see supplement section 6.3). We find that, within driver genes and their regulators, variants that 

disrupt more conserved positions (high GERP score) tend to have higher VAF values (Fig 4c). 

This trend remains true even after excluding SNVs that have been individually called as driver 

variants, suggesting that within driver genes, yet-uncalled driver (potentially high impact 



putative passenger) variants remain. We also find that outside of driver genes, variants that 

disrupt more conserved positions tend to have lower VAF values (Supplement Table 1).  

As with the clonal status of a tumor, clinical outcomes (such as patient survival) provide 

an alternative measure of tumor evolution. Therefore, we performed survival analysis to see if 

somatic molecular impact burden – here measured as the mean GERP of putative passenger 

mutations per patient – predicted patient survival within individual cancer subtypes. Patient age 

at diagnosis was used as a covariate in the survival analysis. We obtained significant correlations 

between somatic molecular impact burden and patient survival in two cancer subtypes after 

multiple test correction (Supplement Table 2). Specifically, we observed that somatic molecular 

impact burden predicted substantially better patient survival in lymphocytic leukemia (Lymph-

CLL, p-value 2.3e-4) and ovary adenocarcinoma (Ovary-AdenoCA, p-value 2e-3) (Fig 4d). The 

use of average impact rather than summed impact ensures that these results do not simply reflect 

more advanced progression (i.e. more mutations) of the cancer at the time of sequencing. Finally, 

we note the potential role of unmeasured patient clinical characteristics or tumor molecular 

subtypes in partially influencing these correlations. 

 

 

Categorizing putative passenger variants 

The comprehensive characterization of putative passenger landscape in PCAWG highlight many 

key attributes of putative passengers. The results we have found may be explained in relation to 

underlying mutational processes. However, they may also be indicative of selective effects 

among subset of these mutations, whether or not they are generated by a neutral mutational 

process. If indeed a subset of putative passengers possess fitness effects, then we can extend the 

canonical model of driver and passengers into a continuum model. Conceptually, in such 

extended model, somatic variants can be classified into multiple categories while considering 

their impact on tumor cell fitness: drivers with strong positive selective effects, putative 

passengers with neutral, weak positive and weak negative selective effects. This broad 

classification scheme can be further refined by considering ascertainment-bias and the putative 

molecular functional impact of different variants (Fig 5a). Previous power analyses20,21 suggest 

that existing cohort sizes support the identification of strong positively-selected driver variants, 

but that many weaker drivers and even some moderately strong driver variants would be missed.  



However, these moderately strong and weak driver variants can also provide a potential 

fitness advantage to tumor cells. With respect to the functional-impact-based classification, any 

positively or negatively selected variants will have some molecular functional impact (i.e. effect 

on gene expression or activity). The relevance of molecular functional impact is firmly 

established for driver mutations, defined as positively-selected variants promoting tumor growth. 

However, rapid accumulation of putative passengers, which undergo weak/strong negative 

selection, could adversely affect the fitness of tumor cells6. Moreover, a majority of low-impact 

and some high-functional impact putative passengers may alter tumor gene expression or activity 

in ways that are not ultimately relevant for tumor fitness; hence, these variants will undergo 

neutral evolution. 

An initial step towards identifying the presence of variants with effects on tumor fitness 

is to compare observed mutation distributions with ones generated by simulating or modeling 

neutral processes. This approach has been extensively leveraged in the context of individual 

driver discovery using element burden testing. Such an approach is potentially powerful since it 

allows the use of complex background mutational models, although the possibility of detecting 

artifacts due to the inadequacy of current models of neutral mutational processes remains, since 

unmodeled mutation process may result in confounding effects. With this caveat, we explore 

such an approach below in an attempt to quantify non-neutral aggregate effects among putative 

passengers, using a variety of background models and an additive effect model which combines 

both positive and negative fitness effects.  As in the case of individual driver discovery, 

validation of such effects requires follow-up experimentation. 

 

Overall effects of putative passengers and additive variance 

It is interesting to note that in a cancer genome, the presence of few drivers (with high positive 

fitness effects) and large numbers of putative passengers (with weak or neutral fitness effects) 

could be considered analogous to prior observations in genome-wide association studies 

(GWAS) that implicated a handful of variants influencing complex traits. These modest numbers 

of variants explain only a small proportion of the genetic variance, thus contributing to the 

“missing heritability” problem in GWAS22,23. However, it has been shown that aggregating the 

remaining variants with weak effects can explain a significant part of the “missing heritability”22 

and is predictive of phenotype24. We do not currently have estimates of “missing heritability” 



(aggregated effects of putative passengers) at the subclone level for tumorigenicity, which may 

depend on both genetic and epigenetic factors. However, the fact that some tumors in PCAWG 

(~10% of PCAWG samples) lack a known driver11 suggests that some driver mutations remain to 

be discovered. The models above suggest the importance of investigating the cumulative effect 

of putative passengers in this context. 

To address this, we adapted an additive effects model22,25, originally used in complex trait 

analysis, to quantify the relative size of the aggregated effect of putative passengers in relation to 

known drivers. With a number of caveats regarding interpretation arising due to differences 

between germline and cancer evolutionary processes (see supplemental section 8), we tested the 

ability of this model to predict cancerous from null samples as a binary phenotypic trait (Fig 5b). 

Briefly, we created a balanced dataset of observed tumor and matched neutral (null) model 

samples, using a recently proposed background model which preserves mutational signatures, 

local mutation rates, and coverage bias (see supplemental section 1.1.b). Subsequently, using a 

linear model, for each SNV the additive effects model implicitly associates a positive or negative 

effect (coefficient), considering them to be sampled from a normal distribution (see 

supplemental section 8.1). Furthermore, in this model the individual effects of SNVs are not 

explicitly estimated; instead, their variance is evaluated as a hyper-parameter using restricted 

maximum-likelihood (REML)25, where separate variance terms can be associated with different 

groups of SNVs falling in distinct categories.  In addition to the neutral model above, we utilized 

two further local background models, including PCAWG-wide randomized datasets as well as 

our custom randomization correcting for various covariates (see supplemental section 1.1.a-c).  

We compared several versions of the additive variance model (explained above) in 8 

cancer cohorts having a sample size greater than 100.  In the first model, we separated the 

mutations into two categories, corresponding to drivers (from the PCAWG analysis) and putative 

passengers (Fig. 5ci).  Putative passengers were only included in the model if found in at least 

two samples from a cohort (which can be any combination of observed and simulated samples).  

Additionally, to maximize the predictive potential of the driver mutations, we used a binary 

variable which is 1 if any driver mutation is present in a sample as a predictor (details in 

supplement section 8.1).  This approach effectively isolates the effect of putative passengers in 

tumors without driver mutations. In this model, we observed an increase in the variance 

explained from ~49.9% using drivers alone to ~59.4% with putative passengers when averaged 



across all cohorts, with the putative passenger contribution significant at FDR<0.1 in all cohorts 

except kidney-RCC cohort, suggesting that non-neutral effects are present among the putative 

passenger mutations (Supplement Table 3a).  We further tested a different version of the model 

in which we split mutations into coding, promoter and other non-coding categories, where the 

coding mutations are a superset of the PCAWG drivers (Fig. 5cii).  Here, we observed that the 

coding mutations accounted for by far the largest overall proportion of the variance (~50.7% 

averaged across cohorts), while promoters and other non-coding also contributed much lesser, 

but still significant amounts of extra variance (~1.9% and 6.9% respectively overall, with cohort-

specific contributions from each category at FDR<0.1, Supplement Table 3b).  Although the 

total contribution of the promoters is lowest in this model, we calculated the additive variance 

per SNV by normalizing by the number of SNVs in each category (Fig. 5ciii) and found that the 

normalized variance is substantially higher in promoters than other non-coding, although lower 

than coding mutations.  Further, we tested the sensitivity of our results to the choice of null 

model by repeating these analyses for two other randomization schemes, and compared the 

variance on observed and liability scales, with quantitatively similar results (Supplement Tables 

4-7).  We also verified that our model effectively controls for overfitting by observing near zero 

additive variance when a second randomized sample is substituted for the observed genotypes, 

and that the sensitivity of the results to changes in the randomization window size is small 

(Supplemental Table 10a-b).  To further verify that the model controls for overfitting, we split 

the data into test and training partitions, and show that the additive variance on the training 

partition correlates with test predictive accuracy, where we use the Best Linear Unbiased 

Predictor (BLUP) to cast the model in predictive form (Supplemental Table 10c and 

supplemental section 8.2). 

By including a binary predictor for known driver SNVs in the above model, we expect 

the contribution of the putative passengers to be higher among samples without known drivers 

(as well as all null samples).  To confirm that the putative passengers were indeed contributing to 

the discrimination of samples without known drivers, we further calculated the additive variance 

exclusively for such samples in PCAWG.  First, we repeated the analysis of the 8 cohorts above, 

but with all samples containing known SNV drivers and SNVs falling in known driver elements 

removed.  We observed an average of 12.5% additive variance across cohorts (Supplement 

Table 8a), which was higher than the 9.5% additive variance estimates based on putative 



passengers among all samples (with and without known drivers; p=0.01, 1-tailed paired t-test for 

increase in per-cohort additive variance, all cohorts ≥ 20 samples). This observation is consistent 

with a more important role for the putative passengers among samples without a known driver, 

since they may have partially redundant effects in the samples harboring known drivers, or 

include a larger number of high-impact undiscovered drivers among the samples without known 

drivers. In a subsequent analysis, we calculated the additive variance after excluding samples 

with driver SVs and CNAs in addition to samples with known driver SNVs.  This analysis was 

performed for pan-cancer meta-cohort which pools all such samples (Supplemental Table 8b).  

We observed a lower amount of additive variance (6.8%) for the pan-cancer meta cohort, which 

may be due to tissue-specific effects which are lost at the meta-cohort level. Finally, we 

estimated the Best Linear Unbiased Predictor (BLUP) for individual cohorts after samples with 

predicted SNV, SV and CNA drivers were excluded, including SNVs contained in predicted 

driver elements (details in supplement section 8.2), and used this to derive an estimate of the 

number of weak drivers among samples lacking predicted PCAWG drivers11 (Supplement 

Table 9). We conservatively estimate the number of weak drivers by finding the smallest set of 

SNVs whose additive variance is equal to the additive variance of all the SNVs.  A per sample 

estimate of driver events is then derived by comparing the average number of SNVs from this set 

in the observed versus random samples. Using this approach, we estimated an average of 8.4 

weak drivers per cohort, corresponding to ~0.81 weak driver events per tumor. We expect that 

these estimates are limited by sample size, and thus represent lower bounds. 

 

Discussion 

Certain key alterations in the tumor genome, often identified through the detection of strong 

signals of positive selection on individual variants, have been shown to play a pivotal role in 

tumor progression.  Although a typical tumor has thousands of genomic variants, very few of 

these (~5/tumor26) are thought to drive tumor growth. The remaining variants, often termed 

passengers, represent the overwhelming majority of the variants in cancer genomes, and their 

functional consequences are poorly understood. In this work, we comprehensively characterized 

putative passengers in the PCAWG dataset. Subsequently, we attempted to quantify the 

cumulative fitness effect of such putative passengers on tumor growth through the additive 

variance model. We note that the above approach relies on applying an accurate background 



model.  However, current null models have inaccuracies due to our incomplete understanding of 

various mutational processes in cancer. Nonetheless, our additive variance analysis was robust 

for multiple background models and suggested a potential role of cumulative effect of putative 

passengers on tumor progression. This effort further complements the driver discovery exercise9 

in PCAWG by identifying key alterations beyond strong drivers. Also, our predicted functional 

impact analyses of putative passengers showed that different mutational processes are associated 

with extensive differences in impact on cellular subsystems, irrespective of whether these cause, 

are indirectly associated with, or are independent of subclonal fitness differences in an evolving 

tumor. These observations further motivate follow-up experiments and additional whole-genome 

analyses to explore the role of putative passengers with weak (positive and negative) fitness 

effects in cancer. In conclusion, our work highlights that an important subset of somatic variants 

currently identified as putative passengers nonetheless may have biologically and clinically 

relevant functional roles across a range of cancers. 
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Figure 1: Overall functional impact of PCAWG variants: a) Functional impact distribution in noncoding regions: three peaks 
correspond to low-, medium- and high-impact variants; b) Correlation between the fraction of impactful noncoding SNVs and the 
total mutational counts for different cancer cohorts.  c) log10 ratio of high-impact structural variants(SVs) and SNVs in different 
cancer cohorts. 
 
 

 
 
 
 
 
 
 
 



 
 
 
Figure 2: Overall functional burdening of different genomic elements: a) Percentage of genes in different gene categories 
(apoptosis, cell cycle, cancer pathway, dna repair, metabolic and essential genes) affected by non-driver LoFs in observed and 
random model; b) Pan-cancer overview of TFs burdening: heatmap of differential burdening of various TFs due to SNVs that 
induce motif breaking and motif-gaining events in different cohorts compared to the genomic background; c) Target genes 
affected due to motif gain and loss in ETS transcription factor family: genes such as TERT, RP17-731F5.2 and JSRP1 are 
affected due to gain-of-motif events, whereas ASXL2 and RPS27 are affected due to loss-of-motif events; d) q-q plot showing 
genes such as TERT, PIM1 and BCL2, which are differentially expressed due to gain-of-motif events in ETS TFs; e) enrichment 
of germline and somatic large deletions in coding region and transcription factor binding peaks. Large deletions can engulf or 
partially delete various genomic elements. 
 
 
 
 
 
 
 
 
 



 
 
 
 
Figure 3. Mutational signatures associated with different categories of impactful variants: a) Mutation spectra associated 
with premature stops and transcription factor binding motif breaking events observed in HDAC2, EWSR1 and SP1 in the kidney-
RCC cohort. A pan-cancer premature stop spectrum is also shown here; b) Distribution of mutational signatures in the kidney-
chRCC cohort for impactful noncoding SNVs (top), low-impact noncoding SNVs (middle) and premature stops (bottom); c) 
Comparison of underlying signature distribution between high-and low-impact nominal passengers in different cancer cohorts 
 
 
 

 
 



 
 
 

 
Figure 4: Correlating functional burdening with subclonal information and patient survival: a) Subclonal ratio (early/late) 
for different categories of SNVs (coding/non-coding) based on their impact scores. Subclonal ratios for high-impact SNVs 
occupying distinct gene sets; b) Mutant tumor allele heterogeneity difference comparison between high-, medium- and low-
impact SNVs for coding(left) and non-coding regions(right); c) correlation between mean VAF and GERP score of different 
categories of variants (driver SNVs, non-driver SNVs in known cancer genes & passenger variants in non-driver genes) on a pan-
cancer level; d) Survival curves in CLL (left panel) and RCC (right panel) with 95% confidence intervals, stratified by mean 
GERP score. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 5. Conceptual classification of somatic variants based on their functional impact and selection characteristics, and 
additive effects model: a) Both coding and non-coding variants can be classified as drivers or passengers based on their impact 
and signatures of positive selection. Among putative passengers, true passengers undergo neutral selection and tend to confer low 
functional impact. Deleterious passengers (weak and strong) and mini-drivers (weak and strong) represent various categories of 
higher-impact nominal passenger variants, which may undergo weak negative or positive sections; b) Additive effects model for 
nominal passengers: The combined effects of many nominal passengers are modeled using a linear model, which predicts 
whether a genotype arises from an observed cancer sample or from a null (neutral) model (notation defined in supplement 
section 8.1). The model is fitted by optimizing the hyper-parameter 𝜎#$, and a test for significant combined effects of the nominal 
passengers is made by performing a log-likelihood ratio test against a restricted model which includes only µ and e; c) Predictive 
power of known drivers and nominal passengers using the additive effects model: (i) compares the maximum possible variance 
which can be explained using known drivers with the performance of the model containing driver and putative passengers; (ii) 
further breaks this down into a contribution from coding, coding and promoter and all variant;  (iii) presents normalized additive 
variance explained exclusively by putative passengers in coding regions, exclusively by promoters, and exclusively by other non-
coding only elements of the genome. 


