
Comprehensive resource and integrative model 
for functional genomics of the adult brain 
(~5300) 

Abstract (192) 
Understanding how genomic variation influences adult brain phenotypes and disorders remains 
a key challenge. To this end, the PsychENCODE consortium has generated large-scale 
datasets on the adult human brain, including genotyping, RNA-seq, ChIP-seq, ATAC-seq, HiC 
and single-cell data on healthy and diseased brain tissues of thousands of adult individuals with 
different phenotypes. Using this data, we developed a comprehensive resource on functional 
genomics of adult brain including a variety of QTLs for expression and chromatin, and active 
enhancers. Leveraging the single cell data, we deconvolved tissue-level gene expression to find 
the cell fraction changes along with associated QTLs for various phenotypes. Comparing this 
resource with others using spectral analysis, we show that the brain has unique expression and 
greater non-coding transcription than most other tissues. Moreover, we integrated the Hi-C and 
regulatory data to predict the gene regulatory network linking all possible functional genomic 
elements including QTLs, regulatory factors and target genes. Based on this, we developed a 
deep-learning model, significantly outperforming previous methods to predict genotype-
phenotype associations and highlight intermediate genes and functional modules, revealing 
potential mechanisms, and enable quantitatively imputation of missing transcriptional and 
epigenetic information from genotype data only.  
 
I. Introduction (495) 
Disorders of the brain affect nearly a fifth of the world’s population [[ref]]. Decades of research 
has led to little progress in our fundamental understanding of the molecular causes of 
psychiatric disorders, contrast to cardiac disease for which lifestyle and pharmacological 
modification of environmental risk factors has had a profound effect on disease morbidity [[ref]], 
or cancer which is now understood to be a direct disorder of the genome [[ref]]. Though GWAS 
studies have identified many genomic variants associated with psychiatric disease risk, a 
detailed understanding of the precise molecular mechanisms behind these associations remain 
elusive [[ref]]. 
  
To this end, a number of genomic studies have recently focused on discovering genomic 
functions relating to the phenotypes in adult brain. A variety of genomic elements and variants 
have been found to be associated with brain and psychiatric disorders (for instance, the 
Psychiatric Genomics Consortia (PGC) identified 142 GWAS loci associated with 
schizophrenia). Large consortia have also identified the reference sets of genomic elements 
across the entire body; e.g., eQTLs and eGenes in GTEx, and enhancers from ENCODE and 
Epigenomics Roadmap that are associated with various human cells and tissues. Though some 
of these elements relate to the brain, none of the consortia have specifically tailored their efforts 
toward comprehensively identifying the functional elements in the brain. 
  
To address this gap, recent technologies have started to detect the specific molecular activities 
[[dg: define gene regulatory mechanisms?]] within the brain. Recent HiC and ATAC-seq studies 
have been used to identify specific chromatin structural and regulatory elements, such as brain-
active enhancers. Single-cell sequencing techniques offer great promise for studying the 
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transcriptome.  However, each of the studies that leverage such technologies have generally 
focused on individual aspects of brain functional genomics (CommonMind) or have been a small 
component of broad surveys (ENCODE, Epigenomics Roadmap). These data have not yet been 
fully integrated at scale, so as to comprehensively understand the basis of psychiatric disease. 
 
[[[discuss trans]]] Larger sample sizes and more comprehensive data are warranted to obtain a 
fuller view of brain-relevant functional genomics [[refs]]. To this end, the PsychENCODE 
Consortium has generated and assembled a large-scale dataset on the adult human brain, 
including data derived through genotyping, RNA-seq, ChIP-seq, ATAC-seq, HiC and single-cell 
analysis on high-quality brain tissue from both healthy and diseased samples of thousands of 
adult individuals with different phenotypes. We have built a central, publically available 
comprehensive resource (http://adult.psychencode.org/) for adult brain functional genomics, 
including all the raw and uniformly processed data at both tissue and single cell levels from 
PsychENCODE and other related projects, including ENCODE, CommonMind, GTEx, 
Epigenomics Roadmap, in addition to single-cell data [refs] with up to X,XXX samples. By 
leveraging this resource, our analyses identified various functional genomic elements and 
quantitative trait loci (QTLs) specific to the adult brain. We also combined these elements and 
built an integrated deep-learning model to impute missing data. The results obtained from this 
model are then studied in relation to specific brain phenotypes and psychiatric disorders. 

II. Comprehensive resource for adult brain functional 
genomics (224) 
We designed this comprehensive resource to provide a coherent data structure. Broadly, it 
organizes a large amount of data for brain functional genomics pyramidally, with a large base of 
raw data files (much of these exist as restricted-access data, such as individual genotyping and 
raw next-generation sequencing data of transcriptomics and epigenomics), a middle layer of 
uniformly processed and shareable results (such as open chromatin peaks and gene expression 
quantifications), and a compact cap at the top, consisting of an integrative model (based on 
imputed regulatory networks and QTLs). As shown in Fig 1, to build the base layer, we included 
all the datasets from PsychENCODE related to the adult brain and merged these datasets with 
other relevant data from additional project,s including ENCODE, CommonMind, GTEx, 
Epigenomics Roadmap, and recent brain single cell studies. In total, this resource constitutes 
XXXX data samples derived from 1931 individual adult brains from multiple cohorts, which 
covers a large representation of brain phenotypes and psychiatric disorders. The major data 
types include genotyping, RNA-seq, ChIP-seq, ATAC-seq, HiC and single-cell data (this 
required large-scale imputation for all the PsychENCODE datasets, and we make full genotype 
sets available). Furthermore, the PsychENCODE project developed a specific "reference brain" 
project utilizing many assays on the same set of brain tissues, which we used to develop an 
anchoring annotation for the entire resource (Supplement). 

III. Bulk and single cell transcriptome analysis and 
deconvolution explain gene expression and cell fraction 
changes (813) 
To identify the genomic elements that exhibit transcriptional activities in the specific to the adult 
brain, we used the ENCODE standard pipeline to uniformly process the RNA-seq data of all 
available samples from PsychENCODE and GTEx. Using these data, we identified more 
interpretable functional elements, such as sets of differentially expressed and co-expressed 
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genes characterizing various brain regions, phenotypes and disorders [[ref:capstone1]]; these 
are provided as part of our resource. Moreover, we constructed a gene co-expression network 
using the samples across brain and other tissues, and we clustered this into a number of gene 
co-expression modules and submodules (representing clusters at multiple resolutions, see 
Supplement), many of which reveal the expression patterns specific to brain samples. 
  
Brain tissues has been found to comprise a variety of cell types, including neuronal and non-
neuronal cells such as astrocytes. One issue with measuring gene expression changes over a 
population in our brain tissue samples is reliably determining whether the changes are driven by 
gene expression in a particular cell type or whether they are driven by changes in relative 
proportions of various cell-types. To address this, we integrated the single cell transcriptome 
data to discover how the gene expression from various cell types contribute to bulk gene 
expression using two strategies. 
  
First, we used the standard pipeline to uniformly process single cell RNA-seq data in 
PsychENCODE, in conjunction with a number of other single-cell studies on the brain, in order 
to assemble a list of cell types in the brain (i.e., 16 neuronal types, 5 non-neuronal types and 4 
additional fetal-related types from PsychENCODE; see Supplement). This list constitutes a 
matrix (C) of the gene expression signatures of 25 basic or expression-clustered cell types, 
which are mostly concordant with what has been published, with some minor modifications 
(Figure Sxxx). Across these cell types, we found that the number of genes whose expression 
levels vary much more substantially than they do amongst individual tissues; e.g., the dopamine 
receptor genes (DRD) that associate with SCZ (Figure xxx). This implies that the gene 
expression variation of cell types can give rise to substantial changes in bulk gene expression at 
the tissue level, [[dg]]which has been demonstrated by various forms in healthy tissue [[Oldham 
et al. nat neuro 2008; PMC5325728, etc…]], as well as in brain disease [[Voineagu et al. 2011, 
PMC3706780; DOI: 10.1126/science.aad6469]]. 
  
To explore this further, we performed an unsupervised analysis for the bulk tissue expression 
data to identify the primary components as they relate to different single cell types. We 
decomposed the bulk gene expression matrix (B) from our resource using non-negative matrix 
factorization (NMF, see Methods), and we then determined whether the top components (TCs) 
of the NMF that capture a variety of data covariance (a.k.a., NMF-TCs) and the 25 reference 
gene expression signatures of single cells are consistent. As shown in Figure XX, we found a 
number of NMF-PCs that are highly correlated with the gene expression signatures of neuronal, 
non-neuronal and fetal cell types. This demonstrates that an unsupervised analysis derived from 
the main components of the bulk tissue data roughly matches the single cell data, partially 
corroborating the 25 cell types. 
  
As shown in Figure xx, we then de-convolved the bulk tissue expression matrix B using the 
single cell data matrix C to estimate the cell fractions W, by solving the equation “B=WC” (See 
methods). We found that multiplying estimated cell fractions and single cell expression data can 
explain much of the expression variation at the population level (i.e., across tissue samples). 
Specifically, 1-||B-WC||2/||B||2>0.85, where ||.|| is the Frobenius norm of matrix (see Methods). 
This shows that over 80% of the bulk gene expression variation across samples can be 
explained by variation in the proportions of basic cell types. Moreover, we found that our 
estimated fractions of NEU+/- cells match the experimental measurements for reference brain 
samples (r=xxx, Figure xxx). 
 
Furthermore, we found considerable variation in the cell fractions in different individuals (i.e., 
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deconvolution coefficients from W), and cell fraction changes were found to be highly 
associated with different phenotypes and psychiatric disorders (Figure xxx, Supplement for 
complete individual cell population estimates). For example, the excitatory and inhibitory 
neurons (Ex3 and In6) exhibit significantly different fractions between healthy male and female 
samples. The fraction of Ex3 cell types are also significantly reduced in ASD samples (p<xxx), 
while non-neuronal cells (e.g., oligodendrocytes) are represented in much greater abundance. 
Another interesting association we found was that cell fractions change with age. In particular, 
the fractions of neuronal type(s) (Ex3 and Ex4) are significantly positively correlated with age (r 
= xxx), but non-neuronal types (oligodendrocytes) are found to be negatively correlated with 
age. Furthermore, these age-related cell fraction changes are also potentially associated with 
differentially expressed genes across age groups (Figure xxx). For example, the gene involved 
in early growth response is down-regulated in older age groups, whereas the gene 
ceruloplasmin is down-regulated among middle-aged groups. 

IV. Active enhancers in adult brain (215) 
In addition to the transcriptome data, the uniformly processed chromatin data in the resource 
gave rise to uniform quantifications, peak calling lists and single tracks for adult brain 
epigenomics. Thus, we developed a consistent set of brain active enhancers. In particular, we 
used the H3K27ac and the H3K4me3 ChIP-seq data, together with the ATAC-seq data from the 
reference brain sample. [[move to Suppl?]]The ATAC-seq peaks from the reference brain helps 
to identify the open chromatin regions. For a region to be considered as an active enhancer, it 
needs to contain both ATAC-seq signal and H3K27ac signal (Z-score > 1.64). We also exclude 
the regions within 2kb of any TSS that has H3K4me3 signals as they are most likely to be 
promoters. Moreover, we find that most of the reference brain enhancers overlap the  
Roadmap enhancers from Roadmap. Totally, we identified ~80K active enhancers in the 
DLPFC. Similarly, we have also developed reference sets in additional brain regions including 
CBC and ACC. 
 
We then looked at the variations of the epigenetic signals across individuals at these enhancers. 
We found that ~10% of the identified enhancers appear to be active in all control samples, and 
around 68% are active in more than half of the population. This suggests that enhancer activity 
varies across individuals, yet the majority of brain enhancers are active in most of the 
population. We also compared the distribution of the saturation curve on the normal samples 
(n=50) and the ASD samples (n=43). The ASD samples seem to have slightly more variation in 
terms of the enhancer distribution across individuals, yet a two-sided K-S test does not suggest 
a significant distribution among these two groups. 
 
V. Consistently comparative analysis reveals the brain 
related transcriptomic and epigenomic activity (475) 
One key aspect of our analysis is that we uniformly processed the transcriptomic and 
epigenomic data across PsychENCODE, ENCODE, GTEx and Roadmap. This allows us to 
compare the brain to other organs in a consistent fashion in order to delineate gene expression 
and chromatin activities that are unique to the brain. Moreover, we attempted several methods 
for an appropriate comparison. 
 
Principal component analysis (PCA) and t-SNEs are two popular techniques for performing 
comparisons. The former tends to capture only global structures, ignoring most of the local 
structure, but it can easily be influenced by outliers. On the other hand, t-SNE analysis 
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preserves local structure but “shatters” global structure. For example, t-SNE tends to separate 
samples from the same tissue so that the cluster distances on t-SNE space are not proportional 
to real gene expression dissimilarities. It thus does not give a sense of overall effects. We thus 
found another technique that is capable of capturing local structure while maintaining 
meaningful distances in global structure space. Reference Component Analysis (RCA) projects 
the gene expression in individual sample against a reference panel, and then essentially 
reduces dimensionality of individual projections. [[check]] In fact, we did RCA consistently for 
comparing brain and other tissues in terms of their similarities of both the transcriptome (RNA-
seq gene expression) and the epigenome (ChIP-seq signals on our consistent set of 
enhancers). 
 
Our comparative analysis for gene expression shows that the brain tends to separate from the 
other tissues in the first component, showing a) it has a more distinct expression pattern and, 
and b) that all the brain tissue samples from the different projects tend to group together (which 
is a consequence of our uniformly processing). This difference is accentuated when focusing on 
the tissue cluster centers and the distributions surrounding them. Inter-tissue differences are 
much more accentuated than intra-tissue differences. A different picture emerges when one 
looks at our comparison using chromatin data (i.e., ChIP-seq signals on our consistent set of 
brain active enhancers). It shows that the chromatin levels are much less distinguishable 
between brain and other tissues (Figure xxx). 
 
Our RCA analysis focuses on inter-tissue differences in well-annotated regions (i.e. genes, 
promoters and enhancers). In addition to the expression differences in protein-coding genes, a 
tremendous amount of transcriptional diversity is present across tissues in intergenic and 
noncoding regions. Thus, we looked at the overall level of transcriptional diversity across 
tissues. For protein-coding regions, it has previously been demonstrated that testes and lung 
tend to have the largest transcriptional diversity in terms of the percentage of transcribed 
regions (Figure SYYY sat’d for genes). However, when we shift to non-coding and unannotated 
regions, we find that brain tissues (such as cortex and cerebellum) do, to some degree, stand 
out by exhibiting greater transcription than most other tissues. This transcriptional diversity 
tends to increase with the number of samples (Figure xxx sat’d). 
 
VI. QTL analysis (568)                   
To understand how the genotype affects the transcriptome and epigenome in the adult brain, we 
used the PsychENCODE resource data to identify quantitative trait loci (QTLs) affecting gene 
expression and chromatin activity. In particular, we calculated the association of SNPs with 
normalized gene expression and chromatin state (Methods) to find quantitative trait loci 
associating with gene expression and epigenomic activity in adult brain, including several major 
categories: expression QTLs (eQTLs), chromatin QTLs (cQTLs), splicing QTLs (sQTLs) and cell 
fraction QTLs. For the eQTLs, we adopted a standard approach, adhering closely to the 
established GTEX eQTL pipeline. We identified ~2M eQTLs and ~17000 e-genes in the DLPFC. 
This conservative estimate is a substantially larger number of eQTLs than previous brain eQTL 
studies and reflects the very large sample size and statistical power we have. We believe this is 
close to saturation, in terms of associating almost every variant with some expression 
modulating characteristic. We also applied the same QTL calculation pipeline to calculate 
sQTLs and identified ~590k sQTLs. 
  
For the cQTLs, the situation is more complicated. There are no established standard methods 
for calculating these on a large scale. To properly identify them, we focused on a reference set 
of enhancers to define the region associated with the activity of the chromatin and then looked 
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at how this activity varies in these enhancers across individuals, correlating this with nearby 
variants. (See methods). Overall, we were able to identify ~2000 cQTLs in addition to 
[[Crawford]]. 
 
Furthermore, we were interested to see if any SNVs were associated with the single cell 
fractions. In particular, we used our QTL pipeline to identify 443 distinct SNVs whose genotypes 
are significantly associated with differential cell fractions across individuals; i.e., cell fraction 
QTLs (fQTLs). In total, the 443 distinct SNVs constitute 508 different fQTLs between different 
cell types. Significant fQTLs are those with associated Bonferroni-corrected p-values of no more 
than 0.05. Different cell types exhibit a great deal of heterogeneity in terms of their abundance 
within the set of high-confidence fQTLs. For instance, we identified 45, 15, and 33 significant 
fQTLs associated with the endothelial cells, astrocytes, and microglia, respectively, but there 
were no significant fQTLs that were found to be associated with oligodendrocytes. Moreover, we 
also identified XXX SNPs significantly associated with the gene expression changes across 
individual tissues unexplained by our single cell deconvolution; i.e., B-W*C(Methods). 
  
Given the QTLs we identified, we overlapped and annotate them with a variety of different 
genomic annotations and look at the degree to which they overlapped. The distributions of 
detailed QTL annotations across genomic regions are shown in Figure xxx. For example, we 
observed a significantly number of predictive QTLs break the TFBSs on the enhancers or 
promoters (xx%, Figure xxx), and also found xxx e-promoters on which eQTLs lie associating 
with distal genes. As expected, there is a very large amount of overlap between the cQTLs, 
sQTLs, and eQTLs, and with ~50% of the cQTLs also being eQTLs. We calculated the 
enrichment in cis-QTLs of GWAS SNPs of brain related disorders (schizophrenia, bipolar 
disorders and parkinson’s disease) and non-brain related disorders (CAD, asthma and type 2 
diabetes). Cis-QTLs have more significant enrichment for GWAS SNPs of brain disorders than 
non-brain disorder GWAS SNPs. Collectively, these QTLs annotate a larger fraction of GWAS 
SNPs involving the brain (e.g., 21% in schizophrenia, 18% in bipolar) than previously observed, 
providing important leads on which genes are affected in disease. 
 
VII. Gene regulatory networks in adult brain (905) 
In this section, we provided an integrative analysis at the gene regulation level for the data and 
genomic elements in the resource and predicted a gene regulatory network revealing how the 
genotype and regulators control target gene expression in adult brain. 
  
To this end, we first process a full Hi-C dataset for adult brain, which provides direct physical 
evidence for potential interactions between enhancers and promoters (Figure 5A). Specifically, 
we generated and processed the Hi-C data for the same reference adult brain that was used to 
identify the brain active enhancers, as previously described (PMID: 27760116, Supplement). In 
total, we identified 2,735 topologically associated domains (TADs) which set the physical 
boundaries of enhancer-promoter interactions and then 149,097 putative enhancer-promoter 
interactions in the adult DLPFC. As expected, we found that ~75% of enhancer-promoter 
interactions occur in the same TADs (Figure 5xx), suggesting that TADs provide physical 
boundaries for cis-regulatory relationships between enhancers and target genes. Promoters 
tend to interact with other regulatory elements such as other promoters and enhancers (Figure 
xxx), the type and number of which affect the target gene expression levels (Figure 5xx, Figure 
xxx).  
 
We next integrated the Hi-C dataset with eQTLs to assess how much of the common variation-
associated gene regulation is mediated by chromatin interactions. Interestingly, 30.7% of e-
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genes show evidence of chromatin interactions, accounting for 204,008 eQTLs (Figure xxx). To 
our surprise, eQTLs supported by Hi-C evidence showed stronger associations not only to 
eQTLs without genomic annotations, but also to exonic and promoter eQTLs, highlighting the 
importance of incorporating chromatin interactions in deciphering regulatory relationships 
(Figure 5xx).  
 
Intrigued by the regulatory map built upon Hi-C and eQTLs, we exploited these two key datasets 
to identify putative target genes of newly identified 142 schizophrenia GWS loci [[ref:clozuk]]. 
We categorized 5,996 putative causal (credible) SNPs reported in the original study into 
promoter/exonic and intergenic/intronic SNPs. Promoter/exonic SNPs were directly assigned to 
the target genes based on the genomic coordinates, while intergenic/intronic SNPs were 
annotated based on chromatin interactions, which led to the mapping of 92 loci into 377 genes. 
Credible SNPs colocalize with 2,029 eQTLs associated with 83 e-genes, 43 of which overlap 
with those identified by the Hi-C driven approach. To confirm that this overlap is mediated by the 
shared causal variants in GWAS and eQTLs, we performed a colocalization test (PMID: 
24830394), from which we identified 190 genes across 79 loci in which GWAS and eQTLs 
share common causal variants. In total, we identified 488 putative schizophrenia-associated 
genes, hereby referred as SCZ genes, and 99 genes that show evidence both at the level of Hi-
C and eQTLs, providing a high-confidence gene list (Figure 5xx). This is a huge increase from 
the previously annotated 22 genes across 19 loci based on CMC adult brain eQTLs [[ref:clozuk, 
PMID: 27668389]], mainly due to the dramatic increase in power of eQTLs. The majority of SCZ 
genes (288 genes, ~59%) were not in linkage disequilibrium (LD, r2>0.6) with index SNPs 
(Figure xxx), consistent with the previous observations that regulatory relationships often do not 
follow linear genome organization.  
 
Intriguingly, SCZ genes were enriched for genes and co-expression modules dysregulated in 
DLPFC of schizophrenia-affected individuals (PMID: 27668389), suggesting that common 
variation-mediated gene regulation contributes to the gene dysregulation in schizophrenia 
(Figure 5xx). SCZ genes are often affected by recurrent CNVs in schizophrenia, hinting the 
shared genetic etiology between common and structural variation. We also recapitulated the key 
findings that SCZ genes were enriched with loss-of-function mutation intolerant genes 
[[ref:clozuk]]. Functional analyses showed that SCZ genes were enriched for translational 
regulators, cholinergic receptors, calcium channels, and synaptic genes (Figure xxx). We also 
leveraged a single-cell expression atlas to examine cell-type specific expression signatures of 
SCZ genes. RESULT. Collectively, these results demonstrate the strength of an integrative 
resource for providing rich biological insights into psychiatric disorders. 
  
As a second step to build the gene regulatory network, we integrated the TADs with other 
regulatory elements and relationships such as the enhancers, transcription factors (TFs), 
miRNAs, eQTLs to target genes in the resource (Methods). In particular, we used Hi-C data to 
find all possible enhancer-target gene relationships if enhancers and targets’ promoters are in 
the same TADs. We then found TF binding motifs using ENCODE data and imputed TF-target 
gene relationships if TFs have enriched binding motifs on the target gene’s promoters and 
enhancers. In total, we included xxx enhancer-gene, xxx TF-gene, xxx eQTL-gene and xxx 
miRNA-gene regulatory linkages, providing a reference wiring network for gene regulation in 
brain. 
  
Finally, using these “wiring” relationships, we inferred the final gene regulatory network linkages, 
which include the active regulatory links relating QTLs, enhancers, and transcription factors to 
target gene expression (Methods). In particular, given a target gene, we associated coefficients 
with each of these wiring linkages predicting the target gene’s expression from the activities of 
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their regulatory elements. We model them as simple linear relationships but regularize to 
minimize the number of connections using an elastic net model (Methods). Overall, we found 
this model could successfully predict expression of >xx% genes with the minimum mean square 
errors < xxx. We repeated this for all genes and constructed a gene regulatory network 
consisting of the QTLs, enhancers, TFs and target genes with high predictive connections 
(Methods), revealing biological mechanisms underlying how QTLs regulate target gene 
expression in the adult brain. This network also has a few particular characteristics such as 
scale-free and hierarchical structures, which have been revealed by previous network analyses 
(Figure Sxx).  
  
VIII. Integrative modeling to relate genotype to molecular 
and high-level phenotypes in the adult brain (870) 
The interaction between genotype and phenotype involves multiple intermediate stages; in this 
section therefore, we perform another level of integrative analysis by embedding our gene 
regulatory network from the previous section into a larger model. For this purpose, we introduce 
an interpretable deep-learning framework, a Deep Structured Phenotype Network (DSPN, 
Figure 6) [[name]]. This model combines a Deep Boltzmann Machine architecture with 
conditional and lateral connections derived from the QTLs and gene regulatory connections 
predicted from our elastic net regression.  As shown (Figure 6a), traditional classification 
methods such as logistic regression predict the phenotype directly from genotype, without 
inferring intermediate variables such as the transcriptome.  We build the DSPN via a series of 
intermediate models which add layers of structure to a logistic regression model, including a 
layer for intermediate molecular phenotypes such as gene expression and chromatin state, 
multiple layers for functional modules and other mid-level phenotypes which may be inferred as 
hidden nodes in the network, and a layer for high-level phenotypes such as brain traits.  Finally, 
we use special forms of connectivity (enforcing sparsity and adding lateral intra-level 
connections) to integrate our knowledge of QTLs, regulatory network structure, and co-
expression modules from earlier sections of the paper (Supplement).  By using a generative 
architecture, we ensure that the model is able to impute intermediate phenotypes when needed, 
as well as providing a predictive model for high-level traits and phenotypes. 
 
Using the full model with genome and transcriptome data provided, we show that adding the 
extra layers of structure in the DSPN allows us to achieve substantially better prediction of 
disease and other high-level traits than without (Figure 6b) [[discuss]].  Further, comparison with 
a simple logistic predictor from the genome alone shows that the transcriptome carries 
significant further trait relevant information, which the DSPN is able to optimally extract (Figure 
6a).  For instance, in the case of Schizophrenia, a logistic predictor is able to gain a 2.8 times 
improvement when using the transcriptome versus the genome (+13% vs. +4.6% from 50% 
chance), while the DSPN is able to gain a 5 times improvement (+23% vs. 4.6%); this may 
reflect the need to incorporate non-linear interactions between intermediate phenotypes at 
multiple layers as in the DSPN. Moreover, the model also enables practical imputation of a 
subset of the transcriptome (50 genes) and epigenome (xx enhancers), with an accuracy of 
~66-72% (Figure 6c).  We can thus perform joint inference of the imputed intermediate 
phenotypes and high-level traits from the genotype alone using the DSPN, which achieves 
between 57.9-66.7% for disease trait prediction (Figure 6c). These results demonstrate the 
usefulness of even a limited amount of functional genomics information for unraveling gene-
disease relationships, and that the structure learnt from such data can be used to make more 
accurate predictions of high-level traits even when absent. 
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We transform the results above to the liability scale in order to compare with heritability 
estimated on this scale using GCTA (Figure 6d).  Using the PsychENCODE cohort, we estimate 
that common SNPs and eSNPs explain x% and x% of liability for Schizophrenia respectively, 
which is comparable to previous estimates.  The imputation-based DSPN model explains a 
comparable level of variance to the eSNPs (4.5%), although we note that the DSPN may be 
capturing epistatic interactions not modeled in SNP-based heritability.  The full DSPN model 
estimates that the transcriptome-based liability for the PFC is ~32.8%. Although we expect that 
a large portion of this will overlap with the common SNP based liability (which has previously 
been estimated as 25.6%) and genetically determined non-linear interactions, it may also 
include environmental and trait-influenced contributions (see Supplemental Figure), meaning 
that it is an upper-bound on the genetically determined liability modeled by the DSPN.  Similar 
estimates of the liability explained for Bipolar and ASD by the DSPN (imputation and full 
models) are given (Figure xxx). 
  
We examined the connections learnt by the DSPN between intermediate and high-level 
phenotypes for potential biological mechanisms. We included co-expression modules and 
submodules as intermediate phenotypes, and examined the modules prioritized by the DSPN as 
well as sets of genes associated with the DSPN latent nodes at each hidden layer using a 
common prioritization scheme (Supplement). We then annotated the (sub)modules using the 
enrichment analysis to look for possible modular biological functions and pathways. For 
instance, in Schizophrenia, we found that the highest prioritized module in the DSPN was 
associated with Dopaminergic and Glutamatergic synapse and calcium signaling pathways, with 
other modules associated with Oligodendrocyte markers, and the Complement cascade 
pathways, which confirms and extends previous smaller scale analyses [[refs]]. Further, we 
found that excitatory neuronal markers were enriched in the highest prioritized module for age, 
while the gene NRGN occurred in many of the top prioritized modules/submodules, in 
agreement with the earlier analyses.  We further used the gene regulatory network connections 
to link enhancers to the genes of each module and use eQTLs and cQTLs to link SNPs to the 
genes/enhancers of each module, and show that the modules prioritized by the DSPN are 
strongly enriched for GWAS variants (Supplement).  Examples showing specific associations 
between modules, genes and variants for schizophrenia are shown (Figure 6e), and we provide 
a full summary of the functional enrichment analysis for all disease and high-level traits in 
supplement (Supp section xx). 
 
IX. Discussion (469) 
We integrated PsychENCODE datasets with other resources, and developed a comprehensive 
resource consisting of various functional genomic elements for the adult brain including data 
from 1931 individuals. This resource serves as an important step for gaining biological insights 
from genomic functional data in neuroscience. Overall, our study has identified a very large-
scale set of eQTLs and eGenes for adult brain, several fold more than previous studies (Figure 
xx), almost achieving saturation of protein coding genes. Therefore, we suspect that larger 
population studies will not significantly expand on these. However, there exist other aspects of 
brain QTLs that can be extended in the future, in addition to eQTLs. The first would be 
chromatin QTLs. Increasing the sample size may potentially help identify more cQTLs, which 
also can be further interrelated to eQTLs and other regulatory variants using our deep learning 
model. Moreover, the enhancers that this study used for cQTLs are defined from the current 
techniques such as ATAC-seq and ChIP-seq, especially from K27AC. In the future, methods 
such as STARR-seq may provide more accurate definitions on enhancers, and thus can be 
further used to better identify chromatin associated variants.  
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Another area of future development is single cell analysis. Current techniques suffer from the 
low capture efficiency, and so it remains challenging to reliably quantify low-abundant 
transcripts/genes and interrogate biological variation [[ref]]. In this study, we found that these 
basic and known cells could explain large expression variations across tissues. However, 
increasing single cell data and more advanced techniques in the future are expected to identify 
a considerable number of novel cell types, which might contribute to the unexplained variation. 
Using additional single cell data, our deconvolution analysis is expected to characterize cell 
populations more completely and estimate more accurate fQTLs in brain tissues. Also, given the 
issue of RNA decay in single cell RNA-seq, we intend to relate this resource to recent in situ 
transcriptomic data such as the spatial gene expression by optogenetic techniques, allowing us 
to find consistent expressed genes driving the brain phenotypes at the cellular and tissue levels. 
  
More accurate cQTLs and fQTLs can be input into our deep learning model, which is expected 
to improve the model performance. Also, the integrative model is readily expandable to include 
additional data types such as imaging and medical data, allowing a broader range of 
intermediate phenotypes to explain the connection between genotype and high-level traits. 
Furthermore, while providing better prediction, some model connections are deliberately set 
based on prior knowledge from the other analyses, such as the gene regulatory networks 
linkages, to make the model more interpretable and easier to use. Thus, another major goal of 
the model is to provide a useful compression of the resource as a whole; e.g., XXX KB for the 
model representation vs. XXX TB for the original functional genomic brain datasets. 
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in the brain, and the histone marks, together with their distances to gene transcription start sites 
(TSS), identify the enhancer  
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 (Moore et al, in review). Finally, we intersect these brain enhancers with  
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peaks to consistently find brain active enhancers across all the PsychENCODE and Roadmap 
datasets, including ~88,800 active enhancers in the dorsolateral prefrontal cortex (see 
Supplement). We have  
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sets in additional brain regions, including CBC and ACC. We also developed reference 
enhancer sets for the other tissues. 
 

Page 4: [5] Formatted   Daifeng Wang   2/18/18 7:23:00 PM 
Font: Arial, 11 pt, Font color: Black 
 

Page 4: [6] Deleted   Daifeng Wang   2/18/18 7:23:00 PM 
This comparison could not be achieved without such a large-scale uniform data processing.  
 

 


