
Comprehensive resource and integrative model 
for functional genomics of the adult brain 

 
I. Introduction (616) 
Disorders of the brain affect nearly a fifth of the world’s population (ref).  Unlike cardiac disease, 
where lifestyle and pharmacological modification of environmental risk factors has had a 
profound effect on disease morbidity and mortality (ref), or cancer, which is now understood to 
be a disorder of the genome (ref), until recently, little progress has been made in our 
fundamental understanding of the molecular cause of the brain disorders. Recent progress has 
come is the form of genetic association signals from large GWAS studies of the psychiatric and 
neurological disorders and currently hundreds of genomic locations that alter the disease risk 
are known (ref). Unfortunately, for most of these locations, we have little to no understanding of 
which base pairs alterations constitute the functional genomic alteration, which transcripts and 
networks are altered, and what are the molecular mechanisms that cause those alterations. It is 
presumed that changes in transcription modify the proteome, which leads to changes in brain 
structure and function, and these changes, in turn, interact with environmental factors to change 
the probability of developing a brain disorder. 
 
To this end, a number of genomic studies have been created to focus on discovering the 
genomic functions for adult brain. On one hand, a variety of genomic elements and variants 
have been found to associate with brain and psychiatric disorders; e.g., the Psychiatric 
Genomics Consortia (PGC) that identified 108 GWAS loci associated with schizophrenia. On 
the other hand, large consortia have identified the reference sets of genomic elements across 
the entire body; e.g., the eQTLs and eGenes from GTEx, and the enhancers from ENCODE and 
Epigenomics Roadmap that are associated with various human cells and tissues. Though some 
of these elements relate to the brain, none of the consortia has specifically tailored its work 
towards comprehensively identifying the functional genomics for adult brain. 
 
To address this, recent technologies have started to detect the specific molecular activities for 
brain. Particularly, single-cell sequencing techniques show great promise to study the 
transcriptome of different neuronal and non-neuronal cells. Also, recent HiC and ATAC-seq 
studies found the specific chromatin structure and activity of the regulatory elements such as 
brain active enhancers. However, all of these studies have focused on individual aspects, and 
not fully been integrated to comprehensively understand the brain functional genomics such as 
how single cells contribute to the bulk tissue gene expression. Therefore, more efforts, 
especially on computational modeling and analysis for these datasets are of crucial importance 
to systematically understand the molecular mechanisms for brain and psychiatric disorders. 
 
Some work such as CommonMind attempted an integrative analysis to identify the brain 
genomic elements including 693 differentially expressed genes associated with schizophrenia. 
Though promising, larger sample size, more comprehensive data, deeper modeling and 
analysis is further essential to obtain comprehensive view of brain functional genomics [refs]. To 
this endeavor, the PsychENCODE Consortium (PEC) has generated and assembled a robust 
large-scale dataset on the adult human brain, including genotyping, RNA-seq, ChIP-seq, ATAC-
seq, HiC and single-cell data on the high quality healthy and diseased brain tissue samples of 
thousands of adult individuals with different phenotypes. We have thus built a central, publically 
available comprehensive resource (http://adult.psychencode.org/pec/) for adult brain functional 
genomics, including all the raw and uniformly processed data at both tissue and single cell 
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levels from PEC and other related projects, including ENCODE, CommonMind, GTEx, 
Epigenomics Roadmap, recent brain single cells [refs] with up to X,XXX samples. Using the 
resource, our analyses identified the functional genomic elements and activities for the adult 
brain on the genome scale. We also combined these elements and built an integrated deep-
learning model to impute missing data and reveal the mechanisms about how they interact to 
drive the brain phenotypes and psychiatric disorders. 

II. Comprehensive resource for adult brain functional 
genomics (250) 
We built this comprehensive resource to have a coherent data structure. Broadly, it organizes a 
large amount of data for brain functional genomics in a pyramid shape (Figure 1). The bottom 
includes the largest scale data with often controlled access such as individual genotyping and 
raw next generation sequencing data of transcriptomics and epigenomics. It is followed by the 
uniformly processed and summarized data from the bottom such as open chromatin peaks and 
gene expression quantifications. Derived from these data, the middle part then includes the 
brain related genomic elements and interactions such as QTLs, enhancers and gene regulatory 
networks. Finally, at the top, the resource contains an intuitive and interpretive model revealing 
how the genomic elements interact to affect brain functions and phenotypes. 
 
In terms of the data corpus for building this large-scale comprehensive resource, we included all 
the datasets from PsychENCODE related to the adult brain and merged them with the data from 
other relevant projects including ENCODE, CommonMind, GTEx, Epigenomics Roadmap, and 
recent brain single cell studies. In total, this resource has XXXX data samples of 1931 individual 
adult brains from multiple cohorts, covering high variability among brain phenotypes and 
psychiatric disorders. The major data types include genotyping, RNA-seq, ChIP-seq, ATAC-seq, 
HiC and single-cell data. In particular, we used the annotations from reference brain project to 
define the brain related genomic elements, and the ENCODE standard pipelines to uniformly 
process all raw next generation sequencing data for both bulk and single cell data to find their 
activities.  

III. Bulk and single cell transcriptome analysis and 
deconvolution explain gene expression and cell fraction 
changes (810s) 
Given the large-scale bulk transcriptomic data in resource, we are interested to identify the 
genomic elements that have specific transcriptional activities in adult brain at the tissue level. In 
particular, we used the ENCODE standard RNA-seq pipeline to uniformly process the RNA-seq 
data of available samples from PEC and GTEx to quantify the expression levels for the protein 
coding genes, transcripts, noncoding RNA and novel transcribed regions of brain and other 
tissues. Using these data, we found more interpreted functional elements such as sets of 
differentially expressed and co-expressed genes characterizing various brain regions, 
phenotypes and disorders [cap1], and reported them in our resource. Moreover, we constructed 
a gene co-expression network using the samples across brain and other tissues and clustered it 
into a number of gene co-expression modules, many of which reveal the expression patterns 
specific for brain samples. 
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The brain tissues have been found to comprise a variety of cell types including neuronal and 
non-neuronal cells such as astrocytes [refs]. One issue with the changes of gene expression in 
our brain tissue samples is whether the changes are driven by gene expression in a particular 
cell type or different cell-type populations. To address this, we integrated the single cell 
transcriptome data to discover how the gene expression from various cell types contribute to the 
bulk gene expression using two strategies. 
  
First, we used the standard pipeline to uniformly process single cell RNA-seq data in PEC in 
conjunction with the number of other single-cell studies on the brain to create a list of basic and 
primary cell types in the brain; i.e., 16 neuronal types, five non-neuronal types and xxx 
additional fetal types from PsychENCODE (Supplement). These are mostly concordant with 
what has been previously published with some minor modifications in terms of cell clusters 
based on their gene expression similarities (Figure Sxxx). Across these cell types, we found a 
number of genes varies much more substantially than they do amongst individual tissues and so 
forth; e.g., the dopamine receptor genes (DRD) that associate with SCZ (Figure xxx). This 
implies that the gene expression variation of cell types can give rise to substantial changes in 
bulk gene expression at the tissue level. 
  
Second, we used an unsupervised analysis for the bulk tissue expression data and try to find its 
main components that potentially relate to the single cell types. In particular, we decomposed 
the decomposed the bulk gene expression matrix from our resource using non-negative matrix 
factorization (NMF, see Methods), and compared if top principal components of NMF (NMF-PCs 
capturing most data covariance) and the gene expression of single cells are consistent. As 
shown in Figure XX, we can see a number of NMF-PCs highly correlate with the biomarker 
gene expression signatures of neuronal, non-neuronal and fetal cell types as above; e.g., the 
NMF-PCs shown in Figure xxx. This shows that our unsupervised analysis derived the main 
components from the bulk tissue data, roughly matching the single cell data, and suggests that 
these cell types do make sense and contribute bulk tissue gene expression. 
  
After this analysis, as shown in Figure xx, we further devolved the bulk tissue expression matrix 
B using the single cell data matrix C to estimate the cell fractions W, by solving the equation 
“B=WC” (See methods). We found that the multiplication of estimated cell fractions and single 
cell expression data can explain large variation of expression at the population level (i.e., across 
tissue samples). That is, ||W*C||2/||B||2 > 85%, where ||.|| is the Frobenius norm of matrix 
(Methods), which shows that over 80% bulk gene expression variation across samples can be 
accounted for a variation in single cell types. Moreover, we found that our estimated fractions of 
NEU+/- cells match the experimental measurements for reference brain samples (r=xxx, Figure 
xxx). we found that the cell fractions of individual tissues (i.e., deconvolution coefficients from 
W) vary, and a number of cell population changes highly associate with different phenotypes 
and psychiatric disorders (Figure xxx). For example, the excitatory and inhibitory types (EX3 
and In6) have significantly different fractions between healthy Male and Female. The EX3 cell 
fractions also decrease significantly in ASD samples (p<xxx) while the non-neuronal cells 
increasing (e.g., oligodendrocytes). Another interesting association we found was the cell 
fraction changes with Age. In particular, the fractions of neuronal type(s) (EX 3 and 4) are 
significantly correlated with Age (r = xxx), but non-neuronal type, Oligodendrocytes anti-
correlate. The cell fraction changes also potentially drive the differentially expressed genes in 
Age at the tissue level (Figure xxx). For example, we identified a group of genes that 
differentially express across ages (Figure xxx). In particular, the gene involved in early growth 
response is down-regulated at elder samples whereas the gene with ceruloplasmin is down-
regulated around the middle ages. Finally, we report the individual cell populations along with 
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significantly associated relationships between particular cell type fractions and phenotypes 
(Supplement). 

IV. Active enhancers in adult brain (195) 
In addition to the transcriptome data, the uniformly processed chromatin data in the resource 
gave rise to uniform quantifications, peak calling lists and single tracks for adult brain 
epigenomics. Then, we used these data and derived further simplified epigenomic data sets in 
adult brain. 
First, we developed a consistent set of brain active enhancers. In particular, we processed the 
H3K27ac and H3K4me3 ChIP-seq and ATAC-seq data of the reference brain using the 
standard ENCODE ChIP-seq processing pipeline.  We then identified an overall set of brain 
enhancers based on these experimental data of the same reference sample using the ENCODE 
3 candidates regulatory element (cRE) pipeline, where the ATAC-seq peaks indicates the open 
chromatin in the brain, and the histone marks together with the distance to genes transcription 
start site (TSS) identifies the enhancer regions (Moore et al, in review). Finally, we intersect 
these brain enhancers with H3K27ac peaks to find brain active enhancers consistently across 
all the PEC and Roadmap data, including ~88,800 active enhancers in dorsal lateral prefrontal 
cortex (Supplement). We have also developed reference sets in additional brain regions 
including CBC and ACC. We also developed reference enhancer sets for the other tissues.   
[[Numbers about the Enhancer variation across Roughly 80k enhancers but across the 50 
samples on avg 1K additional in each]] 
 
V. Consistently comparative analysis reveals the brain 
related transcriptomic and epigenomic activity (499) 
One key aspect of our analysis is that we, as consistently as possible, processed the 
transcriptomic and epigenomic data across PEC, GTEx and Roadmap together. This allows us 
to compare the brain to other organs in a consistent fashion to see if brain has unique gene 
expression and chromatin activities. This comparison couldn’t be achieved without such a large-
scale uniform data processing. Moreover, we attempted several methods for an appropriate 
comparison. Principal component analysis (PCA) and t-SNE are two popular techniques. We 
found that the former captured only global structures, ignoring most of the local structure. On 
the other hand, the latter keeps local structures intact but ignores global structures. For 
example, t-SNE tends to separate samples from the same tissue so that the cluster distances 
on t-SNE space are not proportional to real gene expression dissimilarities and does not give 
one a sense of the overall effect. Therefore, we found another technique that is capable of 
capturing local structures while maintaining meaningful distances in the global structure. 
Reference Component Analysis (RCA) projects the gene expression in individual sample 
against a reference panel, and then essentially reduces dimensionality of individual projections. 
In fact, we did RCA consistently for comparing brain and other tissues in terms of their 
similarities of both transcriptome (RNA-seq gene expression) and epigenome (ChIP-seq signals 
on our consistent set of enhancers). 
  
Our comparative analysis for gene expression shows that brain tends to separate from the other 
tissues in the first component of RCA, showing it has a more distinct expression pattern and that 
all the brain tissue samples from the different projects grouped together (due to our uniformly 
processing). This difference is even accentuated when one looks not at all the individual but 
simply looks at the tissue cluster centers and the distribution about them. The difference 
between brain and other tissues is much larger than the one within any of the given tissues. 
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A different picture emerges when one looks at our comparison using chromatin data; i.e., ChIP-
seq signals on our consistent set of brain active enhancers. It shows that the chromatin levels 
are much less distinguishable between brain and other tissues (Figure xxx), implying the 
sophisticated interactions among brain enhancers, rather than individual enhancers per se that 
potentially drive brain unique gene expression.  
 
In addition to the expression differences confined to well annotated regions, such as protein-
coding genes, a tremendous amount of transcriptional diversity is present across tissues in 
intergenic and noncoding regions. Thus, we looked at the overall level of transcriptional diversity 
across tissues. On protein-coding regions, it has been previously known that testes and lung 
tend to have the largest transcriptional diversity in terms of the percentage of transcribed 
regions (Figure SYYY sat’d for genes). However, when we shift to non-coding and unannotated 
regions, we find that brain tissues such as cortex and cerebellum do stand out to some degree 
in having more transcriptions than most other tissues. This transcriptional diversity tends to 
increase with the number of samples (Figure xxx sat’d). 
 
VI. QTL analysis (625)                   
To understand how the genotype affects the transcriptomic and epigenetic activities in adult 
brain, we used the resource data to identify more interpreted association relationship data such 
as the quantitative trait loci (QTLs) affecting gene expression and chromatin activity. In 
particular, we calculated the association of SNPs with normalized gene expression and 
chromatin states (Methods) to find the quantitative trait loci associating with gene expression 
and epigenomic activities in adult brain, including several major categories: expression QTLs 
(eQTLs), chromatin QTLs (cQTLs), splicing QTLs (sQTLs) and even cell fraction QTLs. For the 
eQTLs, we adopted a standard approach and emphasized the scale of the database. We 
adhered closely to the established GTEX eQTL pipelines. We identified ~2M of eQTLs and 
~17000 number of e-genes in DLPFC region. This is a conservative larger number of eQTLs 
than previous brain eQTL studies and reflects the very large sample size and great power we 
have. We believe it's moving close to saturating in terms of associating almost every variant with 
some expression modulating characteristic. We also applied the same QTL calculation pipeline 
to calculate sQTLs and identified ~10M sQTLs. For the cQTLs, the situation is more 
complicated. There are no established standard methods of calculating cQTLs on a large scale. 
To properly identify cQTLs, we focused on a reference set of enhancers to define the region 
associated with the activity of the chromatin and then look at how this activity varies. We used 
ENCODE CREs to define the consensus regions of H3K27ac marker used to calculate average 
signal value.  And then we correlated this with nearby variants. (See methods). Overall, we were 
able to identify ~2000 cQTLs.  
 
Furthermore, we are interested to see if any genotype is also associated with the single cell 
fractions. In particular, we used our QTL pipeline and identified 443 distinct SNVs whose 
genotypes are significantly associated with differential cell fractions across individuals; i.e., cell 
fraction QTLs (fQTLs). In total, the 443 distinct SNVs constitute 508 different fQTLs between 
different cell types. Significant fQTLs are those with associated Bonferroni-corrected p-values of 
no more than 0.05. Different cell types exhibit a great deal of heterogeneity in terms of their 
abundance within the set of high-confidence fQTLs. For instance, we identified 45, 15, and 33 
significant fQTLs associated with the endothelial cells, astrocytes, and microglia, respectively, 
but there were no significant fQTLs that were found to be associated with oligodendrocytes. 
This suggests that these fQTLs potentially can be used to predict the cell fractions in adult brain. 
Moreover, we also identified xxx SNPs significantly associated with the gene expression 
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changes across individual tissues unexplained by our single cell deconvolution; i.e., Y-WX 
(Methods). These SNPs are likely causing certain gene expression changes driven by unknown 
cell types in adult brain. 
  
Given the QTLs we identified, we overlap and annotate them with a variety of different genomic 
annotations and look at the degree that they overlapped. The distributions of detailed QTL 
annotations on genomic regions are shown in Figure xxx. As expected, there's a very large 
amount of overlap between the cQTLs and eQTLs, and with ~50% of the cQTLs essentially 
being a subset of the eQTLs.We examined the enrichment of most significant eQTLs per gene 
in Roadmap Epigenomics Consortium and ENCODE enhancers across XX human tissues and 
cell lines.  Collectively, these QTLs annotate a larger fraction of GWAS SNPs involving the brain 
(e.g., 21% in schizophrenia, 18% in bipolar) than previously observed providing leads on which 
genes are affected in disease. We also calculate the enrichment of cis-QTLs on GWAS SNPs of 
brain related disorders (schizophrenia, bipolar disorders and parkinson’s disease) and non-brain 
related disorders (CAD, asthma and type 2 diabetes). Cis-QTLs have more significant 
enrichment for GWAS SNPs of brain disorders than the ones of non-brain disorders. 
 
VII. Gene regulatory networks in adult brain (523) 
In this section, we provided an integrative analysis at the gene regulation level for the data and 
genomic elements in the resource and predicted a gene regulatory network revealing how the 
genotype and regulators to control target gene expression in adult brain. Gene regulation is a 
key mechanism that genotype affects phenotype. This comprehensive resource thus enables us 
to identify the gene regulatory relationships among the brain genomic elements. 
 
To this end, the first step is to process a full Hi-C data for adult brain, which provides direct 
physical evidence for potential interactions between enhancers and promoters in the format of 
topologically associated domains (TADs) (Figure 5A). Specifically, we generated and processed 
the Hi-C data for the same reference adult brain that was used to identify the brain active 
enhancers, using the protocol of XXX (Supplement). In total, we identified xxx TADs in adult 
brain. Overall, these TADs show a number of established properties, such as the gene 
expression tends to increase with increasing numbers of interactive enhancers (Figure 5xx). 
More importantly, we found that >xx% enhancer-promoter interactions happen in the same 
TADs in adult brain (Figure 5xx), suggesting that TADs potentially provide at large cis-regulatory 
relationships between enhancers and target genes.  
 
Therefore, the second step to build the gene regulatory network is that we integrated the TADs 
with other regulatory relationships such as the enhancers, transcription factors (TFs), miRNAs, 
eQTLs to target genes in the resource (Methods). In particular, we used Hi-C data to find all 
possible enhancer-target gene relationships if enhancers and targets’ promoters are in the 
same TADs. We then found the TF binding motifs using ENCODE data and inferred the TF-
target gene relationships if TFs have enriched binding motifs on the target gene’s promoters 
and enhancers. In total, we included xxx enhancer-gene, xxx TF-gene, xxx eQTL-gene and xxx 
miRNA-gene regulatory linkages, providing a reference wiring network on gene regulation in 
brain.  
 
Finally, using these “wiring” regulatory relationships, we inferred the gene regulatory network 
that include the active regulatory relationships on how QTLs, enhancers, and transcription 
factors relate to target gene expression (Methods). In particular, given a target gene, we then 
associate coefficients with each of these wiring linkages to try to predict our target gene 
expression from the activities of their regulatory elements. We model them as simple linear 
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relationships but regularize them to minimize the number of connections using the elastic net 
model that combines the L1 and L2 penalties of the lasso and ridge regressions (Methods). 
Overall, we found this model could predict expression successfully as shown from Figure xxx. 
We repeated this for all genes and found how various subgroups of QTLs affect gene 
expression; e.g., a significantly number of predictive QTLs break the TFBSs on the enhancers 
or promoters (xx%, Figure xxx). We thus constructed a gene regulatory network consisting of 
the QTLs, enhancers, TFs and target genes with high predictive relationships (Methods), 
revealing the biological mechanisms on how QTLs regulate the target gene expression in the 
adult brain. This network also has a few particular characteristics such as scale-free and 
hierarchical structures, which have been revealed by our previous regulatory network analyses 
(Figure Sxx). 
 
VIII. Integrative modeling to explain the molecular 
mechanisms for genotype-phenotype relationships in 
adult brain (821) 
The interaction between genotype and phenotype is a complex process, involving multiple 
intermediate stages including gene regulatory network. Thus, in this section, we perform 
another level of integrative analysis for the resource by embedding our gene regulatory network 
into a larger model; i.e., we introduce an interpretable deep-learning framework, a Deep 
Structured Phenotype Network (DSPN), which provides insight into how the genomic variants 
link to the regulatory network, then to functional modules, and eventually predict phenotypes 
such as schizophrenia (Figure xxx). This model combines a Deep Boltzmann Machine 
architecture with conditional and lateral connections derived from the QTLs and gene regulatory 
connections predicted from our elastic net regression. In particular, it integrates all high 
dimensional functional data types in this resource including genomics, transcriptomics, 
epigenetics and regulation, and genotype-phenotype relationships, and also allows us to 
quantitatively impute missing transcriptional and epigenetic information for samples with 
genotypes only. This allowed us to not only feed information from the bottom of the network to 
the top i.e. variants all the way up to phenotypes, but also propagate information throughout the 
network, predicting for instance the transcriptome from genomic variants or directly predicting 
phenotype from the transcriptome. We also make the model downloadable as a set of simplified 
files encompassing the elastic net model described earlier plus additional DSPN connections 
between layers such as a groups of gene modules to phenotypes. 
  
As shown in Figure xxx, traditional classification methods such as logistic regression predict the 
phenotype directly from genotype, missing the intermediate information such as transcriptome 
(Figure xx).  We build the DSPN via a series of intermediate models which add layers of 
structure to a logistic model, including a layer for intermediate molecular phenotypes such as 
gene expression and chromatin state, multiple layers for functional modules and other mid-level 
phenotypes which may be inferred as hidden nodes in the network, and a layer for high-level 
phenotypes such as brain traits.  Finally, we use special forms of connectivity (enforcing sparsity 
and adding lateral intra-level connections) to integrate our knowledge of QTLs, regulatory 
network structure, and co-expression modules from earlier sections of the paper (Supplement) 
  
We examined the connections learnt by the DSPN between intermediate and high-level 
phenotypes for potential mechanisms to see if they are biologically meaningful. For example, 
the module xxx is connected to genes enriched in the dopaminergic and glutamatergic synapse 
(GSEA enrichment score > xxx, Figure xx), and the module yyy is connecting to Age, and 
represents the neuronal cell fractions (Figure xxx). Furthermore, we used this model to 
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recapitulate the pathways comprising the cross-layer nodes and predictive edges for particular 
phenotypes. For example, as highlighted in Figure xxx, the schizophrenia (SCZ) trait is activated 
by two modules on the layer of hidden nodes corresponding to glutamatergic signaling and 
excitatory synapse, respectively. The modules are connected by a set of genes including 
GRIN1, which are regulated by corresponding QTLs (e.g., rs1146020) and enhancers (e.g., 
GH09H137166) as shown in the blowup gene regulatory mechanism. In addition, we also found 
some potentially additional molecular mechanisms for SCZ such as module(s) corresponding to 
dopamine-related pathways and complement pathways (Figure xxx). These modules are 
connected to the C4 family genes, regulated by eQTLs and enhancers (p<1e-4). The complete 
functional annotations of modules are available in supplement. 
  
Moreover, the model also enables practical imputation of a subset of the transcriptome and 
epigenome, with an accuracy of ~70% (Figure xxx). We use the model to improve prediction of 
biological variables and psychiatric diseases by the addition of transcriptomic data to genotype, 
as compared to genotype alone. In particular, we can predict bipolar disease and schizophrenia 
with much higher accuracy from the transcriptome than from genotype alone; i.e., three times 
improvements (+18% vs. +6%) from the random prediction 50% for schizophrenia, Figure XXX). 
The imputed transcriptome also clearly adds predictive value, as we can predict schizophrenia 
with an accuracy of 61% using our model and an imputed transcriptome compared to 56% with 
genotype alone. This result demonstrates the usefulness of even a limited amount of functional 
genomics information for unraveling gene-disease relationships.  Further, we transform the 
results above to the liability scale in order to compare with heritability estimated on this scale 
using GCTA (Figure xxx).  Using the PEC cohort, we estimate that common SNPs and eSNPs 
explain x% and x% of liability for Schizophrenia respectively, which is comparable to previous 
estimates.  The imputation-based DSPN model explains a comparable level of variance to the 
eSNPs (4.5%), suggesting this model is near optimal (although there may be further epistatic 
interactions the model can capture).  The full DSPN model estimates that the transcriptome-
based liability for the PFC is ~19.2%.  Although we expect that a large portion of this will overlap 
with the common SNP based liability, it may also include environmental and epistatic 
contributions (see Supplemental Figure), precluding direct comparison.  Similar estimates of the 
liability explained for Bipolar and Autism by the DSPN (imputation and full models) are given 
(Figure xxx). 
 
IX. Discussion (558) 
We integrated the high-dimensional brain genomic datasets of PsychENCODE and other 
projects from 1931 individuals, and developed a comprehensive resource consisting of various 
functional genomic elements for the adult brain. This resource serves as an important step in 
gaining biological insights from genomic functions and mechanisms in neuroscience. 
Neuroscientists can use this resource as a reference to compare with their data, generate 
hypotheses and help design experimental validations. In addition, this resource is publicly 
available online and can be extendable and scalable to integrate additional data types and 
phenotypes in brain such as the neurodegenerative diseases like Alzheimer and Parkinson. 
 
Overall, our study has identified a very large-scale set of eQTLs and eGenes for adult brain 
(Figure xx), almost achieving the saturated numbers. Therefore, we suspect that the future 
larger population studies would be very helpful to this context. However, there exist other 
aspects of brain QTLs that can be extended in the future, in addition to eQTLs. The first would 
be chromatin QTLs for adult brain, which is currently much less than eQTLs in the resource. 
Increasing sample size such as large population potentially helps identify more cQTLs, which 
also can be further interrelated to eQTLs and other regulatory variants from our deep learning 
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model. Moreover, the enhancers that this study used for cQTLs are defined from the current 
techniques such as ATAC-seq and ChIP-seq signals, especially from K27AC. The future and 
new state of the art methods available such as STARR-seq provide more accurate definitions 
on enhancers, and thus should be further used to better identify such as chromatin associated 
variants.   
 
Another aspect that might move forward is single cell analysis. The current single cell 
techniques suffer from the low capture efficiency, so remain challenging to reliably quantify the 
low-abundant transcripts/genes and interrogate the biological variations [refs]. However, it is still 
worthwhile using the biomarker genes with strong expression signals in single cell to 
deconvolve the tissue gene expression data to find the cell fractions for individual tissues and 
relate to the individual phenotypes. In this study, we thus integrated recent single cell data 
including thousands of neuronal and non-neuronal cells along with almost 1000 PEC single cells 
mainly consisting of fetal cells and found that these basic and known cells could explain large 
expression variations across tissues. However, increasing single cell data and more advanced 
techniques in the future will identify considerably large number of novel cell types, which might 
contribute to unexplained variations. Using these additional single cell data, our deconvolution 
analysis expects to estimate more complete cell populations and accurate fQTLs to brain 
tissues. 
 
Moreover, more accurate cQTLs and fQTLs can be input into our deelp learning model, which 
might also improve the model performance. Our model represents a state of the art method at 
the moment to reveal genotype-phenotype at the population level but might improve with the 
development of machine learning and additional data types such as image and medicine. 
Furthermore, while providing better prediction, some model connections are deliberately set to 
be interpreted simplifications, such as gene regulatory networks, to make the model more 
interpretable and easier to use. Thus, another major goal of the model is to provide a 
compression of large functional genomic datasets for brain; e.g., XXX KB of model files vs. XXX 
TB of total resource data, beyond a purely predictive network from genotype to phenotype. 
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 [ref], and single cell techniques can detect gene expression and epigenetic patterns for 
neuronal and non-neuronal cells from brain tissues [ref]. 
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In fact, understanding the mechanisms on how these genomic elements affect various brain 
functions and phenotypes is still a key challenge in neuroscience. To address it 
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The signal variability of these enhancers across individuals can be further used to identify 
chromatin QTLs in the subsequent section.  
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regulatory networks estimated in our resource. On the resource website, we provide a list of 
DSPN pathways for each phenotype and disease. We also make the model downloadable as a 
set of simplified files summarizing represented genotype-phenotype pathways. In particular, this 
model 
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The model is trained as a deep generative model to represent the conditional distribution of all 
variables given the genotype. Unlike a feed-forward network, this architecture allows information 
to flow in top-down, bottom-up and lateral directions during inference 
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Moreover, by combining the resource data, we built an integrative deep learning model, DSPN 
to reveal the interactions and mechanisms among various high-dimensional functional genomic 
elements from a number of directions between genotype and phenotype. In particular, this 
model also incorporates the derived data types into its hierarchical structure such as imputed 
gene regulatory networks and QTLs and provides the additional statistical powers to better 
predict phenotype. It is also available online as a general-purpose tool and enables 
quantitatively imputing missing transcriptional and epigenetic information for samples with 
genotypes only. Also, the model can be used to prediction the outcomes of in-silico 
perturbations; e.g., knocking down GRIN1 potentially breaks the excitatory and glutamatergic 
signaling pathways to likely affect schizophrenia. 
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With increasing amount of single cell data in near future, we could deconvolve the tissue data in 
the resource to find potential new cell types and obtain more complete cell populations. 
Furthermore, the limited amount of RNA molecules in single cell makes it even harder to 
capture the weak signals, which makes the data sensitive to technical noise. Thus, given that 
the RNA decaying issues in single cell RNA-seq, we could also relate this resource to recent in 
situ transcriptomic data such as the spatial gene expression by optogenetic techniques, and find 
the consistent expressed genes driving the brain phenotypes at the cellular and tissue levels 
 

 


