A. SIGNIFICANCE
A.1. Cancer manifests itself on different scales. A typical cancer has thousands of somatic variants. These manifest their effects on different scales. At the smallest scale is direct effect molecular activity, such as the binding of a transcription factor or the transcription of a downstream gene (often dubbed the "molecular endophenotype" [1]).  Cancer manifests itself on a cellular level in terms of the phenotype of the cells -- e.g., growth or invasiveness, the latter of which is related to metastasis. Finally, cancer also manifests itself on an overall organismic level in terms of its disease-phenotype and, in more detail, its differential severity. The extent to which variant effects take place at the levels of molecular activity propagates to the cellular phenotype, and organismal presentation is unclear.
A.2. Cancer Involves Systems & Networks. The coupling between the individual variant and its effect on molecular activity, cellular phenotype, and eventually organism-level disease involves many networked connections and overall perturbations to systems. In particular, with many variants, genes are often connected in both regulatory and interaction networks. Many proteins carry out diverse functions through interacting with other proteins [2]. Recent studies have been conducted on genetic coding mutations in the context of the human interactome network [3, 4, 5, 6], where on average, a functionally active protein interacts with >5 other protein partners. We will leverage our experience to systematically use several agnostic functional assays in parallel. This approach serves as a paradigm to prioritize coding variants and provides important insights into mutation mechanisms of interaction from a systems biology perspective: our preliminary results have shown that many coding mutations only affect a subset of specific interactions, rather than all interactions, and that mutations in the same protein disrupting different protein-protein interactions often lead to clinically distinct disorders [7, 8, 9, 10] .
A.3. Cancer involves both Coding and Noncoding Mutations.  Conceptually, both coding and non-coding variants may vary in their degree of impact on cancer development or protein formation and function. Numerically, the overwhelming bulk of variants in cancer genomes are non-coding (usually by a factor of 50 to 100) [11]. Historically, there has been an emphasis towards studying coding variants due to the well-known functional significance of protein-coding regions. However, as non-coding alterations constitute the majority of disease-associated variants [12], further study of non-coding regions may also be important to a better understanding of cancer biology. Accordingly, we will consider a combination of coding and non-coding variants. Moreover, a wealth of non-coding information has recently become available due to advances in sequencing technologies and efforts by consortia such as ENCODE [13] and 1000 Genomes [14].
A.4. Noncoding mutations are often thought to have weaker effects. Noncoding variants traditionally have been thought to have weaker effects than coding ones -- not disabling a gene but more subtly affecting regulation. These may come into play in the development of weak drivers, which may have smaller effects on cancer. There has been recent work on these of late. In particular, recent studies [15, 16] suggest that certain mutations, described as "mini-drivers" or deleterious passengers, may have a weak effect on tumor cell fitness and in turn promote or inhibit tumor growth.
A.5. Prostate Cancer is a good platform to study somatic mutations on multiple scales. Prostate cancer is a particularly tractable system for us to focus on for a variety of reasons. First of all, as we described, we have much preliminary background working on this particular cancer and deep connections with the NCI Prostate Cancer Specialized Programs of Research Excellence (SPORE) at Cornell. Also, prostate cancer is highly heterogeneous, displaying very different phenotypes, from a highly indolent, almost unnoticeable disease, to a very aggressive condition [17]. These different presentations may be coupled to systems-wide effects.
	Significant efforts have been made to study genetic and environmental causes of this cancer type, but major leaps forward are still needed to develop a complete etiology of this disease that is diagnosed in more than one million men worldwide [18]. Along with other major factors associated with prostate cancer such as the hormonal action of androgens and estrogens [19], more than 70 genetic susceptibility variants have been identified [20]. Suspected loci are continuously being discovered using GWAS studies [21] and genotyping arrays [22].
A.6. Mutations involving p53-Rb subnetworks in neuroendocrine prostate cancer are an ideal initial place to focus investigation.  For a focused application of our general framework, we will seek to better understand the genetic mechanisms of poorly differentiated neuroendocrine prostate cancer (NEPC). NEPC may arise de novo or after therapy from an epithelial carcinoma. TP53 and RB1 are each altered in  ~80% of poorly differentiated neuroendocrine tumors compared to  ~40% and ~5%, respectively, of adenocarcinomas originating from the same anatomical site. Two concurrent studies provided mechanistic data supporting the role of TP53 and RB1 combined loss in driving resistance to androgen deprivation therapy, lineage plasticity and the development of neuroendocrine features.

B. INNOVATION
B.1. Overall Framework. We believe our overall approach is highly innovative in that we have assembled a diverse team of investigators and are probing prostate cancer on many levels, from clinical outcomes to a more cellular, systems-wide experiments, to large-scale molecular experiments to computational prioritization on a variety of scales.
B.2. Aim 1 - Mathematical Computational Model. The specific mathematical computational model that we are developing is innovative for a number of reasons. First, it encompasses a wide rangetens of genomic and epigenetic features. Second, it combines information from the molecular, nucleotide-level scale (biochemical/biophysical, evolutionary, and network) with information about recurrence and whole-organism disease phenotype. Third, we provide an innovative scheme to update our model in athat updates our existing Bayesian framework and introduces a novel deep neural network using large-scale experimental data. To our knowledge, this will be one of the first deployments of deep learning algorithms, which proved to excel in numerous predictive fields, to variant prioritization in cancer. The update and the validation will lead to a more accurate and usable model.In addition, and as our model focuses on specific cancers to lay the groundwork for subsequent aims, we will apply generalization training techniques to ensure its applicability on datasets stemming from other cancer and non-cancer-related experiments. That update, extension, validation and comparison with other methods will lead to a more accurate and usable model.
B.3. Aim 2 - High-throughput Molecular Experiments.  Our recently published Clone-seq pipeline allows massively-parallel site-directed mutagenesis to generate one and only one specific mutation per DNA molecule for hundreds of genes/TREs (enhancers and promoters), which is entirely different from previously described random mutagenesis approaches [23, 24, 25, 26]. Our iSTARR-seq and Promoter-seq assays utilize molecular barcodes to allow direct quantification of non-coding mutation's impact on enhancer/promoter activity, with a 40-fold increase in sequencing efficiency compared with the traditional STARR-seq protocol. As described in our previous publications [9, 27, 28], our InPOINT pipeline incorporates five high-throughput approaches: GFP (to examine coding mutation's impact on protein stability), and four orthogonal interaction assays (PCA, LUMIER, Y2H and wNAPPA to examine coding mutation's impact on specific protein-protein interactions).
B.4 Aim 3 - Cellular Assays (CRISPR & Organoid technology).  CRISPR-Cas9 genomic editing technology can introduce targeted mutation in coding and non-coding regions from normal prostate cell lines. Doing this at scale as described in the proposal represents the current state of the art.  Our organoid technique differs from traditional cell culture by maintaining cancer cells in three-dimensional (3D) cultures. Benign and cancer cells that are grown in 3D retain cell-cell and cell-matrix interactions that more closely resemble those of the original tumor compared to cells grown in two dimensions on plastic. 

C. APPROACH
C.1. AIM 1 Computational prioritization of coding and non-coding somatic mutations.
We will first prioritize both coding and non-coding cancer mutations, with a focus on those associated with p53 and Rb in prostate cancer. This prioritization will be used to identify mutations to be investigated using subsequent assays of molecular, cellular, and organoid-level phenotypes. These assays will subsequently also allow us to update and refine tools our model to of impactful variants.
C.1.A. Prior experience in variant prioritization.
C.1.A.1. Experience in non-coding genome annotation. Our expertise in non-coding DNA variant annotation stems from our experience analyzing a wide variety of genomic assays. We have developed widely used tools to identify ChIP-Seq peaks [29, 30], perform RNA-Seq quantification [31, 32], and identify new non-coding transcripts and categorize them according to function [33, 34]. Our tool to predict enhancer regions has undergone functional validation of its predictions [35]. We have further linked enhancers to target genes [36] and developed tools to process HiC data [37, 38]. In addition to identifying, quantifying, and linking non-coding genomic elements, we have built linear and nonlinear models that use epigenetic signals to predict gene expression [39, 40, 41]. Moreover, we have extensive experience incorporating genomic data into networks to help explaining gene regulation and to identify key regulators [42, 43, 44, 45].
C.1.A.2. Experience in non-coding variant prioritization. We have extensively analyzed patterns of variation in non-coding regions and their coding targets [35, 42, 46]. In recent projects [27, 36], we integrated multiple methods into a comprehensive prioritization pipeline called FunSeq (Fig. 1). The pipeline identifies sensitive regions with annotations under high selective pressure, links non-coding mutations to their target genes, and prioritizes variants based on network connectivity. It also identifies deleterious variants in non-coding elements including TF binding sites, enhancers, and regions corresponding to DNase I hypersensitive sites. Using integrated data from large-scale resources (including ENCODE and 1000 Genomes Project) with cancer genomics data, Funseq can prioritize known TERT promoter driver mutations. In this project, we will further extend training and validation data to include variants sets corresponding to 210 prostate cancer donors as part of the Pan-cancer Analysis of Whole Genomes (PCAWG) consortium. The sheer size of the final data repository, in terms of millions of variants, will constitute a significant step towards a comprehensive coverage of the somatic variation patterns underlying cancer.	Comment by Hussein Mohsen: More details on the size of ENCODE and 1KG datasets used to train the model would be helpful. I looked into the Funseq2 paper and did not find exact numbers. We should check with fellow lab members.
[image: igure 1.png]C.1.A.3. Experience in prioritizing protein-coding variants. We have developed a variety of tools that prioritize protein-coding variants. Our Variant Annotation Tool (VAT) characterizes variants according to affected genes and transcript isoforms [47], and our Analysis of Loss of Function Transcripts (ALoFT) software predicts loss-of-function (LOF) mutations and their impact [48]. Relatedly, our netSNP biological network integration tool [49] identifies  cancer genes based on connectivity. STRESS [50] and Frustration [51] are two other tools we built to identify mutations that affect allosteric hotspots in proteins and identify key functional protein regions prone to genetic alterations. Finally, our Intensification tool searches for deleterious mutations within repeat regions of proteins [52].Figure 1. FunSeq2 workflow

C.1.A.4. Experience in variant prioritization based on recurrence, taking into account background mutation rate estimation. A major approach to finding driver variants starts with searching for mutation-rich genes or genomic regions. However, high mutation heterogeneity and potential correlations between neighboring sites give rise to substantial overdispersion in mutation counts, which complicates background rate estimation. We developed a computational framework called LARVA, which integrates variants with a set of non-coding functional elements to model mutation counts of the elements and handle overdispersion [53]. This framework incorporates regional genomic features such as replication timing to better estimate local mutation rates and finds mutational hotspots. We have identified well-known non-coding drivers and uncovered new potential non-coding driver regions after applying LARVA to hundreds of whole-genome tumor sequences.
C.1.A.5. Experience in allelic analysis. Our AlleleSeq pipeline quantifies allele-specific expression [54], which can provide a direct readout of the effects of allele-specific variants (ASVs). We also conducted a study of allele-specific activity from RNA-Seq and ChIP-Seq experiments conducted on 1000 Genomes Project [55, 56] individuals. After uniformly reprocessing all datasets, including ones from the gEUVADIS [57] and ENCODE [13], we detected ASVs using a beta-binomial test to correct for overdispersion. We then combined the effects of multiple ASVs to assign allelicity scores to genomic elements, indicating that these elements are sensitive to mutations [56].
[bookmark: _GoBack]C.1.A.6. Experience in genomics and cancer genomics consortia. We have extensive experience in the ENCODE [13, 42, 58], modENCODE [59, 60], 1000 Genomes [14, 27, 61] and PsychENCODE [62] consortia, where we served in a variety of leadership roles (i.e., co-lead of the AWG for modENCODE and leadership of the ENCODE & cancer workgroup) [13, 34, 42, 60]. We also have extensive experience analyzing cancer genomes through our participation in The Cancer Genome Atlas (TCGA) and Pan-cancer Analysis of Whole Genomes (PCAWG) consortium. We participated in the TCGA consortium studies of prostate [63] and kidney [64] cancers and recently conducted a detailed investigation of the non-coding variants in TCGA kidney papillary cancer samples [65]. We have also developed tools for somatic variant calling [66]. Currently, we are co-leading the PCAWG group investigating the impact of non-coding mutations.
C.1.B. Research plan for mutation prioritization. 
We will prioritize causal variants in prostate cancer based on their recurrence in prostate cancer cohorts and their independently-predicted functional impacts. Conceptually, a causal chain links DNA alterations to changes in gene activity or expression, to dysregulated cellular growth, to clinically detectable cancer. Recurrence analysis starts with clinically detectable cancer and infers backward, up the causal chain, to identify suspect DNA alterations. In contrast, functional-impact-based approaches start with DNA alterations and predict causally-downstream consequences thereof. Distinct features influence the causal relevance of coding versus non-coding variants, so we will address them separately.  In later aims, prioritized variants will be assayed in batches through a multi-tiered experimental strategy. The results of earlier batches will be used to re-train weights among model features for the prioritization of variants to be assessed in later batches.
C.1.B.1. Developing a compact annotation for variant analysis. The foundation of variant prioritization is developing a practical annotation for the task at hand. In particular, an important part of our variant prioritization scheme is the identification of variants recurrently mutated in prostate cancer patients. For this analysis, aggregation of variants into meaningful units, such as genes and regulatory elements, is necessary. While genes are already well-annotated, conventional non-coding regulatory element annotations are not well-designed for recurrence analysis because their large size and number limit their statistical power. Hence, we will create a tailored, compact annotation for cancer genomes that pairs genes with the core regions of their cell-type-specific non-coding elements. 
 	Specifically, we will take non-coding regulatory regions and link them to genes by constructing extended gene neighborhoods, combining genes with their promoters and enhancers. We will first identify a compact list of enhancers through an ensemble, pattern recognition-based method, integrating ChIP-seq, DNase-seq, and STARR-seq into a pipeline for enhancer candidate identification. We will further trim the conventional non-coding annotations to a minimum set of core regions with high confidence and link them to genes after larger scale integration of various ChIP-seq and RNA-seq data. Subsequent filtering of these linkages will be performed using high-resolution Hi-C experiments. We will also extract cis-acting transcription factor (TF) and RNA-binding protein (RBP) binding sites and incorporate them into these extended genes. Similar to exonic regions within genes, we will annotate a set of discrete regions that potentially affect gene expression. 
C.1.B.2. Developing Proteomic Features to Prioritize Coding Mutations.  We will score the functional importance of mutations that overlap coding regions as follows: We will use our VAT and ALoFT tools to identify mutations that may completely inactivate copies of genes. [47] For potentially impactful variants that do not fully eliminate gene function, we use an ensemble method that combines scores from many tools to score the functional impact of coding variants [67] In addition, for proteins with known structures, we will apply our STRESS [50] and Frustration [51] tools to search for allosteric hotspots and sites of localized structural frustration, respectively. We will also use our Intensification tool to provide mutation impact scores within protein repeat regions [52]. 
C.1.B.3. Developing Genomic and Epigenetic Features to Prioritize Non-coding Mutations.  A similar framework governs the functional prioritization of non-coding mutations, but some of the variables are changed compared to coding regions. Key features will include: (1) An annotation membership indicator variables for non-coding regions (e.g. enhancer and promoter indicator variables); (2) GERP score, for evolutionary conservation; (3) an ordinal score from our previously developed FunSeq2 score, which is described above and integrates many epigenetic and non-coding genomic features; and (4) a continuous score from a deep neural network that utilizes and expands the Funseq2 feature set; and (54) aAn additional term in non-coding regions for the degree of transcription factor motif-breaking or motif-gaining due to a variant.
C.1.B.4. Implementing background mutation rate estimation and recurrence analysis. Recurrently mutated genomic regions in cancer genomes come in two kinds: Those with variants under positive selection in cancer, which are of interest; versus those that are simply more exposed to the random processes of mutation generation, which are not of interest and which are many. A central challenge in recurrence analysis is to distinguish the two. This requires careful calculation of the background mutation rate at local genomic intervals. We will extend our LARVA model on mutation burden analysis by proposing a Negative binomial regression based Integrative Method for mutation Burden analysis (NIMBus). It will treat mutation rates from different individuals as random variables with an underlying a gamma distribution. Pooled mutation counts from a heterogeneous population serve as a negative binomial distribution to handle overdispersion. Furthermore, to capture the effect of covariates, NIMBus integrates extensive features in all available tissues from Roadmap Epigenomics Mapping Consortium  (REMC) and the Encyclopedia of DNA Elements (ENCODE) project. The result of this data integration is a covariate matrix that predicts local mutation rate with high precision through regression. This integrative approach will enable us to effectively distinguish just those mutation hotspots associated with disease. 
C.1.B.5. Combining all the features to develop a unified score for mutation impact. Here we will integrate all the features we have developed -- coding and non-coding functional impact and overall recurrence -- to develop a single score for mutation impact. This is equally true for coding and non-coding elements.  
	By approaching the problem of variant prioritization from opposing ends of the causal chain, recurrence analysis and functional prioritization are complementary. Thus, we integrate all of the above features into a unified score predicting their impact: 

Where   is the total impact score for a variant, r is the log p-value obtained from recurrence analysis,  and  are the coding and non-coding functional impact scores (note the functional impact is is calculated using the FunSeq2 entropy-based weighting scheme), respectively, are trained weights, and  is an indicator variable indicating whether a variant falls in coding regions. In turn, the functional impact scores expand for coding variants as  , and for non-coding variants as , with coding features , non-coding features , and with weights  and  
	At the end, we will also up-weight the impact score for variants that overlap previously defined regions of high allelic activity [56] or that sit at center of networks (i.e. hubs in either in the protein interaction or regulatory networks). This is equally true for coding and non-coding elements. 
	In this project, we will further extend training and validation data originally used in FunSeq to include variants sets corresponding to 210 prostate cancer donors as part of the Pan-cancer Analysis of Whole Genomes (PCAWG) consortium. The sheer size of the final data repository, in terms of millions of variants, will constitute a significant step towards a comprehensive coverage of the somatic variation patterns underlying cancer.
We will also incorporate the feature dependency structure when calculating the scores by removing redundant features using feature selection or by performing dimensionality reduction.Benefitting from the abundance of data used to craft our methods, we will assess the final model’s performance using the unbiased train-validation-test scheme popular in machine learning based on a set of ordinal ranking scores representing the deleteriousness of well-studied variants. Due to the ordinal nature of variant prioritization schemes, we will use cross-entropy as a primary metric of assessment. In addition, we will incorporate the feature dependency structure when calculating the scores by removing redundant features using statistical and deep learning-based feature selection techniques or by performing dimensionality reduction. Importantly, we will then compare our model with other variant prioritization methods to precisely identify the cancer-related somatic variation patterns it strongly captures.

C.1.B.6. Practical setup for prostate cancer prioritization in context of validations and updating model parameters based this validation. Let ()  represent initial feature parameters chosen at random, where m  is the number of features.  will be optimized using an iterative learning scheme by incorporating new experimental information produced in the experimental aims (below). Our strategy is to implement an iterative learning scheme consisting of three stages: 1) initial learning, 2) real-time experimental parameter optimization, and 3) final assessment.
 	In the first stage, we will select the top 100 candidate driver extended genes as defined by recurrence analysis, using the PCAWG and TCGA prostate cancer cohorts to guide experiments in Aim 2. Starting from the initial tuning of , we will update the weights according to the results of the first experimental batch. For a specific variant v, we define yv as Bernoulli distributed random variable with  indicating that   is functional. The expectation of can be predicted through a logistic regression:   ( are scaling parameters). To update  with experimental validation results , we implement Bayes’ rule: . We will use MCMC (Monte Chain Markov Carlo) sampling to search over the parameter space and find the most probable . We will predict the functional impact of all non-coding variants genome-wide,  . We will iterate this process through sets of experimental results for the molecular assays, and again for the cellular assays.
	We will make our final optimized model available as a distributable computer code from Github and the project website. We will also make our ranked mutation lists (with supporting evidence) available from the project website, as they form a general resource for prostate cancer. Finally, we will manually segregate the variants coming from the above associated with p53-Rb subnetwork for our initial focus, particularly for aim 3.


C.2 AIM 2 High-throughput in vitro quantification of molecular phenotypes of ~1500 non-coding and ~1000 coding mutations
In Aim 2, we will take variants prioritized using our models in Aim 1 and investigate their molecular activity in iSTARR-Seq and Promoter-seq assays for non-coding mutations and using our InPOINT pipeline for coding mutations. Results of these assays will enable model tuning and aid selection of candidates for assays of cellular phenotypes in Aim 3. We will clone and examine ~300 non-coding and ~200 coding mutations each year to iteratively improve our prioritization models.

C.2.A. Prior experience for high-throughput quantification of molecular endophenotypes of both non-coding and coding mutations

C.2.A.1. Performance, throughput, and cost of our Clone-seq pipeline. Clone-seq is currently the highest-throughput site-directed mutagenesis pipeline for generating thousands of targeted mutations on many genes. Clone-seq is entirely different from previously described random mutagenesis approaches[23, 24, 25, 26]: each mutant clone has a separate stock with one and only one pre-defined mutation. Every step of Clone-seq has been significantly optimized for high-throughput operations. We have also implemented customized variant calling software because existing pipelines (e.g., GATK [68]) cannot be applied due to our pooling strategy [9]. This customized variant calling software allows us to carefully examine whether other unwanted mutations have been inadvertently introduced during PCR-mutagenesis throughout the entire clone.  
The Clone-seq pipeline can easily be adapted to clone WT TREs and genes. To date, we have used the Clone-seq pipeline [9] to successfully generate 678 WT TRE clones and 4,026 mutant clones on 2,438 TREs/genes. The results confirm the scalability, accuracy, and throughput of our Clone-seq pipeline. We are confident that this approach can successfully generate all WT and mutant clones as proposed. 


C.2.A.2. We have successfully implemented our iSTARR-seq and Promoter-seq assays to quantitatively measure enhancer activities of WT TREs and their noncoding mutations. To make the STARR-seq compatible with our high-throughput cloning/mutagenesis pipeline, we modified the original STARR-seq vector by substituting the flanking homology arms with a Gateway cassette (attR1-R2) and retaining the Developmental Core Promoter (dCP). Our modified vector (called pDEST-iSTARR-dCP) behaves like the original vector in transfection assays. We generated entry clones carrying four genomic DNA fragments (HS001, 002, 005, 006) that showed enhancer activity and one (HS018) that did not as measured by STARR-seq previously [69] as controls. Additionally, we used Clone-seq to generate WT and mutant clones for 678 TREs. We cloned all WT and mutant TREs in pDEST-iSTARR-dCP by Gateway LR reaction and quantified their enhancer activity through our iSTARR-seq assay (Fig. 2a). 49 of the 346 (14.2%) TRE mutations examined show significantly lower enhancer activities measured by iSTARR-seq as compared to their corresponding WT TREs. Additionally, all five control fragments were also cloned into pGL4.23-DEST-dCP vector and their enhancer activity was also confirmed by the dual luciferase assay. Both experiments (Fig. 2bc) successfully replicated the data published in the original STARR-seq paper [69]. Thus, the Gateway-compatible iSTARR-seq vector is compatible with our high-throughput cloning/mutagenesis pipeline, and provides reliable quantification of the enhancer activity of target DNA fragments. To ensure coverage of the main classes of enhancers, we will use iSTARR-seq vectors representing the two major classes of core promoters [70]: one that is responsive to developmental enhancers (pDEST-iSTARR-dCP) and one responsive to housekeeping enhancers (pDEST-iSTARR-hkCP). Furthermore, we have adapted these two iSTARR-seq vectors to create two Promoter-seq vectors (pDEST-Prom-dEnh and pDEST-Prom-hkEnh) by replacing the promoter with the Gateway cassette. When examining known promoters within the 678 TREs, our Promoter-seq results also agree well with dual luciferase assay readouts.a.                                                                                                     b.
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Fig 2. Our iSTARR-seq results agree well with published data. (A) Our iSTARR-seq results on 678 WT and mutant TREs, including 5 elements from the previous STARR-seq study. (B) Our iSTARR-seq results on the 5 elements agree well (R2 = 0.860) with published STARR-seq results. (C) Our high-throughput dual luciferase assay results agree well (R2 = 0.998) with published luciferase results.

C.2.A.3. Using our high-throughput InPOINT pipeline (GFP assay) to examine the stability of mutant proteins. After we generated clones for 204 known disease mutations using Clone-seq [9], we examined whether the mutant proteins could be stably expressed in human cells using the GFP assay. Compared with the corresponding wild-type proteins, the expression levels of 17 of the 204 (8.3%) mutants are significantly diminished (Fig. 3a). To validate these findings, we performed western blotting for 10 random mutants that are stably expressed and 10 random mutants with significantly diminished expression levels (Fig. 3b). All western blotting results agree perfectly with our GFP readings [9]. 
C.2.A.5. Using our high-throughput InPOINT pipeline to examine the effects of disease mutations on protein interactions. We investigated whether the 204 disease mutations could affect protein-protein interactions using our InPOINT pipeline consisting of four complementary high-quality assays: Protein Complementation Assay (PCA) [71], yeast two-hybrid (Y2H), LUminescence-based Mammalian IntERactome mapping (LUMIER) [72], and 96-well-plate-based Nucleic Acid Programmable Protein Array (wNAPPA) [73]. We found that 21 of the 27 (78%) “interface residue” mutations, 57 of the 100 (57%) “interface domain” mutations, and only 22 of the 77 (29%) “away from the interface” mutations disrupt the corresponding interactions, confirming that structural information of interactions greatly improves our understanding of the impact of disease mutations [9]. Y2H has been applied by us and other groups to examine hundreds of disease mutations and has been proven to be an effective approach [7, 8, 9, 10, 74]. The novelty of our InPOINT pipeline is that it combines four orthogonal assays (PCA, Y2H, LUMIER, and wNAPPA). Combining four orthogonal assays and using only consistent results by two or more assays will ensure scientific rigor and practically eliminate false-positives in our results. 







































Fig 3. (a) GFP images of WT HPRT1 and its unstable mutant allele. (b) Western blot confirming results of our GFP assay.


C.2.B. Research Plan
C.2.B.1. High-throughput cloning of ~1500 noncoding TRE mutants and corresponding WT TREs using Clone-seq. Sequence-specific forward and reverse primers containing attB1 and attB2 sequences for WT TREs will be designed by our automated online primer design website “http://primer.yulab.org” [9], and synthesized in bulk as “Trumer Oligo” plates by Eurofins Genomics. Using human genomic DNA as template, the selected TREs will be PCR amplified in 96-well format with high-fidelity Phusion DNA polymerase to minimize introduction of unintended mutations. We will perform large-scale Gateway BP reactions to clone each PCR product into pDONR223 vector. Entry clones containing the intended TREs will be identified through our Clone-seq protocol [9]. Briefly, after E. coli transformation, four colonies per allele are picked for Illumina sequencing using QPix-HT. After identifying successful clones without any unwanted mutations through our customized variant calling pipeline, we robotically picked out these 769 WT TRE clones for downstream experiments.
Primers for site-directed mutagenesis are also designed by our automated online primer design website  [9]. The mutant clones will be generated using our Clone-seq protocol as described above [9]. The key is that PCR products are digested by DpnI (NEB R0176L) overnight to remove the WT template. After identifying successful clones with the designed mutation but without any unwanted mutations through our customized variant calling pipeline, we robotically pick out the successful mutant TRE clones for downstream experiments.
These fully sequence-verified WT and mutant entry clones will be cloned into our pDEST-iSTARR  and pDEST-Prom destination vectors through large-scale Gateway LR reactions. The resulting expression clones will be pooled, maxipreped, and subjected to iSTARR-seq and Promoter-seq analysis in RWPE-1 prostate normal cells. 
C.2.B.2. Quantitatively measuring enhancer/promoter activity of WT and mutant TREs using iSTARR-seq and Promoter-seq. The non-coding mutations and their corresponding WT entry clones generated in C.2.B.1 will be cloned into both iSTARR-seq (pDEST-iSTARR-dCP and pDEST-iSTARR-hkCP) and Promoter-seq vectors by Gateway LR reaction. In order to produce lentiviral particles carrying an iSTARR-seq or Promoter-seq library, the library plasmids will be transfected into HEK293T cells together with the envelope plasmid and the packaging plasmids. The viral particles will be collected from the culture medium of the transfected cells at 60h post transfection and then titrated with qRT-PCR targeting the viral RNA. RWPE-1 cells will be transduced with the harvested lentiviral particles at desired MOI and selected with puromycin. Towards the end of the selection process, the integration rate will be confirmed by qPCR with genomic DNA (gDNA) extracted from a small portion of the transduced cells. The cells will then be collected for gDNA and total RNA extraction. mRNA derived from iSTARR-seq vectors will first be reverse transcribed and then PCR-amplified according to previous publication [69] with minor modifications. For Promoter-seq, template-switching 5’-RACE will be used, instead of reverse-transcription. Each primer molecule will contain a unique 15 nt molecular barcode to label each cDNA molecule. Two rounds of nested PCR with low cycle numbers will be performed to amplify the TRE region in the cDNA without introducing contamination from transfected plasmid DNA or copy number bias. The cDNA library will be subjected to tagmentation to make the final sequencing library. Another sequencing library targeting gDNA-integrated TREs in the transduced cells will also be prepared. In addition, the lentiviral library will also be processed and sequenced as a control for overall library quality. All three libraries will be sequenced together using Illumina HiSeq or NextSeq.
The total number of the mRNA or DNA molecules of a given TRE (WT and all the mutants) will be the number of unique molecular barcodes associated with it. The proportion of each mutant is calculated based on the number of sequencing reads at its corresponding mutation site. The transactivity of a specific allele of a TRE (WT or mutant) will be calculated as the ratio of the number of mRNA molecules derived from the allele over the number of the TRE allele integrated into the gDNA.
C.2.B.3. High-throughput dual luciferase assays to further confirm and nominate functional non-coding mutations. The canonical luciferase reporter vector pGL4.23 (Promega) was modified into four Gateway compatible vectors, pGL4.23-DEST-dCP, pGL4.23-DEST-hkCP, pGL4.23-dEnh-DEST, and pGL4.23-hkEnh-DEST. These vectors contain a Gateway cassette upstream of a luc2 (synthetic firefly luciferase) reporter gene. All candidate non-coding mutations for Aim 3 will be further tested by the dual luciferease assays. pGL4.75 vector, which contains a CMV enhancer/promoter and a downstream hRluc (synthetic Renilla luciferase) gene, is used as transfection control. TRE-containing reporter vector and control vector will be co-transfected into RWPE-1 cells by electroporation. The activity of each of the WT and mutant TREs as indicated by the intensity of bioluminescence will be measured by Promega Dual-Glo luciferase assay system. Only mutants with consistent results between iSTARR-seq (or Promoter-seq) and dual luciferase assays will be kept for downstream analyses, ensuring data quality and scientific rigor.
C.2.B.4. High-throughput site-directed mutagenesis to generate ~1000 coding mutants through Clone-seq. Clone-seq will be carried out as described in our previous publication [9] and C.1.2.1. All WT clones are obtained from the Human ORFeome 8.1 [75], which is a fully sequence-verified Gateway-compatible ORF clone library for human genes that we have purchased and maintained for the past five years. After Illumina sequencing, correct clones without any unwanted mutations are identified using our customized variant calling software [9]. 
C.2.B.5. High-throughput InPOINT pipeline (GFP assay) to test the stability of the ~1000 mutant proteins. All WT and mutant clones are first moved into the pDEST-GFP-mCherry vector using automated Gateway LR reactions in 96-well format. A 100 ng aliquot of the expression clone is used for transfection into HEK293T cells in 96-well plates using polyethylenimine. At approximately 48 hrs post-transfection, fluorescence intensities of transfected cells are measured with a Tecan M1000 at 395/507 nm for cycle 3 GFP (Invitrogen) and 580/612 nm for mCherry, denoted as Ig and Ir, respectively. As negative controls, the GFP and mCherry fluorescence intensities corresponding to cells transfected with the empty pDEST-GFP-mCherry vector (with a plate-specific mean Igb and s.d. [image: ]) and empty pcDNA-DEST47 vector (with a plate-specific mean Irb and s.d. [image: ]) are measured. We calculate normalized quantitative stability scores for both WT and mutant:


    




All experiments will be performed in triplicate. Mutations that significantly affect protein stability will be identified by comparing the means of log(SWT) and log(Smut) scores using a t-test (the log transformed stability scores follow a normal-like distribution). We will calculate a quantitative relative stability index, , for mutations that significantly affect protein stability. To further ensure the quality of our results, we will perform an ELISA assay using anti-FLAG antibody for all unstable mutants. This is part of the LUMIER assay that we routinely apply to test the presence of the bait protein. Only mutants with consistent results between GFP and ELISA assays will be kept for downstream analyses, ensuring data quality and scientific rigor.
C.2.B.6. High-throughput InPOINT pipeline to test the effects on interactions of the ~1000 mutant proteins. Next, we will examine the impact of mutations on specific interactions: (1) PCA. Briefly, mutant ORF clones will be transferred by Gateway LR reactions into vectors encoding the two fragments of YFP (Venus variant) fused to the N-terminus of the tested proteins. Baits were fused to the F1 fragment (amino acids 1-158 of YFP) and preys to the F2 fragment (amino acids 159-239 of YFP). Plasmids encoding the two proteins are used for transfection into HEK293T cells in 96-well plates, using Lipofectamine2000 (Invitrogen). 48 hrs post-transfection cells are processed with Tecan M1000. A pair are considered interacting if the YFP fluorescence intensity is 2 fold higher over background. (2) LUMIER. ORFs are cloned into Gateway-compatible LUMIER vectors by LR reactions and minipreped. HEK293T cells were transfected in 96-well plates. After transfection, cells are processed for immunoprecipitation. LUMIER intensity ratio (LIR) values are obtained for the immunoprecipitates (LIR-IP) and calculated similarly for the total lysates (LIR-TOT). Normalized LIR (NLIR) was calculated as the ratio LIR-IP/LIR-TOT. A pair with NLIR score of imilarlare considered to be interacting. (3) Y2H. ORFs are cloned into pDEST-AD and pDEST-DB vectors by LR reactions. All DB-X and AD-Y plasmids will be transformed individually into the Y2H strains MATα Y8930 and MATa Y8800, respectively. After mating, only yeast cells containing interacting pairs of DB-X and AD-Y will grow on selective media (i.e., expression of HIS3 and ADE2 reporter genes). (4) wNAPPA. ORFs are cloned into pCITE-HA and pCITE-GST vectors by LR reactions. Both prey and bait plasmids are added to Promega TnT coupled transcription-translation mix and incubated to express proteins. The whole mix is then added to anti-GST antibody-coated 96-well plates. After binding and capture, plates are incubated with primary and secondary antibody and visualized using chemiluminescence with Tecan M1000. Wells with 3 fold higher intensity over background in either configuration are scored positives. Only disruptions confirmed by two or more assays (including Y2H) will be considered disrupted for all downstream analyses. Combining four orthogonal assays and using only consistent results by two or more assays will ensure the quality and practically eliminate false-positives in our results, ensuring scientific rigor.


C.3. AIM 3 Medium-throughput in vivo evaluation of cellular phenotypes, plus select detailed validation in prostate organoids.
In Aim 3, we will take variants prioritized based on recurrence and molecular impact and investigate their effects on cellular- and organoid-level phenotypes related to prostate cancer. 

C.3.A. Interaction between this project, Cornell Prostate Cancer SPORE Center, and Yale Cancer Systems Biology U54 Center. 
This application involves interactions between this RU01 project and two large cancer-focused centers at Cornell and Yale: 1) the U54 center at Yale for Systems analysis of phenotypic switch in control of cancer invasion; and 2) the NCI Specialized Programs of Research Excellence (SPORE) in Prostate Cancer at Cornell. 
In our work, we will take advantage of collaborative interactions with the NCI-funded U54 Cancer Systems Biology Center at Yale (CaSB@Yale), directed by Prof. Andre Levchenko (co-Investigator on this application; see his letter attached). In particular, we will use the service of its Core 2 focused on the CRISPR-based generation of cell and animal cancer models, involving knockin and knockout of pre-determined molecular targets. 
Dr. Mark Rubin (co-Investigator on this application; see his letter of support) is the PI of the SPORE in Prostate Cancer at Cornell.  Although his laboratory moved this past May to Bern, he maintains 30% effort at Weill Cornell Medicine in New York to co-lead the Cornell SPORE in prostate cancer. Over the past 10 years Rubin group have accumulated highly valuable genomic and transcriptomic data from a number of sources that may help with this project.  Dr. Rubin is one of the PIs for the SU2C/PCF Castration Resistant Prostate Cancer (CRPC) 500 study[76, 77].  His group is currently finalizing the genomic and transcriptomic data for over 500 CRPC cases with complete pathology and clinical outcomes data (including treatment).  Given a focus on TP53 and RB1 in this study, these data and the Neuroendocrine Prostate Cancer (NEPC) cohort will be highly valuable.  As recently reported in [78] advanced CRPC but particularly NEPC have TP53 and RB1 genomic alterations. This is highly relevant for the translational focus of our U01 proposal.

C.3.B. Preliminary results
C.3.B.1. Preliminary observations supporting a focus on p53-Rb subnetwork in NEPC.  In this aim, we will focus in detail on a few specific mutations related to the p53-Rb subnetwork. We have many preliminary results that show how this subnetwork mechanistically works in NEPC and we also show the importance of this particular subtype of prostate cancer (NEPC) in relation to prostate cancer in general. 
NEPC is a particularly important sub-class of prostate cancer. In particular, improved, more potent hormonal therapy for advanced Prostate Cancer (PCA) shows ever more benefit the earlier it is initiated. The most recent data from STAMPEDE and LATITUDE clinical trials demonstrated practice changing improvement in clinical survival for men with newly diagnosed metastatic PCA by adding Abiraterone, a Cyp-17 inhibitor, to standard androgen deprivation therapy[79, 80]. As a result of meaningful improvements in survival, men with metastatic and potentially locally aggressive PCA will be exposed to anti-androgen therapies earlier.  As a consequence, we can also anticipate encountering resistance earlier in the disease course.  One form of resistance identified by Rubin group results in androgen receptor indifference leading to neuroendocrine prostate cancer (NEPC)(Reviewed in [81]).  Unlike more recognized forms of resistance due to androgen receptor (AR) mutations or amplification, NEPC will no longer respond to AR targeted therapy and has a mean survival of 7 months [82]. There are some critical observations that have driven us to focus on progression to NEPC:
	1) Increased incidence following AR directed therapy. NEPC is rarely observed in hormone treatment naive PCA.  Less than 1 in 1000 cases demonstrate small cell features in the absence of hormonal or radiation therapy. However, several recent studies observe a range from 10% to 30% of NEPC following failure with AR targeted therapy[83]. 
	2) Topographic proximity. We and others have observed NEPC co-mingling geographically with conventional adenocarcinoma, similar to what has been described in lung cancer[84, 85].
	3) Genomic proximity. We demonstrated that when comparing cases of NEPC to adenocarcinoma, the genomic copy number alterations and point mutations are nearly identical save two major exceptions - TP53 and RB1 inactivating alterations are significantly more frequent in NEPC than CRPC-adeno [78]. This phenomenon is also seen in EGFR inhibitor-resistant lung cancer [86].
	4) Development of a stem cell-like phenotype. TP53/RB1 mutant model systems of PCA demonstrate that initial loss of sensitivity to AR targeted therapies is accompanied by an overexpression of neuroendocrine and stem cell markers, such as Sox2, and an increased sensitivity to epigenetic modulation by EZH2 inhibition[78, 87, 88].  
[image: ]	5) Transdifferentiation and not emergence of a rare neuroendocrine cell population. Recent lineage tracing studies have shown clear cut evidence that luminal, AR responsive prostate epithelial cells, undergo transdifferentiation in the face of TP53 and PTEN loss [88].  This is the first demonstration that epithelial cells can transform to neuroendocrine tumor cells.
Therefore, we believe it will be highly important to focus on mutations related to p53-Rb subnetwork.
C.3.A.2 Experience with CRISPR-Cas9. Previously and currently, researchers at the Center have applied in vivo somatic genome editing to generate tumor models of specific driver genes in cell lines and mouse models of different cancers (see Fig. 4 for an example of liver cancer). Cas9 was targeted to cells and animals to generate specific genetic changes that can promote oncogenesis or model other mutations [89]. Viral delivery enables targeting of almost any tissue, including prostate tissues, constrained by the packaging capacity, which limits the number of sgRNAs, HDR donors, and other elements that will fit within the same vector as Cas9. For example, lentivirus mediated delivery was used to deliver Cas9 in mammalian cells to study cancer [90, 91, 92]. Adeno-associated viral (AAV) vectors are DNA-based and not prone to recombination, making the expression of multiple U6-sgRNA cassettes feasible. CaSB@Yale generated a Cre-conditional Cas9 mouse model, which facilitates rapid and efficient modeling of single and multi-genic mutations in specific tissue and cell types of interest. In this model, Cas9 is already present and dormant within the genome of all cells, which opens up a larger capacity for delivery of sgRNAs as well as other elements. We have combined this conditional Cas9 mouse with AAV vector-mediated expression of sgRNAs in the lung, and modeled lung cancer using a combination of the Kras oncogene and two tumor suppressor genes, p53 and Lkb1 (Stk11) [93]. These enable novel viral vector based platforms to study the combinatorial contribution of mutations, defining tumor phenotypes and their evolution in vitro and in vivo. 
C.3.A.4 Assays for cell proliferation and migration. The Director of CaSB@Yale, Andre Levchenko, will also participate in the proposed work by contributing the analysis platforms allowing to separate prostate cancer populations  into sub-populations of highly migratory and highly proliferative cells. Co-existence of such sub-populations is common, stemming from what is commonly referred to as the ‘go or grow’ phenotypic switch, which can in turn be controlled by various genetic and environmental alterations. In our prior work, we have demonstrated that highly migratory and highly proliferative cells can be separated using anisotropically nanofabricated substrata (ANFS) that closely mimic the fibrous structure of ECM [94] This ANFS, in addition to mimicking putative alignment of ECM fibers [95] converts cell migration from a 2D random walk to an essentially 1D persistent and unidirectional movement along the direction of nano-fibers – similar to cell migration and alignment observed in sparse 3D ECM (Fig. 5). This similarity of migration on ANFS to 3D cell migration in vivo not only suggests that the analysis is biomimetic and more relevant than the usual Petri dish experimentation, but also provides a convenient way to contrast the migration of differentially perturbed cells against each other. In this proposal, we will develop the initial screening of prostate normal cells. We refer to this first test as the Rapid Analysis of Cell migration Enhancement (RACE). Figure 5. The steps involved in the RACE based phenotypic filtering phenotypic filtering into relatively highly proliferative and highly migratory cells

C.3.A.5. Patient-derived tumor organoids as a tool for precision cancer care. Rubin group and Cornell SPORE recently demonstrated the ability to develop cancer and benign organoids. From a cohort of 145 specimens from patients with advanced cancers including prostate, tumor organoids were successfully developed from 38.6% [96]. We define successful establishment of PDTO cultures when they contain viable cells that form spheroid-like structures and can be propagated after the initial processing for at least five passages. These specimens are characterized, stored in our living biobank and are used for functional studies. Cell viability was assessed in the first ten established cultures at passages 2-4, and in 9 out of 10 cases, > 90% of cells were viable. Tumor and benign organoids are characterized using cytology and histology as previously described [97]. As the data is now published we only note that we have been able to perform extensive studies with these organoids including CRISPR-cas9 manipulation [98] , drug screens [96], and lenti-viral SH infection. With many years of experience, we are confident that developing CRISPR-cas9 knockin mutagenesis in benign prostate organoids and performing various transcriptional and biochemical assays in these knockin organoids for this Aim should be readily accomplished. 
[image: ]
Figure 6. Partial characterization of the ‘fast’ and ‘slow’ cell sub-populations with the cell population of SK-Mel-28 melanoma cell line. 









C.3.B. Research Plan.
C.3.B.1. Medium-throughput in vivo evaluation of mutant effects on prostate cell proliferation and migration. We will introduce knockin-based perturbations of the top 120 highly scored genetic targets using the CRISPR techniques outlined above and study their effect on cell migration and proliferation using the RACE assay aimed at separation of the cell population into highly proliferative vs. highly motile cells. These two phenotypes are mutually exclusive and usually co-exist in cell populations in vitro and in vivo. As explored in detail in the U54 CaSB@Yale center, knockin mutagenesis can increase the probability of one of these phenotypes. We will thus combine the RACE assay with CRISPR-based perturbations following the protocols developed in our preliminary studies with the virally packaged, bar-coded, doxycycline-inducible short hairpin RNAs (shRNAs) collection (Fig. 6). The RWPE-1 prostate normal cells will be transfected by a pool of CRISPR constructs, as described above, selected for the targets of interest and the cells scored highly for one of the phenotypes will then be assayed for the presence of specific constructs at the end of the experiment by PCR-amplifying them using a set of unique primers. Specifically, as described in Fig. 6, the phenotypes will be scored in the mixed populations of RWPE-1 cells transduced with different CRISPR constructs and plated on topographically structured cell adhesion substrata in a small slit of a poly-(di)-methyl-syloxene (PDMS) stencil. After cell attachment, the stencil is removed, allowing the cells to migrate along the direction of nano-ridges. CRISPR-based perturbations are expected to differentially affect cell movement or proliferation, so that cells would either move or proliferate (mutually exclusive phenotypes) faster than control. Cell moving with high values of speed and persistence along the direction specified by the nano-ridges can be separated from slow but proliferative cells and both populations are enriched. Thus after 1 week of RACE, we will harvest the cells from 1/3 of the structured substratum in the area of original seeding (‘slow group’, high proliferation) and the 1/3 cells most distant from the area of original cell seeding (‘fast group’; high migration). The cells from the ‘fast’ and ‘slow’ groups will be re-seeded separately and the RACE assay will be repeated three times to enrich the ‘fast’ and ‘slow’ populations through sequential ‘racing’ periods.  Throughout the experiment, we will collect the cells to examine the kinetics of enrichment of either ‘proliferative’ or ‘migratory’ cell sub-populations. In preliminary results, we have shown that this assay selects cells not only for increased migration or proliferation, but also for other associated characteristics (differential signaling profiles, stem-ness, metabolic control, etc.) (a sample of the results in a melanoma cell line is shown in Fig. 6).
C.3.B.2 Validation of 10 coding and non-coding mutations in prostate organoids
C.3.B.2.a. Specimen procurement and tissue processing. Patient-derived fresh tissue samples will be collected with written informed patient consent in accordance with the Declaration of Helsinki and with the approval of the Ethics Board at the University of Bern and the Inselspital (Bern Hospital Group). Fresh tissue biopsies and resection specimens are taken directly in the procedure rooms. Fresh tissue biopsies will be transported to the laboratory to establish primary tumor organoid cultures. Tissue samples will be washed a minimum of three times with transport media and placed in a sterile 3 cm petri dish (Falcon) for either total mechanical dissociation or dissection into smaller pieces (∼2 mm diameter) prior to enzymatic digestion. Enzymatic digestion was done with 2/3rd of 250 U/mL collagenase IV (Life Technologies) in combination with 1/3rd of 0.05% Trypsin-EDTA (Invitrogen) in a volume of at least 20 times the tissue volume. The cells will be resuspended in a small volume of tissue-type specific primary culture media with a 1:2 volume of growth factor reduced Matrigel (Corning). 
C.3.B.2.b. Functional consequences of CRISPR/Cas-9 knockin mutations in organoids. We will employ CRISPR-cas9 gene editing approaches as described above to modify benign luminal prostate organoids.  Analysis with regards to downstream effects will be compared to scrambled guide RNA treated cell lines. The mutant and WT cell lines will be monitored for (a) perturbed expression of genes downstream of the introduced non-coding mutations using qPCR, (b) perturbed stability and interactions for proteins into which coding mutations are introduced, (b) phenotypic changes by confocal microscopy and actin staining to determine effects of mutation on cytoskeletal reorganization, (c) influence on proliferation by MTT and CellTiter-Glo® Luminescent Cell Viability Assay (Promega), (d) influence on invasive and migratory potential using, matrigel coated invasion and boyden chambers in 24 well format, (e) senescence by β-gal staining and (f) apoptosis by tunnel assay.
C.3.B.2.c. Functional monitoring for stem cell-like phenotype due to loss of TP53/RB1. The loss of TP53 and RB1 results in a stem cell-like phenotype. TP53/RB1 mutant model systems of prostate cancer demonstrate that initial loss leads to sensitivity to AR targeted therapies and is accompanied by an overexpression of neuroendocrine (e.g., NSE, synaptophysin, chromogranin) and stem cell markers (e.g., Sox2) and an increased sensitivity to epigenetic modulation by EZH2 inhibition [78, 87, 88].  We have obtained the p53/Rb1 inducible knock-down model with shRNA DOX inducible lentiviral construct, which mimics neuroendocrine transdifferentiation of prostate cancer [87] and can demonstrate the model reliably inhibits these two genes. In a preliminary study, we demonstrate further that we can add genes – in this example SMARCA4 and SMACCA2 – to explore for additional effects. Here, we propose developing an RNAseq readout model that can be used in a network-level analysis as a surrogate of TP53/RB1 loss. We test the effects out our top coding and non-coding mutation candidates in this model. We can also test for loss of sensitivity to AR modulation or increased sensitivity to EZH2i in our model systems. This will provide us with the ability to understand network level alterations.
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Fig.4 Demonstration of in vivo genome editing for cancer modeling. (A) Schematics of a conditional Cas9 knockin mice;
(B) Schematics of Cas9 activation in tissues of interest upon delivery of Cre; (C) Example of single gene targeting by CRISPR,
hydrodynamic delivery of Cas9 and sgRNA plasmid targeting Pten in mouse liver leads to clonal Pten null cells; (D) liver cancer
model induced by hydrodynamic delivery of Cas9 and two sgRNAs targeting Pten and p53; (E) lung adenocarcinoma model
using gene editing with conditional Cas9 knockin mice, showing istology of AAV-KPL generated lung cancer (grade lll).
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