RESPONSE LETTER

Reviewer #1 (Josh's review)

-- Ref 1.0 Clarifying terminology---

Reviewer Comment	It is reassuring that the authors used published definitions. In that case, please insert the appropriate references to the literature where the terms are first introduced if that hasn't been done already.
Author Response	We thank the reviewer for suggestion. In the updated manuscript, we have already used references at appropriate position.
Excerpt From Revised Manuscript	

-- Ref 1.1 – Background model--

Reviewer Comment	The authors have addressed the issue of including additional covariates as best as I can envision at this point.
Author Response	We thank the reviewer for recognizing the robustness of our updated background model.
Excerpt From Revised Manuscript	

-- Ref 1.3 –Response variable--

Reviewer Comment	The authors have now clarified their response variable more clearly.
Author Response	We thank the reviewer for confirming our edits to be clear.
Excerpt From Revised Manuscript	

-- Ref 1.4 – Choice of random effects model --

Reviewer	The authors have documented the prior literature and
Comment	appropriateness of the application of their chosen random
	effects model.
Author	Reviewer's earlier suggestion was very helpful in this regard. We
Response	thank him for mentioning this earlier.
Excerpt From	
Revised Manuscript	

Ref 1.5 – Related to LoF spectrum -

Reviewer Comment	The authors have addressed this point by making clarifying changes to the text and Figure 3.
Author Response	We thank the reviewer for going through the updated text and confirming this.
Excerpt From Revised Manuscript	

-- Ref 1.6 – Analysis of samples w/o driving mutations –

Reviewer	Could the authors coordinate with Nuria's group that did
Comment	the patient specific analysis for this work? They
	correlate the increase in putative passengers in those
	samples that lack known drivers. Nuria's group attempted
	to expand the set of drivers by assessing the expected
	number of passengers in each sample, calculating an
	"excess" and then re-analyzing whether variants found in
	those samples might be reconsidered as drivers. If the
	authors haven't done so already, I'd suggest they use this
	new list of samples lacking known drivers for this
	correlative analysis.
Author	As suggested, our updated results are based on the updated version of
Response	driver mutation list curated by Nuria's group.
Excerpt From	
Revised Manuscript	

-- Ref 1.7 – Overlap of results w/ driver group for coding genes --

Reviewer Comment	Overlap of results w/ driver group for coding genes: Did the authors restrict the analysis to coding regions as suggested by Gaddy? I can't tell from the response.
Author Response	Yes, we did this analysis for both coding and noncoding driver elements as suggested. However, we note that despite being interesting we downplay this result as we restrict our analysis only for PCAWG samples without known driver mutations.
Excerpt From Revised Manuscript	

-- Ref 1.8 – Definition of impact assessment for SVs --

Reviewer Comment	The authors point us to the supplement, section 4.2, for their description of how they assessed the impact of SVs. I found this section very confusing and needing a rewrite for clarity. The method is a machine-learning (random forest) based approach that takes in a set of features and predicts the impact of an SV. However, I could not find a clear description of the prediction labels anywhere in the section that would help me understand the gold standard their method is trying to predict. What is the overall target of the prediction? Is it the presence/absence of an SV at all? This needs to be explicitly stated somewhere. Also, the set of features is not listed but instead a windowing approach is defined to account for different SV length sizes. The authors should tabulate the features used for the model. Also, its not clear to me how the 1000 genomes data is being used for this and the rationale on why any of it should be included in the training since one might expect germline events to be generated under very different processes distinct from somatic events? Finally, its not clear what the SV impact score (SVIS) reflects. It is some probability that an SV would be seen in a particular window given the features of that window? If so, how would that correspond to an impact? Would genomic regions with little impact have more SV potential since their alterations have relatively smaller functional effect?
Author Response Excerpt From Revised Manuscript	We thank the reviewer for pointing this out. We have updated the supplement to further clarify this section and provide more details on the features utilized for the prediction. The overall goal of prediction to assign a prioritization score to each SV based on how divergent it's features are from a common benign SV (based on 1KG SV dataset).

Reviewer #2 (Peter's comments)

Reviewer	I would like to see what Figure 1a looks like for totally
Comment	neutral simulated mutations - it is difficult to know how
	much the three peaks are explicable by the background
	mutational process.
Author	In past, we have done this analysis and found significant differences.
Response	However, member of steering committee pointed out these differences could be attributed to imprecision in background model. With the updated background model, the overall differences are not significant for majority of cancer cohorts. However, we restrict this comparison to specific regions of the genome then for few cohorts we do observed some differences.
Excerpt From	
Revised Manuscript	

-- Ref 2.0 Original & random functional impact distribution----

-- Ref 2.1 – BLUP prediction on somatic SNVs in normal tissues--

Reviewer	In the additive model, the question remains as to whether
Comment	the small excess predictive signal derived from the
	putative passengers in true cancer samples relates to
	unmodelled factors influencing mutation distribution or to
	selection on non-coding mutations. One potential way to
	assess this would be to apply the BLUP predictor to sets
	of genome-wide somatic mutations in normal tissues (rather
	than cancers). The two datasets that I am aware of for
	this are our one whole genome from normal skin and the 45
	genomes in liver, small and large bowel organoids from
	Ruben van Boxtel (published in Nature, 2016). If selection
	drives the signal in the additive model, then these should
	cluster with the simulated samples; if it's unaccounted
	mutational processes then they should cluster with the
	cancer samples (albeit the mutational landscape of the
	normal samples is less rich than the cancers).
Author	We thank the reviewer for giving this suggestion. Although this
Response	suggestion is intriguing and we decided to follow-up on this. However, as
	the reviewer mentions the number of samples/mutations in both studies
	are very low to perform the BLUP analysis.
Excerpt From	
Revised Manuscript	

-- Ref 2.2 – Influence of aneuploidy on additive variance--

Reviewer	The finding of the lower predictive capacity when samples
Comment	with CNAs are removed is an interesting one - what does
	arm-level or whole chromosome aneuploidy do to the
	predictive model? In other words, 1q is commonly gained
	across many many tumours - and correspondingly has a
	higher mutation burden overall compared to other regions.
	Would this lead to apparent discriminative power in the
	additive model for variants on 1q? One could test this by
	looking at the genomic distribution of BLUP estimates of
	the coefficients - at individual-gene level, these should
	be somewhat correlated, but decay rapidly to be minimal at
	the chromosome arm-level
Author	We thank the reviewer for this suggestion. The current model doesn't
Response	explore the influence of aneuploidy on predictability. In the future iteration
	of this model, we do intend to explore this question in detail.
Excerpt From	
Revised Manuscript	

Reviewer #3 (Gaddy's review)

-- Ref 3.0 use predicted impact score---

Reviewer Comment	Replace impact score with "predicted impact score" throughout the text.
Author Response	We thank the reviewer for suggesting this change. We have updated the text to reflect this change.
Excerpt From Revised Manuscript	

-- Ref 3.1 reorganizing text---

Reviewer	Reorder sections that you start with mutational processes
Comment	and clonal vs. sub-clonal.
Author	
Response	
Excerpt From	
Revised Manuscript	

Reviewer Comment	Clarify what you consider a driver: (i) Drivers discovered by the Driver paper, (ii) Events in known cancer genes (e.g. any event in NF1), (iii) Events called as drivers in the Panorama paper.
Author Response	For majority of our analysis we have used driver events as defined in Nuria's paper. For additive variance analysis, we have done additional analysis on driver elements discovered by the driver paper as well.
Excerpt From Revised Manuscript	

-- Ref 3.2 Clarify what is considered drivers----

-- Ref 3.3 Additive variance beyond TERT promoter---

Reviewer Comment	See how much of the missing variance is explained beyond the TERT promoter mutations.
Author Response	
Excerpt From Revised Manuscript	

-- Ref 3.0 Survival and signature---

Reviewer	Are survival differences account for different signatures
Comment	and subtypes of disease?
Author Response	Reviewer makes a good point. We have updated the text to point out this caveat in the survival analysis section.
Excerpt From Revised Manuscript	"Finally, we note the potential role of unmeasured patient clinical characteristics or tumor molecular subtypes in partially influencing these correlations."

-- Ref 3.2 – TADs and partial SV depletion--

Reviewer Comment	Regarding depletion of partial SVs, can this be related to TADs in both cases?
Commerc	TRDS TH DOCH Cases:
Author	
Response	
Excerpt From	
Revised Manuscript	

-- Ref 3.3 – LoF spectrum--

Reviewer Comment	Regarding LoF spectrum, can it be fully explained by the prevalence of signatures in each cohort? If yes, you may want to write a shorter section saying that "STOP codons are distributed as expected by the mutations signatures.
Author Response	STL suggest that we use some LS's figures (expected v.s. observed) in the supplement.
Excerpt From Revised Manuscript	

-- Ref 3.4 – Impact score distribution --

Reviewer Comment	Are putative passengers only non-coding? Fig 1a is non- coding
Author Response	Putative passengers are both coding and non-coding. Since the majority of putative passengers are non-coding, we highlight the impact score distribution for them.
Excerpt From Revised Manuscript	

-- Ref 3.5 – Signature and early vs late mutations --

Reviewer	Is there a difference in signatures between early and late
Comment	mutations? If yes, can it explain the differences in
	fraction of impact categories?
Author	We thank the reviewer for this helpful comment. We note that PCAWG11
Response	group compared signature profile for early and late subclone mutations and
	concluded that "mutational processes act at a rather constant rate during
	tumor progression". We clarify this point in the updated text.
Excerpt From	"We note that different signatures between and early and late subclone mutations have limited contribution to the observed variations ¹⁸ ."
Revised Manuscript	limited contribution to the observed variations ¹⁸ ."
l i i i i i i i i i i i i i i i i i i i	