
 

 1 

Comprehensive resource and integrative model for 1 

functional genomics of the adult brain 2 

Abstract 3 

Understanding how genomic variation influences brain phenotypes remains a key challenge in 4 

neuroscience, one where the potential of functional genomic approaches has not yet been fully 5 

realized. To this end, the psychENCODE consortium developed a comprehensive, population-6 

level resource that includes thousands of samples processed for healthy controls and 7 

neuropsychiatric disorders. Available online, the resource comprises genotyping, RNA-seq, 8 

ChIP-seq, and single-cell data, in addition to analytic summaries of quantitative trait loci 9 

(>5,000,000 expression QTLs and >5,000 chromatin QTLs), brain-active enhancers, 10 

differentially expressed genes and transcripts, and novel non-coding RNAs. Leveraging and 11 

comparing this resource with other data, we show that the brain has distinct expression and 12 

epigenetic profiles as evident from spectral analysis and more non-coding transcription from 13 

most other tissues. Also, using single cell data, we deconvolved the tissue-level gene 14 

expression of this resource to find the populations of different cell types corresponding to 15 

particular phenotypes. Finally, we developed and built an integrative epigenome- and 16 

transcriptome-wide association model (eTWAS) to predict the brain phenotypes using high-17 

dimensional functional genomics data with genotype-phenotype associations in this resource to 18 

highlight key brain genes and modules and relate the mechanisms on how variants in these 19 

affect gene expression. This model allows us to quantitatively impute missing transcriptional and 20 

epigenetic information for samples with genotypes only. This model also shows that the 21 

integrated data has significantly improved the prediction accuracy over individual genomic data 22 

types and relates these predictions to well characterized functions and pathways in the brain.  23 

Introduction 24 

Disorders of the brain affect nearly 20% of the world’s population (ref).  Unlike cardiac disease, 25 

where lifestyle and pharmacological modification of environmental risk factors has had a 26 

profound effect on disease morbidity and mortality (ref), or cancer, which is now understood to 27 

be a disorder of the genomic functions (ref), until recently, little progress has been made in our 28 

fundamental understanding of the molecular cause of the brain disorders.  This recent progress 29 

has come is the form of genetic association signals from large GWAS studies of the psychiatric 30 

and neurological disorders and currently hundreds of genomic locations that alter the disease 31 

risk are known (ref of review, or list disorders in text below, depending on space).  32 

Unfortunately, for most of these locations, we have little to no understanding of which base pairs 33 

alterations constitute the functional genomic alteration, which transcripts and networks are 34 

altered, and what are the molecular mechanisms that cause those alterations. It is presumed 35 

that these changes in transcription modify the proteome, which leads to changes in brain 36 
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structure and function, and these changes interact with environmental factors to change the 37 

probability of developing a brain disorder.  38 

 39 

To this end, a variety of genomic elements have been found by many GWAS studies [refs] to 40 

associate with psychiatric behaviors such as ones in mental diseases. [[JK: Add in details of 41 

other GWASs we have in the paper, once we know which ones they are.]] For example, the 42 

Psychiatric Genomics Consortium (PGC) identified a set of genomic variants including SNPs 43 

and CNVs associated with psychiatric disorders; e.g., 108 GWAS loci associated with 44 

schizophrenia (SCZ) , which explained  ~20% liability across major disorders \cite{23933821}. In 45 

addition to genotype, a number of genes have been reported to have specific transcriptional 46 

activities in mental diseases; e.g., the specific gene expression in mental diseases \cite{xx}. In 47 

another context, recent large consortia such as GTEx, ENCODE and Epigenomics Roadmap 48 

have generated large-scale RNA-seq and ChIP-seq data for dozens of brain tissues and cell 49 

lines (N=xxx) in order to systematically identify brain specific genes, transcripts and regulatory 50 

elements [[JK: Maybe more details here, such as samples size]]. However, these studies were 51 

limited to healthy brains, so their data is unable to be used to find genomic elements for mental 52 

health. For neuropsychiatric-specific analysis, the CommonMind Consortium and others have 53 

generated gene expression and genotyping data for both healthy and schizophrenia samples 54 

(N=279 vs. 258), identifying ~693 differentially expressed genes in schizophrenia. However, 55 

their results still suggested that thousands of samples would be required to achieve statistical 56 

power of 0.8 for detecting differential expression of eQTL-associated genes [refs]. Moreover, 57 

recent studies show that specific chromatin activity of the regulatory elements such as 58 

enhancers has been found to potentially control gene expression in brain [ref], and that single 59 

cell techniques can detect gene expression and epigenetic patterns for neuronal and non-60 

neuronal cell types from brain tissues [ref]. Given the complexity of adult brain, we need a 61 

variety of additional samples to gain the statistical power necessary for discovering a complete 62 

set of genomic elements for neuropsychiatric disorders and other phenotypes. In addition, 63 

individual molecules do not independently affect brain, and instead interact with each other in a 64 

network. Thus, effort is needed to model and analyze the molecular interactions that drive the 65 

phenotypes of adult brain including neuropsychiatric disorders. 66 

 67 

In fact, understanding the molecular mechanisms on how these genomic elements affect 68 

various brain functions and phenotypes is still a key challenge in neuroscience. To address it, 69 

the PsychENCODE Consortium integrates a group of projects to produce a public resource of 70 

multi-dimensional genomic data from thousands of high quality healthy and diseased human 71 

post-mortem brains (PEC ref) (6). Particularly, it has generated and assembled a robust large-72 

scale dataset on the adult human brain to address this challenge, including genotyping, RNA-73 

seq, ChIP-seq and single-cell transcriptomic data on the brain tissue samples of 1931 adult 74 

individuals with different phenotypes and these data are housed in a central, publically available 75 

depository (xxxx).  In addition, for these analyses, we have supplemented the PEC data with the 76 

primary data at both tissue and single cell levels from other related genomic resources, such as: 77 

ENCODE, CommonMind, GTEx, Epigenomics Roadmap, recent neuronal and non-neuronal 78 

single cells [refs], and uniformly processed all the data together and performed integrated 79 

analyses with up to X,XXX samples. Using single cell data, we also calculate the fractions of 80 
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neuronal and non-neuronal cell types in normal and disease states for individual tissue samples. 88 

We provide all the PEC data and integrative analyses in an online resource which contains all 89 

possible functional genomic elements for adult brain including the brain-active enhancers, 90 

transcripts, expression models, imputed regulatory networks, eQTLs and cQTLs for various 91 

phenotypes, and an integrated deep-learning model, Deep Structured Phenotype Networks 92 

(DSPN) for predicting and imputing brain phenotypes. We then use this resource to discover the 93 

properties of brain gene expression, non-coding transcription and enhancers, and to build this 94 

model, to describe how interactions between genomic variants, gene expression, enhancers 95 

might work together molecularly to alter disease risk. 96 

Comprehensive resource for adult brain functional genomics 97 

The PsychENCODE consortium has generated and assembled a large-scale dataset of 98 

genotypes, RNA-seq, ChIP-seq, ATAC-seq, Hi-C and single-cell transcriptomic data from adult 99 

brains of 1931 individuals, with and without several mental illnesses (Figure 1, Assay summary 100 

in Methods). To harmonize and integrate the datasets across multiple consortia, we processed 101 

these datasets using standard bioinformatic pipelines in common use (Methods). For instance, 102 

we adopted the ENCODE processing pipelines for the bulk and single cell RNA-seq and ChIP-103 

seq data. Likewise, we used the GTEx eQTL pipeline and associated parameters, to allow 104 

comparison to previously published eQTL maps.  All these uniformly processed datasets are 105 

available in our XXXX resource (URL here). Finally,  we also compared the resource data 106 

against various phenotypes, and identified the brain specific data (derived data type). For 107 

example, this resource includes the regulatory variants such as QTLs, brain active enhancers, 108 

differentially expressed genes and transcripts, novel transcribed regions and non-coding RNAs, 109 

and putative genome-wide regulatory networks. It is also publicly accessible and available on 110 

the PyschENCODE website (http://adult.psychencode.org/pec/). 111 

 112 

Overall, this resource is structured in a pyramid shape (Figure 1), with the largest scale and raw 113 

data at the bottom level and the lightest and most interpretive data at the top level. 114 

 115 

Next generation sequencing data for brain functional genomics 116 

At the bottom, we have the large scale raw data and the phenotype information for 1931 117 

individuals, much of which is private and under controlled access. Based on this, we have then 118 

uniformly processed raw datasets from PyschENCODE and other consortia (ENCODE, 119 

CommonMind, GTEx, Epigenomics Roadmap, etc),  including RNA-seq expression 120 

quantifications, ChIP-seq signal track qualifications and peak identifications using ENCODE 121 

standard pipelines, and private imputed genotypes. The processed functional genomic data is 122 

much easier to interpret but still rather large scale. In details, they include the following major 123 

data types: 124 

 125 

Phenotypes - the PsychENCODE data covers a number of phenotypes on mental health. They 126 

are normal control (n=1445), SCZ (n=270), BP (n=160), ASD (n=65), AFF (n=8), Male (n=1244), 127 

Female (n=700), Age (distribution), etc. (Supplement).  128 

 129 
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Epigenomics - we used the ENCODE standard ChIP-seq pipeline and uniformly processed the 143 

ChIP-seq data of available tissue samples in PsychENCODE and Roadmap Epigenomics, and 144 

neu+ and neu- cell samples for the signal track qualifications and peak identifications.  145 

 146 

Transcriptomics - we also used the ENCODE standard RNA-seq pipeline to uniformly process 147 

the RNA-seq data of available samples from a number of PsychENCODE-relate studies, 148 

ENCODE and GTEx to quantify the expression levels for the protein coding genes, transcripts, 149 

noncoding RNA and novel transcribed regions. 150 

 151 

Chromatin interactomics – we generated and processed the Hi-C data for adult brain including 152 

three reference brains, and identified the xxx regions on which the enhancers and promoters 153 

interact. Using this full Hi-C data for adult brain, we identified xxx Topologically Associating 154 

Domains (TADs) of adult brain. These TADs provide the regions at which the enhancers interact 155 

with target gene promoters in adult brain, and enable the systems identification of potential cis-156 

regulatory enhancers of the genes. [more from HJ&DH] 157 

 158 

System identification of the specific transcriptomic and epigenomic 159 

elements in adult brain 160 

Given the large-scale transcriptomic and epigenomic data in resource, we further integrated 161 

them and identified the genomic elements that have specific activities in adult brain. We used 162 

the uniformly processed data and compared against various phenotypes to have even more 163 

interpreted functional elements such as sets of differentially expressed genes characterizing 164 

various brain regions and phenotypes, sets of aggregated brain enhancers from merging the the 165 

K27 peaks on the ENCODE regulatory elements. And then above these individual elements, we 166 

even identified more interpreted association relationship data such as the QTLs affecting gene 167 

expression and enhancers, and imputed the regulatory networks consisting of QTLs, 168 

transcriptional factors (TFs), enhancers and genes. This includes: 169 

 170 

Brain active enhancers - we identified the brain enhancers from the uniformly processed ChIP-171 

seq data and related them with the regulatory elements in ENCODE and Epigenomics 172 

Roadmap , and summarized a list of PsychENCODE brain enhancers which are activated on 173 

major brain regions such as ~88,800 enhancers in pre-frontal cortex including xxx ones in adult 174 

brain TADs (Supplement). 175 

 176 

Differentially expressed genes, transcripts and brain splicing patterns - we compared expression 177 

changes in uniformly processed RNA-seq data from brain samples across PsychENCODE-178 

related studies, ENCODE, and GTEx, and found xxx expressed genes and ~79,000 transcripts 179 

in pre-frontal cortex, ~11k  eGenes associated with eQTLs (Methods), and xxx non-coding 180 

RNAs and novel transcribed regions. We also derived phenotype-specific genes and transcripts. 181 

In addition, we calculated the alternative splicing patterns at the transcript level; i.e., the 182 

percentage of the transcript abundance over its gene abundance, and found the brain-specific 183 

spliced transcripts. Our resource contains differentially expressed and spliced genes and 184 

transcripts across a number of biological variables, including neuropsychiatric disorders and 185 

developmental stages. 186 
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 195 

Gene co-expression modules - Also, the brain specific gene expression is likely driven by a 196 

group of genes, rather than individual genes, so we constructed the gene co-expression 197 

network using all PsychENCODE and GTEx samples, and clustered it into gene co-expression 198 

modules using WGCNA [Methods]. The genes clustered in a same module are highly likely co-199 

regulated by similar mechanisms. Our co-expression analysis indeed found several modules 200 

whose eigengenes show very different expression levels between brain and non-brain samples 201 

(Figure Sxxx, Supplement), which suggests that there exist brain specific regulatory 202 

mechanisms drive these brain co-expression modules.  203 

 204 

We should emphasize that our comparative analysis is consistent for finding various brain 205 

elements including brain enhancers, genes and transcripts. More specifically, we compared 206 

them against a same set of brain and non-brain tissues; e.g., the RNA-seq gene expression 207 

data from GTEx and the ChIP-seq binding signal data from Epigenomics Roadmap for brain 208 

pre-frontal cortex vs. other non-brain tissues including liver, lung, blood, etc. 209 

System identification of the QTLs and gene regulatory networks associated 210 

with adult brain transcriptomics and epigenomics 211 

To understand how the genotype affects the transcriptomic and epigenetic activities in adult 212 

brain, we first used the resource data as above to identify more interpreted association 213 

relationship data such as the quantitative trait loci (QTLs) affecting gene expression and 214 

chromatin activity. In particular, we merged genotype and gene expression and chromatin data 215 

of Brain DFC region from a number of studies relating to PyschENCODE. We calculated the 216 

association of imputed SNPs with normalized gene expression and chromatin states (Methods) 217 

to find the quantitative trait loci associating with gene expression and epigenomic activities in 218 

adult brain, including three major categories: expression QTLs (eQTLs), chromatin QTLs 219 

(cQTLs), splicing QTLs (sQTLs) and even cell fractions (fQTLs, more details from the single-cell 220 

analysis as below). We used the GTEx standard pipeline for discovering eQTLs to find the 221 

associations, which is based on an additive linear model from QTLtools. Given the complex 222 

relationships between genotype and phenotype, potentially driven by batch effects and biases 223 

(e.g., merging different chromatin datasets), this linear model was also adjusted by covariates 224 

like PEER factors of gene expression, genotype PCs and disease diagnosis. Among these 225 

SNPs, we identified a great number of the regulatory variants significantly associated with brain 226 

transcriptional and epigenomic activity: >1 million expression QTLs (eQTLs) with ~11k 227 

eGenes, >5 thousand chromatin QTLs (cQTLs) for histone modification signals, and xxx splicing 228 

QTLs for alternative splicing patterns. The distributions of detailed QTL annotations on genomic 229 

regions are shown in Figure xxx. 230 

 231 

Given a great number of QTLs we identified, we are further interested to see how they relate to 232 

the known variants for brain. In particular, we compared them with existing QTLs databases and 233 

subdivided our QTLs into different functional categories, mainly including the disease GWAS 234 

SNPs, the SNPs breaking the TF binding sites, etc (Table/Figure xxx). Collectively, these QTLs 235 

annotate a larger fraction of GWAS SNPs involving the brain (e.g., 6% in schizophrenia, 10% in 236 
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bipolar) than previously observed, providing leads on which genes are affected in disease. We 238 

also evaluated the overlap of eQTLs with cQTLs and found that XX% of cQTLs are overlapped 239 

with eQTLs. The SNPs in cis-eQTL list(Cis-eSNPs) were enriched within XXXX, and depleted 240 

XXXXXX (Fig. X). We examined the enrichment of most significant eQTLs per gene in 241 

Roadmap Epigenomics Consortium and ENCODE enhancers across XX human tissues and cell 242 

lines. Cis-eQTL were enriched for enhancer sequences present in brain tissues  and the 243 

strongest enrichment is observed in DLPFC enhancers. We also calculate the enrichment  of 244 

cis-QTLs on GWAS SNPs of brain related disorders (schizophrenia, bipolar disorders and 245 

parkinson’s disease) and non-brain related disorders (CAD, asthma and type 2 diabetes ). Cis-246 

QTLs have more significant enrichment for GWAS SNPs of brain related disorders than the 247 

ones of non-brain related disorders. In addition, we link the QTLs that overlap the enhancers 248 

and promoters in the resource to reveal the potential regulatory activities. We thus classified the 249 

QTLs into subgroups in terms of their gene regulatory characteristics including the regulatory 250 

QTLs (rQTLs) that break TF binding sites on promoters and/or enhancers, and the modular 251 

QTLs (mQTLs) that highly associate with a set of co-expressed genes. Finally, we found that 252 

the eQTLs/eGenes number can be predicted from the sample size using a fitted curve (Figure 253 

xxx).  254 

 255 

Gene regulatory networks - we also integrated and imputated the regulatory relationships in 256 

brain such as the enhancers, transcription factors (TFs), miRNAs and target genes [refs] in this 257 

resource (Methods). For example, we found the TF binding motifs using ENCODE data and 258 

inferred the TF-target gene relationships if TFs have enriched binding motifs on the target 259 

gene’s regulatory regions such as promoters and enhancers. We also used Hi-C data to filter 260 

the enhancers that are not in the TAD regions for given target genes. In total, we included xxx 261 

enhancer-gene, xxx TF-gene, and xxx miRNA-gene regulatory linkages, providing a reference 262 

wiring network on gene regulation in brain. It should be noted that activations of these regulatory 263 

wires are highly attributed to the genotypes of QTLs, leading to various phenotypes. Thus, using 264 

these “wiring” regulatory relationships, we inferred the gene regulatory networks that identify the 265 

regulatory relationships on how QTLs, enhancers, and transcription factors relate to target gene 266 

expression (Methods). In particular, given a target gene, we found its related regulatory 267 

elements from the resource including the eQTLs, the enhancers that control its gene expression 268 

[JEME] plus their cQTLs, and predicted the transcription factors (TFs) that have enriched 269 

binding sites on these enhancers and its promoter. We then used RNA-seq and ChIP-seq data 270 

based on the Elastic Net model with regularization that combines the L1 and L2 penalties of the 271 

lasso and ridge regressions to predict the regression coefficients of genotypes of various QTLs, 272 

the chromatin stages of enhancers, splicing patterns and TFs gene expression to the target 273 

gene expression, and identified the highly predictive relationships (i.e., large coefficients). We 274 

repeated this for all genes and found how various subgroups of QTLs affect gene expression; 275 

e.g., a significantly number of predictive QTLs break the TFBSs on the enhancers or promoters 276 

(xx%, Figure xxx). We thus constructed a gene regulatory networks consisting of the QTLs, 277 

enhancers, TFs and target genes with high predictive relationships (Methods), revealing the 278 

biological mechanisms on how QTLs regulate the target gene expression in the adult brain. 279 

 280 
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In summary, the establishment of this comprehensive resource enables the modeling and 282 

analysis for the biological processes in adult brain and helps understand the molecular 283 

mechanisms between genotypes and phenotypes. Therefore, we later analyzed and modeled 284 

the data from this resource to further reveal the brain specific genomic and transcriptomic 285 

activities, and the biological mechanisms explaining how the brain specific elements affect the 286 

phenotypes and diseases in the adult brain.  287 

Comparative analysis reveals the brain related transcriptomic and 288 

epigenomic activity  289 

We leveraged this resource to compare the human brain with other tissues. To reveal potential 290 

brain specific genomic activities, particularly relating to transcriptomic and epigenomic activities, 291 

we performed a consistent spectral analysis and compared the similarities of RNA-seq gene 292 

expression and ChIP-seq binding signals on enhancers and found that the brain has more 293 

distinct expression patterns compared to most other tissues, including a greater amount of non-294 

coding transcription. However, the differences in epigenetics are relatively smaller. 295 

 296 

For gene expression, we compared the adult brain samples from our resource with the other 297 

tissue samples from GTEx, using uniformly reprocessed RNA-seq data. We tested three well 298 

established dimensionality reduction methods to identify structures of gene expression. Principal 299 

Component Analysis (PCA) was able to capture some, but not all structure of human tissues. 300 

On the other hand, tSNE is too sensitive to batch effects and exposed structures that have not 301 

originated from biological differences. We finally tested Reference Component Analysis (RCA), 302 

that projects the gene expression into a reference panel of tissues and genes and shows 303 

highlights intermediate structures in the data. Using the reference component RCA, we show 304 

that the brain samples, though from different studies are clustered together in a major cluster, 305 

significantly separated from the other major cluster consisting of non-brain samples from their 306 

leading reduced dimension (left vs. right clusters in Figure xxx). This suggests that the brain has 307 

unique and distinctive gene expression programs, which are involved by the brain elements 308 

including brain expressed genes, transcripts and non-coding RNAs in our resource. In addition, 309 

the samples of PsychENCODE that include psychiatric disorders have larger variations than 310 

other tissue clusters (Figure xxx). The cluster radiuses were estimated by fitting the two main 311 

principal components into a multivariate normal model and finding a 0.95 confidence interval 312 

(Methods). This suggests that the psychiatric diseases still have larger variations of gene 313 

expression, and different gene regulatory programs from the normal, though even more distant 314 

from other organs. Thus, we then want to check all unified transcriptional activities on the 315 

genome scale in brain including potentially novel transcribed non-annotated regions. 316 

Specifically, to understand where the human brain sits in regards of its the transcription diversity 317 

compared to other tissues, we estimated the proportion of genome that is transcriptionally active 318 

across hundreds of samples. We first found that transcript diversity is mostly saturated at the 319 

scale of hundreds of individuals (Figure xxx). The saturation is observed for both the annotated 320 

and non-annotated portions of the genome. The human brain does not stand as a highly diverse 321 

in protein coding regions. For example, the tissues such as the testis is highly diverse [Ref]; 322 

however, we found that the brain has more transcriptional activity at the non-annotated and 323 
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novel transcribed regions than most other tissues (Figure xxx). Which implies that the non-332 

coding transcription is highly likely another factor to make the brain tissues unique.  333 

 334 

As shown above, the brain samples have different chromatin and gene expression activities 335 

from other organs, implying that the brain also has specific gene regulatory activities. Therefore, 336 

we are further interested to compare the enhancers between brain and other tissues to see any 337 

brain epigenomic activities. In particular, we integrated the H3K27Ac ChIP-seq signal data of 338 

enhancers in the resource and performed dimensional reduction analysis  consistent to the for 339 

gene expression RCA to compare the similarities of epigenetic profiles of PsychENCODE 340 

samples with Epigenomic Roadmap data. It is also interesting to find dissimilar patterns with the 341 

gene expression comparison; e.g., while the brain samples separates from other tissues when 342 

using genes expression data, the active enhancers are not able to separate brain from other 343 

tissues (Figure xxx). This result suggests that the brain has less specific and distinct epigenomic 344 

activities, involving the brain active enhancers from our resource. Thus, there may exist more 345 

complex regulatory mechanisms among the brain enhancers with low signal variability than 346 

other tissues to drive the brain distinct gene expression. One important mechanism is that the 347 

brain active enhancers or gene expression patterns are intermediate phenotypes, potentially 348 

driven by particular large set of brain regulatory variants such as our QTLs as previously 349 

described. 350 

 351 

Our comparative analysis reveals that the brain is different from other organs in gene 352 

expression. Thus, we are then interested to identify the functional genomic elements in brain 353 

that give rise to the uniqueness of brain. To systematically find the specific expressed functional 354 

elements in brain, we identified the differentially expressed genes for phenotypes such as 355 

gender (Methods and Figure XX) for the resource. For example, we identified a group of genes 356 

that differentially express across different ages (Figure xxx). In particular, the gene involved in 357 

early growth response is down-regulated at elder samples whereas the gene with ceruloplasmin 358 

is down-regulated around the middle ages. Finally, we report the DEX genes for all phenotypes 359 

in our resource along with their enriched functions and pathways in supplement.  360 

Single cell analysis and deconvolution explain gene expression 361 

changes across adult phenotypes 362 

The brain tissues have been found to comprise a variety of cell types including neuronal and 363 

non-neuronal cells such as astrocytes [refs]. One issue with the changes of gene expression in 364 

our brain tissue samples is whether the changes are driven by gene expression in a particular 365 

cell type or different cell-type populations. To address this tissue, we integrated the single cell 366 

gene expression data to discover how the gene expression from various cell types including 367 

both neuronal and non-neuronal contribute to the gene expression at the tissue level. In 368 

particular, we used the biomarker genes with strong expression signals in single cell to 369 

deconvolve the gene expression data of individual tissues over both novel and known cell types 370 

to find the cell fractions for individuals, and relate to the individual phenotypes. We found that 371 

the gene expression changes across individual tissue samples can be largely explained by the 372 
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single cell gene expression, and the changes of single cell fractions are also associated with the 401 

individual phenotypes.   402 

 403 

Specifically, we integrated and used the same pipeline to uniformly process the single cell RNA-404 

seq data for the neuronal and non-neuronal cell types from PsychENCODE and recent 405 

publications [lake&quaker]. In total, we included 23 single cell types (Supplement) and found 406 

that the same-type cells generally can be clustered together (Figure Sxxx) using our uniformly 407 

processed data. We also include these single cell data as well as their cell-type biomarker 408 

genes in the resource. Moreover, we found that a group of psychiatric disorder related genes 409 

indeed show the expression dynamic changes among cells. For example, the dopamine 410 

receptor genes (DRD) that associate with SCZ, are significantly more highly expressed in 411 

neuronal cells than others (Figure Sxxx), and their expression levels across cells vary 412 

significantly larger than tissue samples, suggesting that the cell fraction changes potentially 413 

equalize the tissue expression variability. Therefore, we are further interested to see if the brain 414 

gene expression at the tissue level in our resource is contributed by the above cell types and 415 

affected by the cell fractions.  416 

 417 

To this end, we decomposed the gene expression data across individuals at the tissue level 418 

from our resource using non-negative matrix factorization (NMF, see Methods). Indeed, we 419 

found that three groups of top principal components of NMF (NMF-PCs) capturing the most 420 

covariance of brain gene expression across individual tissues, highly correlate with the 421 

biomarker gene expression signatures of  neuronal, non-neuronal and fetal cell types as above, 422 

respectively. For example, the NMF-PCs shown in Figure xxx. This suggests that the large 423 

portion of tissue’s gene expression changes is a linear combination of these cell types’ gene 424 

expression. Thus, we want to further identify the cell fractions showing how individual single 425 

cells contribute the tissue’s gene expression, using the deconvolution. 426 

 427 

Therefore, we deconvolved the tissue-level gene expression data of all 1931 individuals’ tissue 428 

samples using single-cell gene expression data of 450 biomarker genes to find the fraction of 429 

different cell types corresponding, and compare cell fractions across different phenotypes 430 

(Supplement). The single cells used in deconvolution cover all 16 neuronal types, five non-431 

neuronal types and xxx additional fetal types from PsychENCODE single cell data [ref: 432 

brainspan]. It is very interesting that the linear combinations of single cell expression of 23 cell 433 

types, where combinational coefficients, can explain >80% of the gene expression variations 434 

across 1931 individual tissues (Figure xx). The coefficients of cell types for linear combination 435 

are estimated from our deconvolution analysis (Methods in supplement), and proportional to the 436 

cell fractions of individuals. In addition, we found that the cell fractions of individuals (i.e., 437 

deconvolution coefficients) vary, and a number of cell population changes highly associate with 438 

different phenotypes and disorders (Figure xxx). For example, the fraction(s) of neuronal type(s) 439 

(Inhibitory X) is significantly anti-correlated with Age (r = xxx), and Inhibitory X cells have 440 

functions of XXX involving the differentially expressed genes in Age from our resource (Figure 441 

xxx). The excitatory neuronal cell populations (e.g., EX1) increase significantly in ASD samples 442 

(p<xxx) while the non-neuronal cells decreasing (e.g., oligodendrocytes). Finally, we report the 443 
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Deleted:  from different studies. In particular, xx% 460 
PsychENCODE cells have been found to cluster 461 
together with known cell types (xx% neuronal, xx% 462 
non-neuronal, details in supplement). In addition, xx% 463 
PsychENCODE cells form their own clusters, away 464 
from known cell types, suggesting that the potential 465 
novel cell types found by PyschENCODE for brain 466 
tissues.467 

Deleted: and 468 

Deleted: for those differentially expressed genes at the 469 
tissue level from our resource, 470 

Deleted:  further checked their expression changes 471 
across various single cells, and472 

Deleted: then473 

Deleted:  (three blocks in Figure xxx). For example, No. 474 
22 and 23 NMF-PCs of the non-neuronal group highly 475 
correlate with astrocytes, No. 2 NMF-PC correlate with 476 
fetal cells, and No. 1, 5, 10, 24 and 25 NMF-PCs of the 477 
neuronal group correlate with excitatory neuronal cell 478 
types.479 

Deleted: 1945480 

Deleted: 1945481 
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individual cell populations along with significantly associated relationships between particular 483 

cell type fractions and phenotypes (Supplement). 484 

 485 

Furthermore, we are interested to see if any genotype is also associated with two single cell 486 

features: (1) the cell fractions and (2) the gene expression changes that can’t be explained by 487 

the cell fractions. In particular, we used our QTL pipeline and identified xxx SNPs whose 488 

genotypes are significantly associated with yyy neuronal cell fractions across individuals, (or zzz 489 

non-neuronal cell types); i.e., cell fraction QTLs (fQTLs). This suggests that these fQTLs 490 

potentially can be used to predict the yyy cell fractions in adult brain. Moreover, we identified 491 

xxx SNPs significantly associated with the gene expression changes across individual tissues 492 

unexplained by our single cell deconvolution; i.e., Y-WX (Methods). These SNPs are likely 493 

causing certain gene expression changes driven by unknown cell types in adult brain. 494 

Integrative modeling to explain the molecular mechanisms for 495 

genotype-phenotype relationships in adult brain  496 

The interaction between genotype and phenotype is a very complex process, involving multiple 497 

intermediate stages including gene expression, signaling, modulation and so on. Thus, to 498 

understand this and merge all these stages in one model, we introduce an interpretable deep-499 

learning framework, Deep Structured Phenotype Networks (DSPN), which provides insight into 500 

how the brain genomic variants affect gene expression and regulation, and eventually predict 501 

phenotypes; i.e., the DSPN pathways from genotype to phenotype (Figure xxx). This model 502 

combines a Deep Boltzmann Machine architecture with conditional and lateral connections 503 

derived from the QTLs and regulatory networks estimated in our resource. On the resource 504 

website, we provide a list of DSPN pathways for each phenotype and disease. We also make 505 

the model downloadable as a set of simplified files summarizing represented genotype-506 

phenotype pathways. In particular, this model integrates all high dimensional functional data 507 

types in this resource including genomics, transcriptomics, epigenetics and regulatomics, and 508 

genotype-phenotype relationships, and also allows us to quantitatively impute missing 509 

transcriptional and epigenetic information for samples with genotypes only. The model is trained 510 

as a deep generative model to represent the conditional distribution of all variables given the 511 

genotype.  Unlike a feed-forward network architecture, the undirected form of the Boltzmann 512 

machine allows information to flow in top-down, bottom-up and lateral directions during 513 

inference, so that intermediate and high-level phenotypes may be jointly inferred while 514 

respecting their mutual dependencies. This allows us for instance to impute transcriptome and 515 

epigenome data when it is missing. In particular, our inference is performed using a mean-field 516 

approximation, and training is performed using a Persistent Markov Chain Monte Carlo 517 

algorithm which is able to ensemble multi-dimensional datasets (Supplement). 518 

 519 

As shown in Figure xxx, the DSPN consists of four layers: 1) genotypes such as QTLs; 2) 520 

molecules and genomic elements, including genes and enhancers; 3) functional modules and 521 

other mid-level phenotypes at a series of intermediate layers; i.e., the hidden nodes of deep 522 

learning modeling; 4) high-level phenotypes such as brain traits. In addition, we enforce the 523 

DSPN to have sparse connectivity (Supplement). Specifically, we built each layer of our model 524 

Deleted: the entire process of how genotype525 

Deleted: phenotype relate to each other526 

Deleted:  It527 

Deleted:  528 

Deleted:  Inference529 

Deleted: (see supplement530 
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as follows. We first used the imputed gene regulatory networks that identify the regulatory 531 

connectivities on how QTLs, enhancers, and transcription factors relate to target gene 532 

expression (Supplement). We then connected the nodes on the molecular layer of our model to 533 

follow the inferred gene regulatory network structures; i.e., embedding the gene regulatory 534 

network. In particular, many intermediate-layer modules (i.e., strongly predictive features on 535 

Layer 3) that correspond to known gene sets associated with well-characterized pathways and 536 

functions in the brain; e.g., the module xxx is connected to genes enriched in the dopaminergic 537 

and glutamatergic synapse (GSEA enrichment score > xxx, Figure xx). Also, some modules are 538 

used to capture the information on single cell populations; e.g., the module yyy is connecting to 539 

Age, and represents the neuronal cell fractions (Figure xxx). Furthermore, we used this model to 540 

recapitulate the pathways comprising the cross-layer nodes and predictive edges for particular 541 

phenotypes. For example, as highlighted in Figure xxx, the schizophrenia (SCZ) trait is activated 542 

by two modules on the layer of hidden nodes corresponding to glutamatergic signaling and 543 

excitatory synapse, respectively. The modules are connected by a set of genes including 544 

GRIN1, which are regulated by corresponding QTLs (e.g., rs1146020) and enhancers (e.g., 545 

GH09H137166) as shown in the blowup gene regulatory mechanism. In addition, we discovered 546 

additional molecular mechanisms for SCZ such as module(s) corresponding to dopamine-547 

related pathways and complement pathways (Figure xxx). These modules are connected to the 548 

C4 family genes, regulated by eQTLs and enhancers (p<1e-4). 549 

 550 

Moreover, the model also enables practical imputation of a subset of the transcriptome and 551 

epigenome, with an accuracy of ~70% (Figure xxx). We use the model to improve prediction of 552 

biological variables and psychiatric diseases by the addition of transcriptomic data to genotype, 553 

as compared to genotype alone. In particular, we can predict bipolar disease and schizophrenia 554 

with much higher accuracy from the transcriptome than from genotype alone; i.e., three times 555 

improvements (+18% vs. +6%) from the random prediction 50% for schizophrenia, Figure XXX). 556 

The imputed transcriptome also clearly adds predictive value, as we can predict schizophrenia 557 

with an accuracy of 61% using our model and an imputed transcriptome compared to 56% with 558 

genotype alone. This result demonstrates the usefulness of even a limited amount of functional 559 

genomics information for unraveling gene-disease relationships.  560 

Discussion 561 

We integrated the genomic, transcriptomic and regulatomic PsychENCODE datasets from 562 

~2000 samples and developed this comprehensive resource consisting of various functional 563 

genomic elements for the adult brain. Developing this resource and integrated model to a 564 

population-level scale serves as an important step in gaining meaningful biological insights from 565 

functional genomics studies in neuroscience. In particular, we compared it with other tissues 566 

such as GTEx data and identified the genotypes and QTLs, the specific expressed genes, 567 

transcripts and noncoding RNAs, active chromatin regions, the regulatory networks that 568 

significantly relate with different brain phenotypes at both cellular and tissue levels. For 569 

example, the QTLs allow one to potentially interpret most of the known brain-associated GWAS 570 

SNPs in terms of perturbations to specific genes. Thus, the neuroscientist can use this resource 571 

as a reference to compare with their data, generate hypotheses and help design experimental 572 

Deleted: Layer 2573 

Deleted: novel574 

Deleted: On the resource website, we provide a list of 575 
DSPN pathways for each endophenotype and disease. 576 
We also make the model available as distributive 577 
software and as a set of simplified files summarizing 578 
represented genotype-phenotype pathways. 579 
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validations. In addition, this resource is publicly available online and can be extendable and 580 

scalable to integrate additional data types and phenotypes. For example, it can add the 581 

individual’s fMRI image features measuring functional neuro-connectivity, and use our model to 582 

identify the genotypes that associated with image features such as image-QTLs (iQTLs) [xx]. 583 

Also, our resource can incorporate with the neurodegenerative diseases like Alzheimer or 584 

developmental stages.  585 

 586 

Moreover, we built an integrative epigenome- and transcriptome-wide association model 587 

(eTWAS), built on the  Deep Boltzmann Machine (RBM) and integrates the high dimensional 588 

functional genomic and phenotypic data at multiple layers, using the hierarchical structures in 589 

deep learning. The model reveals the relationships among various data types from a number of 590 

directions for genotype to phenotype. In particular, this model also incorporates the derived data 591 

types into its hierarchical structure such as imputed gene regulatory networks and QTLs, and 592 

provides the additional statistical powers to better predict the genotype to phenotype. This 593 

model allows us to quantitatively impute missing transcriptional and epigenetic information for 594 

samples with genotypes only. More importantly, it integrates high-dimensional functional 595 

genomics data with genotype-phenotype associations to highlight key brain genes and modules 596 

and relate how variants in these regulate gene expression. This integrative model is also 597 

available online as a general purpose platform. The users can apply it to impute missing data , 598 

predict the genotype-phenotype relationships, and reveal potentially novel gene regulatory 599 

mechanisms and modules for additional phenotypes. Also, the model can be used to make in-600 

silico predictions for the perturbation outcomes. For example, we can identify the module X that 601 

have the extremely highest connection weights to Austin, and thus knocking down the genes 602 

connecting to the module highly likely will deactivate Autism. Furthermore, while the model does 603 

provide better predictive performance, some of these correlations are deliberately set to be 604 

interpreted simplifications, such as the known enhancers, or gene regulatory network structure, 605 

to make the model more interpretable and easier to use. Thus,  another major goal of the model 606 

is to provide a compression of larger amount of functional genomic datasets for brain; e.g., XXX 607 

KB of model files vs. XXX TB of total resource data, beyond a purely predictive network from 608 

genotype to phenotype. 609 

 610 

Though single cell remains challenging to reliably quantify the low-abundant transcripts/genes 611 

and interrogate the biological variations using single-cell sequencing technology, it is still 612 

worthwhile using the biomarker genes with strong expression signals in single cell to 613 

deconvolve the gene expression data of individual tissues over both novel and known cell types 614 

to find the cell populations for individuals, and relate to the individual phenotypes. With 615 

increasing amount of single cell data in near future, we could deconvolve the resource data at 616 

tissue level to find potential new cell types and obtain more complete cell populations. The 617 

current single-cell sequencing technology suffers from the low capture efficiency [PMCID: 618 

PMC4758375, PMCID: PMC4132710]. Due to this reason, the single-cell sequencing will only 619 

measure a small fraction of cellular transcriptome as the final sequencing library only contains a 620 

subset of input materials. Furthermore, the limited amount of RNA molecules in single cell 621 

makes it even harder to capture the weak signals, which makes the data sensitive to technical 622 

noise. Thus, given that the RNA decaying issues in single cell RNA-seq, we could also relate 623 



 

 13 

this resource to the in situ transcriptomic data such as optogenetic techniques measuring the 624 

spatial gene expression, and find the consistent expressed gene for the brain phenotypes at the 625 

tissue level. 	626 
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Topologically associating domains – we used a full Hi-C data for adult brain and identified xxx in 
xxx Topologically Associating Domains (TADs) of adult brain. These TADs provide the regions 
at which the enhancers interact with target gene promoters in adult brain. [more from HJ&DH]  
 

 


