9 cell types included
Ex1
Ex3
Ex4
Ex5
In6
Astrocytes
Endothelial
Microglia
Oligodendrocytes

of significant* fQTLs produced from the prenormalized cell fractions matrix: 508 -- This corresponds to 443 distinct SNVs

No variant matches between fQTLs and significant cis-eQTLs

Under a null model of no associations:

Prob [No Matches] \approx [G - e / G] $^f \approx 0.998$

G = **Genome length (3 billion)**

e = # distinct SNVs in cis eQTL set (16607)

f = # distinct SNVs in fQTL set (443)

Next steps (when Farnam becomes available again) – re-calculate fQTLs, with the following changes:

- From a cell fractions matrix of 24 cell types, extract 8 cell types (previously: took 9 from a matrix of 23)
- Identify fQTLs at varying thresholds of significance (also useful for JW)
- Search for matches with trans-eQTLs
- Do we have alternative builds of the cis-eQTLs dataset (used capstone4_eQTL_significant.txt here)
- Search within windows for SNVs (linkage disequilibrium)
- Search for matches with other QTLs (iso-QTLs, cQTLs)?

Science. 2013 Jan 25. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Ma C, et al
Abstr: 144
Intro: 350
Sect. 1: 640
Sect. 2: 1052
Sect. 3: 544
Disc: 245
Tot: 2975
Science. 2013 Mar 29. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Leffler EM, et al
Abstr: 131
Intro: 503
Sect. 1: 832
Sect. 2: 694
Sect. 3: 781
Sect. 4: 767
Disc: 0
Tot: 3708
Science. 2017 Sep 8 mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation. Sinclair C1, et al
Abstr: 135
Intro: 233
Sect. 1: 924
Sect. 2: 343
Sect. 3: 329
Sect. 4: 705
Sect. 5: 917
Disc: 457
Tot: 4043