
GRAM: A generalized model to predict the cell-specific experimental deleterious effect of non-
coding variants  

Abstract: [[SKL: need work]] 
Identification and prioritization of disease associated variants become an increasing demand as 
next-generation sequencing data rapidly grows and accumulated.  Luciferase assay and 
multiplex assay are widely used to verify the deleterious effect of a putative phenotypic 
associated variant. But the biological mechanism of experimental validation is not clear. To 
investigate the possible mechanism of the experimental assays, we proposed GRAM, a 
generailzed model using machine-learning algorithm to study the biological significance of 
experimental deleterious effect.  We found the TF binding features are the most predictive 
features, and both ChIP-Seq and SELEX derived features has high contributions to the model. 
Just using in vitro SELEX features can achieve similar prediction power as using all the TF 
binding features. In our multi-phase classification model, we incorporate a novel set of cell-
specific effect features, with TF binding features,  the AUROC reachess 0.728 and outperforms 
all the state-of-the-art tools. Finally, we a generalized model and assess it using luciferase 
assay in a different cell line, resulting in high predictive performance. Our study has shed a 
deeper insights into the underlying biological implications of genetic variants on the middle-layer 
assay type.  
 

Introduction  
 
Genomic sequencing data and genetics-related data 
 
Biological datasets are being generated from numerous experiments in unprecedented amounts. 
Next generation sequencing (NGS) has revolutionized the study of genetic diseases at the 
population level and boosted the field of genomic medicine, a core domain that study diseases 
at a molecular level. With current advancements in NGS that enables the entire human genome 
be sequenced in one day \cite{PMCID: PMC3841808, costseq:PMC3245608}, the emerging 
field of personalized medicine seem to be on the horizon. 
 
Cancer Analysis can identify driver based recurrence 
 
Studying the genetic components of disease focuses on the genetic variation across the 
population of interest. As a genetic disease and a leading cause of fatalities worldwide \cite{NCI: 
https://www.cancer.gov/about-cancer/understanding/statistics}, cancer has become a major 
disease to be studied utilizing the next-generation sequencing techniques. Consortia like 
PCAWG \cite{pcawg} and TCGA \cite{tcga} have orchestrated the collection of thousands of 
genomic datasets across cancer types and demographics, and variants with causal relationship 
to different cancers are being continuously identified. However, power analysis indicates not all 
cohort study has accumulated sufficient amount of data, thus studying the phenotype 
consequence of genetic variants remains a major. Generally, , identification of disease driver 



variants or elements is biased by various influential factors of the study, such as number of 
available samples, genomic region of focus, and the availability of multi-omics study \cite{larva}.  
 
 
Model and prioritization. Funseq2, GWAWA, Deepsea, CADD, LINSIGHT & Problem 
 
As NGS rapidly become primary technique for identifying and characterizing genetic variants 
associated with phenotype consequences, there is an increasing need for computational 
methods to effectively predict the deleterious effect of variants. However, variant effect 
prediction and prioritization is challenging due to the high complexity of the genome, molecular 
process and cellular interactions, and also limitations of available technologies. A myriad of 
variants occur in every human genome, and noncoding regions host the majority of them 
\cite{Hindorff et al., 2009; Frazer et al., 2009 from GWAVA}.  Computationally, a host of 
approaches have been developed to address the problem of variant prioritization from different 
perspectives. We study the performance of five major models that target noncoding variants, 
namely GWAVA \cite{gwava}, DeapSEA \cite{deepsea}, CADD \cite{cadd}, 
Funseq2\cite{funseq2}, and LINSIGHT \cite{linsight}. Most of these models combine a diverse 
set of genomic annotations to perform prioritization. While LINSIGHT attempts to identify the 
effects of noncoding variants on evolutionary fitness, GWAVA aims to prioritize causal disease 
variants and distinguish them from benign ones. CADD and Funseq2 combine a diverse set of 
annotations to prioritize noncoding variants in the human genome. DeepSEA, on the other hand, 
makes de novo predictions on noncoding variant effects on numerous molecular phenotypes 
mainly related to chromatin structure and accessibility. These computational methods have 
made many efforts to prioritize noncoding variants and some of them have already been applied 
to every position on the genome, However, the experimental validations are still required to 
further verify the prediction.  
 
Experimental methods, such as luciferase assay and  GFP assay, work as a middle-layer assay 
and a proxy to bridge the genotype alteration with phenotype consequence. Luciferase assay is 
originally used to measure the regulatory effects of noncoding elements\cite{here}. By 
comparing the difference of the assay readout of the elements with and without the mutation, we 
can estimate the experimental deleterious effect of non-coding variants. Using high throughput 
methods, i.e. microarray and NGS, multiplexed assays (MPRA) \cite{27701403} has extended 
the scales to genome wide levels [starseq and MPRA paper]. Measuring the effects of variants 
from the molecular level can be used to verify predicted deleterious effect of variants, but these 
assays usually are mediated by plasmid or virus, and thus cannot reflect a actual in vivo 
environment where the variance located. More sophisticated technique, like organoid level or in 
situ CRISPR genome editing, may provide more promising and reliable evaluation, but their 
applications are still limited and out of our scope. 
 
Motivation[[ explain the experiment results ]] 
 
These middle-layer assays mentioned above represent a crucial step closer to measuring 
variant effects with relative low cost, precision, high throughput experimental nature, However, 



underlining biological significance of these experimental results is not clear. In this paper, we 
approach data mining methods from a new perspective to further bridge the gap between the 
genotype and phenotype, and try to predict the experimental deleterious effect of variants by the 
middle layer assays, which is not limited to MPRA and Luciferase. We have built a regression 
model to maximally use all of information available from the MPRA and identified highly 
associated transcription factors using a comprehensive feature selection framework; and then 
we developed a multi-stage classifier, which considers a novel set of cell-specific effect features 
and transcription factor binding, and has achieved the highest performance compared with the 
state-of-the-art models. Finally, we build a generalized model and assess it using luciferase 
assay in a different cell line (multiple cell lines if NCVARG data still can be used), resulting 
in high predictive performance. Our study has shed a deeper insights into the underlying 
biological implications of genetic variants on the middle-layer assay type.  
 

Results 
 
Flowchart  
To study the non-coding variants effect in vivo is difficult because of two major reasons: firstly, it 
is costly and time consuming to introduce a point mutation to the genome, though CRISPR 
technology can potentially solve this problem; secondly, it is impossible to evaluate the effect 
because there is no direct metrics for indicating the deleterious effect of a mutation on the 
genome. So plasmid-based or virus–based experimental assays can compromise this problem 
by a non-integration or randomly integration of genome to detect expession level of reporter 
gene. In this study, as described in Fig1a, we firstly collected dataset from paper \cite{Ryan 
paper}, which is the largest dataset so far for estimation of expression modulation differences 
between wild-type and mutants in GM12878. The predictor features are extracted according to 
Ryan’s cell paper along with the knowledge from the other variants prioritization studies, which 
include evolutionary feature, cell-specific ChIP-Seq and TF binding feature for the SNV, CAGE 
features and motif binding features. The motif binding features are generated using PWM-based 
binding affinity change or Deepbind bind scores. We firstly trained a regression mode with 10-
fold cross-validation and found the log-skew (fold change of mutation over the fold change of 
wild-type) can be well predicted using the above features. Because transcription factor bindings 
are thought to be the most impacting factor that affect the regulatory activity of element and the 
fact that the chromatin environment context on a plasmid will be lost, we further investigate the 
importance of TF binding scores from 515 Deepbind models. Then we consider generalizing our 
model to other assay platform, like Luciferase assay. In order to make log skew values from 
MPRA comparable to florescence readouts of luciferase assay, we discretized the logskew 
value to expression modulating variants (emVAR) and non-expression modulating variants 
(non-emVAR) as described in cell paper and developed a multiple-phases classification model. 
In the end, luciferase experiments are then used to evaluate the model. 
 
 



 
 
Figure 1 (a) flowchart of our study. (b) Conservation scores(c) | MOTIFBR - motif-based - P-
value (bottom- sorted up increasing order) (d) motif score changes 
 
Exploration of conservation and transcription factor binding features 
 
Evolutionary conservation is associated with deleterious fitness consequence and widely used 
in non-coding variant’s,prioritization algorithms, such as: phyloP and Phastcons in LINSIGHT 
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and CADD, GERP in Funseq2. However, because the difference in assay-based experiment is 
that chromatin context was diminished or randomized (Lenti-virus integration), we then 
questioned whether the experimental deleterious effect of these assays are still associated with 
the evolutionary conservation features. We performed comparative analyses for these three 
conservation features across different datasets. (Fig 1b), PhastCons and PhyloP pattern of 
emVar and non-emVar are less conserved than HGMD variants, and similar to non-HGMD 
variants, which was thought to be benign variant. GERP score show similar pattern but more 
centered in emVAR and nonEmVar compared to other datasets, with a slightly larger values for 
emVAR.[[SKL: maybe need re-draw GERP one, for the y-scales are different]]. Since no 
different patterns found between emVar and non-emVAR, we further found the correlation 
between logskew and conservation scores is low and the explained variance very close to 0 for 
all three features, which indicate these conservation scores standalone have no or very minor 
contributions to experimental deleterious effect.   
[[SKL: later, we will only consider GERP, here need mention why we only choose GERP later]] 
 
Transcription factor binding can link the deleterious effect of noncoding variants to a cascade 
regulatory network, which is thought to be an important factor for regulatory effect (cadd, funseq, 
deepsea and deepbind). In Ryan’s paper, they found the log skew positively associate with TF 
binding scores. To thoroughly look into the effect of TF binding, we tested all xxx TF motif break 
events or peaks overlap with the SNVs in the dataset. Two set variants: emVAR and non-
emVAR, were annotated and analyzed by Funseq2 \cite{funseq2}. The enrichment of 
transcription factors’ motifs in both sets, with ones with lowest p-values according to the 
hypergeometric distribution test are shown in a bottom-up increasing order in Figures 1c, 
respectively. emVAR set have more TF binding events compared with non-emVAR set. The top 
highly enriched TF in emVAR are: xxxxx, . Besides the TF binding enrichment, we also further 
look at the motif break scores for these TFs, especially top enriched TFs. The largest differential 
scores correspond to AP1 and EP300 motifs. In addition, for a smaller subset of motifs with 
lowest p-values, the distribution of difference between alternative and reference genotypes in 
EmVar is larger than that in the Non-emVar dataset for almost all motifs (Figure 1d), with the 
largest difference observed for AP1 and smallest for SMARC. According to the comparision, the 
emVAR set not only tend to have more TF binding events, but also have larger binding 
alteration compared with non-emVAR set. 
 
To learn the underlying patterns of variant modulated expression, we trained a host of models 
using a combination of epigenetic and evolutionary features. We formulate the problem as two 
predictive tasks: (1) a regression to predict the log-skew difference in expression modulation 
fold change between wild type and variant sequences, and (2) a generalized model which 
classifies the variant effect as two experimental deleterious class: expression modulating 
(emVar, label 1) or non-modulating (nonEmVar, label 0).  
 
Directly predict the expression modulating changes-logSkew 
 
In Ryan’s paper, they found histone mark and CAGE highly enriched in emVAR, which indicate 
these feature are potentially useful to predict the expression modulating effect. Besides, we also 



add evolutionary feature and motif binding changes in our regression models We carefully 
consider tissue specificity differences in 1678 training samples from GM12878 cell line by 
removing variants without overlap with any ChIP-seq peaks and incorporating features related 
to the CAGE, TFs, histone marks, and DNase I hypersensitivity sites corresponding to each 
tissue under study. A schematic representation of the regression task is shown in Fig 2a.  
 



 
 
Fig2. Regression model to predict logSkew. (a): diagram of feautures in regression model (b) 
Lasso regression with 10-fold cross-valiation (c) feature selection for Deepbind motif scores, 
identify cell-line specific feature from top ranking list. (d) comparison the performance of cell-line 
specific ChIP-Seq TF binding scores with SELEX TF binding scores. (e):Compare with the the-



state-of-the art, we use their direct output as features, then train 10-fold cross-validation model 
using svr and random forest to compare with our model.  
 
 
We firstly learned Lasso regression model with 10-fold cross-validation. The fine-tuning of ƛ, the 
penalty parameter in the cost function of this model, determined according to the mean-squared 
error (MSE) values is shown in Fig 2b, with a the best performance log(ƛ) ≅ -5.The R-square for 
prediction is 0.39 and 0.29 with and without considering histone mark, TF ChIP-Seq and CAGE 
peaks respectively. However, the most important features according to Lasso regression are TF 
binding features, why GERP scores just show very minor contributions. But it is still not clear 
how the ChIP-Seq and CAGE peaks contribute on the model, since there indeed no epigenomic 
context on the plasmid. The only possible explanation may be these features can retein some 
cell-specific information, e.g. expression and regulations \cite{paper to predict expression of 
gene by MBG lab}. 
[[SKL: why we just consider TF feature?, from biological significant, data availability and feature 
selection, add group comparison]]  
 
Since TF-based binding features are top-ranked and more  biologically-explainable, we then 
prioritized these features across models with different feature selection methods, namely: Lasso, 
ridge, and linear regression methods, stability selection (with five ƛstability values), random forest 
feature importance prioritization, mutual information, and Pearson correlation with the target 
variable. The 20 most important features (out of 515) w.r.t. mean importance across all methods 
are shown in decreasing order in Fig 2c. Expectedly, applying various methods on data with 
multiple dimensions leads to relatively varied results w.r.t. Importance to each feature across 
the method spectrum. However, two main conclusions can be drawn from these results. First, 
both ChIP-Seq and SELEX deepbind features show higher importance, with the top two being 
GM12878 ChIP-Seq features, and thus cell line specific. Second, almost all top features are 
assocated with TF-binding, what emphasizes the significance of TF binding features in studying 
variant expression modulation. The top two features are SP1 And BCL3 (both from cell line 
GM12878) , followed by a number of SELEX features starting with ETV1 and ETP63.  
[[SKL: how to explain these features effect? Network degree or regulatory effect, or may also 
some biases]]  
 
After considering feature importance values as per different criteria, we assess the accuracy of 
each of SVR (support vector repressor), Lasso, and Random forest regression models. 
Interestingly, the incorporation of Chip-Seq-based DeepBind features, which are cell-specific, 
does not boost the accuracy significantly for all three models. MSE values of both models, with 
and without Chip-Seq-based features, are shown in Fig 2d. Results suggest that we can reliably 
deploy the model trained on cell-line-independent SELEX features to predict logSkew of 
modulation value on samples from cell lines different from GM12878 used in training. Deepbind 
TF Chip-Seq model are cell line-specific, and adding them to the model shows no dramatic 
improvement. Thus, we can rely on the model and use it in task involving cell line independent 



features only to build a generalized model since not all the cell lines have TF ChIP-Seq 
experiment that can be used to infer ChIP Deepbind binding model. 
 
We then compare a Support Vector Regressor and Random Forest performance when trained 
on all DeepBind features, DeepBind SELEX features, and the feature values generated by each 
of CADD, Funseq2, DeepSEA, GWAVA, LINSIGHT, Eigen decomposition, PCA, and 
Eigen.PC.phr. As shown in Fig 2e, our model with DeepBind features lead to the best trained 
model with the lowest mean squared error for both models. In confirmation of the previous 
findings, the removal of ChIP-Seq Deepbind features does not cause a significant deterioration 
in models’ predictive quality yet simplifies training. As for other methods, results show that 
DeepSEA features result the third best set of models (SVR and RF). For Deepsea’s prediction 
of deleterious effect according the label of emVar and non-emVAR, The AUC is 0.5, which 
indicate either the experimental deleterious effect is not equivalent with phenotypic 
consequence or generality limitation of the model.  
 
Build a generalized model by multi-phase learning 
 
Our regression model has shown promising performance. However, instead of estimating the 
log skew value based on reads count as in MPRA, other different types of assay, such as  
Luciferease assay, GFP assay, and Lenti-virus based platforms, may use fluorescence readouts 
and different statistics methods or cutoff to decide the effects of the variants. Thus although 
these different platforms may have consistent result \cite{xxx}, translation of MPRA between the 
outputs of these assays would be difficult. In order to build a generalized model, we need tackle 
two challenges: firstly, making a unified target that can be used for comparison cross these 
different assay types, and a classification model will be a good choice since different assay 
platform use different statistics to distinguish the experimental deleterious variants; secondly, 
considering the cell-specific information that are more easily obtained compared with ChIP-Seq 
experiments which is not widely tested in all the cell lines. We will use gene expression data of 
transcription factor to represent cell-specific context. As a result, we developed a three-phase 
model to predict SNP effects. 
 
For the Phase one, we will predict whether an element has enhancer-like regulatory activity. An 
element with or without mutation that inserted into plasmid are tested as enhancer-like element 
if the fold change between the element with the control is large than a statistically significant 
cutoff. For example, for MPRA study, statistical test based on DESeq2 will indicate which it is 
significance; while for Luciferase assay, testing element that has the fold change with control 
(empty plasmid or eGFP) is greater than 1.5 or 2 will be thought as enhancer-like. Using the 
Deepbind TF binding feature as predictor, whether is a enhancer-like element as target, a 
randomForest classifier was trained to predict enhance-likeness. The 10-fold cross validation 
demonstrate an exemplary performance with AUROC =0.938 and AUPRC = 0.924. The log 
odds based on the probabilities are highly correlated with actual logskew (with Pearson 
cor=0.5581, figure not shown)..  
  



For phase two, we want to consider the cell specific effect in the study. The effect can reflect 
two types of biological meaning: cell type specificity for the same loci between different cell lines 
and tissues, which can be naturally reflected by gene expression; and loci specifity between 
different loci in the same  cell line or tissue which is  denoted by TF binding preference and TF’s 
expression. We found the variance or standard devitation of log odds (Vodds) to be a suitable 
indicator. By comparing the Vodds from three cell lines: GM12878, GM19239 and HepG2, we 
found two GM cell lines are closer with each other than with HepG2 (fig 3d), which indicate the 
cell-type specificity of Vodds. Comparing the emVAR with non-emVAR variants, the higher 
variance group tends to have more non-emVar. (Chi-square test p-value: 0.0002021), which 
indicates the emVAR class tends to have lower variances. We use TF binding score and 
expression ranking matrix to predict high and low Vodds classes defined by top and bottom 
quartile value (fig3e). TF binding score can predict the high and low classes with high AUC 0.80, 
and expression ranking have a AUC (0.65) is higher than a random effect (fig 3g-h).  
 
The final phase is to predict whether the variants has significant expression modulating effect. 
The output from phase one and two are fed into a Lasso model, the emVar and non-emVar 
labels are used as target. The AUROC of 10-fold cross-validation for the optimal model is 0.728 
and AUPRC is 0.505, which higher than the state-of-the-art for the study using the same dataset 
(AUROC: 0.684, AUPRC: 0.478)\cite{David Gifford lab paper}. For a generalized model, we 
redo phase one and two on the same dataset by excluding Deepbind features that from ChIP-
Seq model, which is not available for many other cell type or tissues, and keep all the other 
features as the optimal model, we get the model with AUROC = 0.674 and AUPRC = 0.452.  
 
 



 
 
Fig3 



 

 
Fig4 Performance of classification model. (A,B ROC and PRC for model including tissue-
specific ChIP-Seq Deepbind scores, C, D ROC and PRC for generalized model) 
 
 
 
The generalized model is trained on Gm12878 and MPRA dataset. To evaluate the 
performance of the model on the other cell lines using Luciferase assay. We did luciferase 
assay on two different cell lines: MCF7 and K562(NCVARG data quality is pool, may not used in 
the manuscript). We select 8 potential regulatory elements from MCF7 cell line, each one with a 
mutation as decribed in our study \cite[ENCODEC]. We predict the enhancer-like regulatory 
activity for both wild-type and mutant alleles, and expression modulating deleterious differences 
between wide-type and mutant. For enhancer-like activity, the predicted probability to be an 
active regulator is positive correlated with luciferase assay fold change. The results are perfectly 
predict (AUROC=1) for different luciferase fold change cutoffs from 1.2 – 2 that is used to define 
a active enhancer (fig5a). For the prediction of deleterious effect, the significant differences 



between mutant and wild-type is defined by using absolute log2(fold change) cutoff. The 
predicted probability also showed positive correlation with absolute log2 fold change. The 
AUROC value range from 0.7 to 0.9 given the absolute log2 cutoff from 0.5 to 1.5, which 
corresponding the fold change cut off from [1.414, 4] or [-4, -1.414]. This indicates our model 
perform very well on the testing luciferase assay on a different cell line.  
 
[[NCVARG results will hold to resolve after discussion with Sandy and Jin, may not be 
useful]] 
 
 

 
Fig5 (a) enhancer-likeness prediction. x-axis: fold change from experiment, the vertical dot lines 
represent the cut off (1.5, or 2) to determine positive (enhancer) and negative, the horizontal dot 
line is predicted probability cutoff (0.5). (b): predicted probability for emVar and non-emVAR 
versus absolute log2 odds from luciferase assay. (c): the AUROC value versus the different 
absolute log2 odds cutoff [0.5, 2.0] 
 
 

Discussion [[need work]] 
 
There is an increasing number of computation methods that can prioritize non-coding variants, 
as well as high-throughput whole-genome sequencing data that become the primary technique 
for identifying and characterizing disease associated variants. Experimental-based methods can 
bridge the gap between genetics variants and phenotypic prediction and verify the experimental 
deleterious effect, which works as a middle-layer type between genotype and phenotype. In this 
paper, we performed a thorough analysis of deleterious effect modeling on this middle-layer 
assay type, trained both regression and classification models using MPRA data from Gm12878 
cell lines. By taking advantage of non-cell-specific SELEX TF binding feature, and easily 
obtained cell-specific TF expression data, we built a generalized model that can be potentialy 
applied to any cell lines and tissues, and predict the significant expression modulation changes 
for all types of experiment assay. Expeirmental validation using luciferase assay on MCF7 cell 
lines to further verified the generality and robustness of the model.  



[[SKL: GERP score and features selection, why use the TF features, ]] 
[[SKL: classification and expression tissue-specific feature]] 
 
In regression model, we tested features that maybe associated with the experimental 
deleterious effect. In spite of the biological insight evolutionary features provide, Lasso 
regression indicates that they do not rank high in significance when predicting the output of 
middle layer assays.  The Histone Mark and CAGE features are chosen because of enrichment 
analysis between emVAR and non-emVAR, however, how these features works still unknown 
because no-chromatin context will be retained once the elements are inserted into a plasmid. 
The dataset of Histone Mark and CAGE is not always available for other cell lines, which will 
imitate the application of model. While the transcription factor binding is more biological relevant, 
and the availability of in vitro SELEX model can help to expand the model to other cell type and 
tissues. Cell specific ChIP-Seq-based TF binding features might help improve predictions but 
only to a limited extent, our models show that generalizability can be obtained using non-cell-
specific SELEX TF binding features without a significant reduction in predictive performance.  
 
In the cell specific effect prediction, TF binding are still the most important factor, but re-ordered 
TF expression matrix also associate with cell specific effect. however, features from a re-
ordered TF expression matrix can also be problematic for some worse cases. The idea to re-
order TF expression according to its binding strength or rank in its binding preference is inspired 
by the study of TF binding waiting time\cite{}. The waiting time of TF binding is thought to be 
related to TF binding free energy, which is further related to the binding scores. In our study, we 
just simply use the quantile of binding preference in each TF’s binding distribution to re-order 
the expression level and make the expression vector represent the binding order of TF. 
However, our results indeed showed that the re-ordered expression matrix have association 
with the cell-specificity effect.  
 
Though our model achieve so far the best performance, we recognize that dataset selection 
may introduce systematic bias because the SNVs we used in our model are only very small 
fraction of all non-coding variants but the regulatory effect of SNVs are very diverse,  which will 
result in the overfiting of our model. Even for our experimental validation, it only includes 8 
elements (suppose we will not use NCVARG data) which is far from enough to make strong 
conclusion of our model’s robustness and generality, but at least from these very few pilot tests, 
our model shows an acceptance and even better performance. We will release our code 
publically, hope the community can help us improve and refine our model.  
 
We aim to better understand the underlying patterns of variant modulation expression and 
considered cell specificity issues closely, having additional dataset generated from multiple cell 
line experiments would be quite helpful to derive more comprehensive conclusions. We will 
further expand this analysis contingent on the availability of data. In addition, continuous work 
on re-defining expression modulation remains an open question with large room for 
investigation 
 
 



Methods [[SKL: need more work]] 
 
Dataset 
 
The data was downloaded from Ryan cell paper. From about 79K tested elements, we only 
keep xxx variants that have  at least either wild type or mutant elements show regulatory activity. 
We only keep the SNV with its logskew value and the logskew with maximum absolute value will 
be used if a SNV has been tested in two insertion directions in plasmid. Finally, we have 3222 
SNVs tested in GM cell line in the our dataset. Each SNVs region is extended to both direction 
by 74bp, in total in 149bp . 
 
Feature extraction: 
 
GERP feature was extracted using Funseq2 annotation pipeline, which search the region of 
element over the whole genome GERP score file and get average score. 
 
The Histone modification, CAGE and ChIP-Seq peaks were overlapped to SNV element regions. 
It will be set as 1 if overlap with any peaks or set as 0. The motif break and motif gain score was 
calculated using Funseq2. We also calculated the motif score using Deepbind 
\cite{Alipanahi2015} with both the SELEX and ChIP-Seq motif model. The SELEX motif model 
are based on in vitro binding assay: systematic evolution of ligands by exponential 
enrichment, but ChIP-Seq models are inferred using sequence from the transcription factor 
binding site from different cell lines. There are total 515 motif models  were calculated (table s1: 
tbls1.deepbind.list.txt) . 
 
Regression 
 
the log skew of the SNV are used as target (y) and the GERP, histone modification ChIP-Seq 
feature group (11), transcription factor ChIP-seq feature group(16), CAGE feature group(5) and 
motif feature, a linear regression model was trained, the L1-norm was used as regularization 
term to avoid overfitting. The 10-fold cross-validation was used to select suitable scale factor 
(lambda) for L1-norm.  

 
we also compare SVR and random Forest regressor on the same dataset. 
 
To compare the importance of features, we compared different metrics, which including stability 
selection(\cite{Meinshausen2010}), LASSO 10-fold cross-validation, pearson correlation, linear 
regression, randomForest regression,  feature elimination, Ridge, normalized mutual information. 
The features importance for each selection methods are scaled to [0, 1] and take the mean of all 
the selection methods to represent the overall ranking. 
 



The logskew shows large kurtosis than expected normal distribution,  the model was biased by 
the large amount centered data, the extreme logskew value will not be learned. we then applied 
adaboost with 10-fold cross-validation to enable the extreme-value sensitive classification.  
Meanwhile the adaboost model with in vitro motif (SELEX) feature and chip-seq motif binding 
feature are compared. 
 
We compare our models’ MSE with CADD , Eigen, LINSIGHT, Funseq2, GAWVA, DeepSea. 
The GM12878 specific model and generalized non-cell specific model was tested using both 
support vector regression and random forest regression, which consider all deepbind feature 
and SELEX-based features respectively. For the other variants prioritization tools, we take the 
output of these methods, and then use the same SVR and RandomForest to train and predict 
logskew value.   
 
 
Classification: 
 
We first define the “emVar” as positive and “non-emVar” as negative classes following cell 
paper standard.  There has 3222 data records, including  xxx positive and xxx negative dataset.  
 
We build a three phase model. Firstly, we will predict the element regulatory (enhancer) activity 
for wild type and mutant respectively and then predict cell specific  effect model. The features  
include deepbind TF binding score from above and cell specific TF expression rank matrix.  
 
The regulatory activity class are defined based on the fold change of either wild-type or mutant  
readout compared with the control. The element with at least 2 fold changes will be defined as 
positive regulator, while the elements with at most xxx fold change is the negative set. 
 
The cell specific effect model is approximated by the standard deviation of log(odds) given 2x2 
categorical table (n1,n2,n3,n4 for the average reads count) for the association between the SNV 
type (“wild type”, and “mutant”) and assay type(“experimental” and “control”).  The standard 
deviation of log(odds) is calculated by sqrt(1/n1 + 1/n2 +1/n3 + 1/n4).  The Transcription factor 
binding and its expression level is biologically associated with the effect. We define the two 
classes using the top and bottom quartile standard deviation. 
 
The quantile of distribution for each deepbind model was calculated based on the TF scores of 
3222 SNVs. The order of TF expression is defined by the order of TF score’s quantile in each 
model, then the expression rank matrix was generated by this new order. 
 
Given 258 Deepbind SELEX model score S for 3222 SNV, Sm,n is the score for nth model of m-
th SNV. Then we generate a ranking matrix R using column-based rank, R’m,n denote the rank 
for nth model of m-th SNV in the nth model score of all 3222 SNV, For TF with multiple binding 
models, we take top-rank for each TF to generate a TF-based mxn’ R’  matrix, where n’ is the 
number of unique TF in SELEX model.   
 



For each SNV, the R’m: {1,.., n’} (n’ is the number of unique TFs) is then used to generate a 
new ranked TF vector TR{1_r,…, n’_r} , which is ordered by the R’m. TFexpression value E 
{1,…,n’}   is re-ordered according to new TF E’m{1,.., n’}. This E’ vector indicate the relationship 
between expression level and binding preference on each SNV.  
 
The predict probability to be active element from the first step is then used to calculate: 
log2(P_mut/(1-P_mut) /(P_ref/(1-P_ref))). 
 
The last step is to predict whether there is significant change of regulatory activity between  
wild-type and mutant element using predicted prob odds and cell-specific effect by.  
 
 
Experiment validation [[SKL: from Jin Liang,but may need change to ENCODEC one if no 
NCVARG experiment can be used ]] 
 
We introduced mutations into cloned non-coding elements by site-directed mutagenesis, 
following published procedures (Wei et al., 2014) in general. Briefly, a pair of mutagenesis 
primers was designed for each mutation with a webtool, PrimerDIY (primer.yulab.org). We set 
up mutagenesis PCR reactions with the entry clone plasmids carrying wild-type non-coding 
elements and their corresponding mutagenesis primer pairs. The PCR products were then 
digested with DpnI (New England BioLabs) and transformed into TOP10 chemically competent 
E. coli (Invitrogen) by heatshock. The transformed bacteria were recovered in SOC medium for 
1h at 37°C, spread on LB agar plates supplemented with spectinomycin, and incubated at 37°C 
overnight. We randomly picked colonies yielded from the transformation and confirmed the 
success of mutagenesis by Sanger sequencing. 
 
 
 
 
References: 
 
 
 
 
 
#############################the end ####################################### 
[[SKL: to delete later]] 
 
We then formulate the study of modulated expression effect of variants using classification tasks. 
In the first task, whose results are shown in Fig3a, we extract two main features: predicted 
regulatory activity by a Random Forest classification model using DeepBind TF scores, and cell 
specific bias, calculated using a Lasso regressor trained on TF expression data of 
lymphoblastoid GM12878 cell line obtained from ENCODE \cite{encode}. A more detailed 
description of both matrices is shown in Fig3b. For each variant position, the TF score of the 



wild type at this specific position is calculated. Then, the second matrix is generated with the TF 
expression values from ENCODE according to the order of wild type score rank. Thus, the order 
of TFs in the second matrix differs for each variant according to log odd values, and the 
color/name of each TF is shown in each row corresponding to the variant.  
 
Once both features are extracted, they’re used by the larger Lasso classification model to 
predict the variant’s regulatory activity on a luciferase assay (1 for active, 0 for inactive) with 
respect to the wild type. Results are assessed w.r.t. to the same emVar and nonEmVar dataset 
used in the previous tasks described in this paper. 
 
 
 
For the second classification task, we train a model to predict regulatory activity based on the 
fold change (fc) in luciferase expression. Unlike in the previous task that compares expression 
levels of plasmids with and without the variant, we here normalize the fold change by empty 
plasmid. To define activity, we consider two ranges of fc values: 0.3 < fc as inactive (class 0) 
and fc > 1.5 as active (class 1). 
 
 
 
 
   
CADD http://krishna.gs.washington.edu/download/CADD/v1.2/whole_genome_SNVs.tsv.gz  
   
   
   
 


