
Comprehensive resource and integrative model for 
functional genomics of the adult brain 

Abstract 
Understanding how genomic variation influences brain phenotypes remains a key challenge in 
neuroscience, one where the potential of functional genomic approaches has not yet been fully 
realized. To this end, the psychENCODE consortium developed a comprehensive, population-
level resource that includes thousands of samples processed for healthy controls and 
neuropsychiatric disorders. Available online, the resource comprises genotyping, RNA-seq, 
ChIP-seq, and single-cell data, in addition to analytic summaries of quantitative trait loci 
(>5,000,000 expression QTLs and >5,000 chromatin QTLs), brain-active enhancers, 
differentially expressed genes and transcripts, and novel non-coding RNAs. Leveraging and 
comparing this resource with other data, we show that the brain has distinct expression and 
epigenetic profiles as evident from spectral analysis and more non-coding transcription from 
most other tissues. Also, using single cell data, we deconvolved the tissue-level gene 
expression of this resource to find the populations of different cell types corresponding to 
particular phenotypes. Finally, we developed and built an integrative epigenome- and 
transcriptome-wide association model (eTWAS) to predict the brain phenotypes using high-
dimensional functional genomics data with genotype-phenotype associations in this resource to 
highlight key brain genes and modules and relate the mechanisms on how variants in these 
affect gene expression. This model allows us to quantitatively impute missing transcriptional and 
epigenetic information for samples with genotypes only. This model also shows that the 
integrated data has significantly improved the prediction accuracy over individual genomic data 
types and relates these predictions to well characterized functions and pathways in the brain.  

Introduction 
Disorders of the brain affect nearly 20% of the world’s population (ref).  Unlike cardiac disease, 
where lifestyle and pharmacological modification of environmental risk factors has had a 
profound effect on disease morbidity and mortality (ref), or cancer, which is now understood to 
be a disorder of the genomic functions (ref), until recently, little progress has been made in our 
fundamental understanding of the molecular cause of the brain disorders.  This recent progress 
has come is the form of genetic association signals from large GWAS studies of the psychiatric 
and neurological disorders and currently hundreds of genomic locations that alter the disease 
risk are known (ref of review, or list disorders in text below, depending on space).  
Unfortunately, for most of these locations, we have little to no understanding of which base pairs 
alterations constitute the functional genomic alteration, which transcripts and networks are 
altered, and what are the molecular mechanisms that cause those alterations. It is presumed 
that these changes in transcription modify the proteome, which leads to changes in brain 
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structure and function, and these changes interact with environmental factors to change the 
probability of developing a brain disorder.  
 
To this end, a variety of genomic elements have been found by many GWAS studies [refs] to 
associate with psychiatric behaviors such as ones in mental diseases. [[JK: Add in details of 
other GWASs we have in the paper, once we know which ones they are.]] For example, the 
Psychiatric Genomics Consortium (PGC) identified a set of genomic variants including SNPs 
and CNVs associated with psychiatric disorders; e.g., 108 GWAS loci associated with 
schizophrenia (SCZ) , which explained  ~20% liability across major disorders \cite{23933821}. In 
addition to genotype, a number of genes have been reported to have specific transcriptional 
activities in mental diseases; e.g., the specific gene expression in mental diseases \cite{xx}. In 
another context, recent large consortia such as GTEx, ENCODE and Epigenomics Roadmap 
have generated large-scale RNA-seq and ChIP-seq data for dozens of brain tissues and cell 
lines (N=xxx) in order to systematically detect brain specific genes, transcripts and regulatory 
elements [[JK: Maybe more details here, such as samples size]]. However, these studies were 
limited to healthy brains, so their data is unable to be used to find genomic elements for mental 
health. For neuropsychiatric-specific analysis, the CommonMind Consortium and others have 
generated gene expression and genotyping data for both healthy and schizophrenia samples 
(N=279 vs. 258), identifying ~693 differentially expressed genes in schizophrenia. However, 
their results still suggested that thousands of samples would be required to achieve statistical 
power of 0.8 for detecting differential expression of eQTL-associated genes [refs]. Moreover, 
recent studies show that specific chromatin activity of the regulatory elements such as 
enhancers has been found to potentially control gene expression in brain [ref], and that single 
cell techniques can detect gene expression and epigenetic patterns for neuronal and non-
neuronal cell types from brain tissues [ref]. Given the complexity of adult brain, we need a 
variety of additional samples to gain the statistical power necessary for discovering a complete 
set of genomic elements for neuropsychiatric disorders and other phenotypes. In addition, 
individual molecules do not independently affect brain, and instead interact with each other in a 
network. Thus, effort is needed to model and analyze the molecular interactions that drive the 
phenotypes of adult brain including neuropsychiatric disorders. 
 
In fact, understanding the molecular mechanisms on how these genomic elements affect 
various brain functions and phenotypes is still a key challenge in neuroscience. To address it, 
the PsychENCODE Consortium integrates a group of projects to produce a public resource of 
multi-dimensional genomic data from thousands of high quality healthy and diseased human 
post-mortem brains (PEC ref) (6). Particularly, it has generated and assembled a robust large-
scale dataset on the adult human brain to address this challenge, including genotyping, RNA-
seq, ChIP-seq and single-cell transcriptomic data on ~2000 (or 1945)  adult brain tissue 
samples with different phenotypes and these data are housed in a central, publically available 
depository (xxxx).  In addition, for these analyses, we have supplemented the PEC data with the 
primary data from other related genomic resources, such as: ENCODE, CommonMind, GTEx, 
Epigenomics Roadmap, etc, and uniformly processed all the data together and performed 
mega-analyses with up to X,XXX samples.  We have also supplemented the PEC single-cell 
data with the primary data from recent publications (refs), reprocessed and analyzed all the data 
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jointly to find gene expression signatures and calculate the fractions of neuronal and non-
neuronal cell types in normal and disease states. We provide all the PEC data and mega-
analyses, the [[PEAR]] online resource which contains all possible functional genomic elements 
for adult brain including the brain-active enhancers, transcripts, expression models, imputed 
regulatory networks, eQTLs and cQTLs for various phenotypes.  We then use the [[PEAR]] to 
discover the properties of brain gene expression, non-coding transcription and enhancers, and 
to build an integrative deep neural network model, named eTWAS, to describe how interactions 
between genomic variants, gene expression, enhancers might work together molecularly to alter 
disease risk. 

Comprehensive resource for adult brain functional genomics 
The PsychENCODE consortium has generated and assembled a large-scale dataset of 
genotypes, RNA-seq, ChIP-seq, ATAC-seq, Hi-C and single-cell transcriptomic data from adult 
brains of ~2000 (or 1945) individuals, with and without several mental illnesses (Figure 1, Assay 
summary in Methods). To harmonize and integrate the datasets across multiple consortia, we 
processed these datasets using standard bioinformatic pipelines in common use (Methods). For 
instance, we adopted the ENCODE processing pipelines for the bulk and single cell RNA-seq 
and ChIP-seq data. Likewise, we used the GTEx eQTL pipeline and associated parameters, to 
allow comparison to previously published eQTL maps.  All these uniformly processed datasets 
are available in our XXXX resource (URL here). Finally,  we also compared the resource data 
against various phenotypes, and identified the brain specific data (derived data type). For 
example, this resource includes the regulatory variants such as QTLs, brain active enhancers, 
differentially expressed genes and transcripts, novel transcribed regions and non-coding RNAs, 
and putative genome-wide regulatory networks. It is also publicly accessible and available on 
the PyschENCODE website (xxxx), such as using the interactive web app.  
 
Overall, this resource is structured in a pyramid shape (Figure 1), with the largest scale and raw 
data at the bottom level and the lightest and most interpretive data at the top level. 
 
Next generation sequencing data for brain functional genomics 
 
At the bottom, we have the large scale raw data and the phenotype information for ~2000 
individuals, much of which is private and under controlled access. Based on this, we have then 
uniformly processed raw datasets from PyschENCODE and other consortia (ENCODE, 
CommonMind, GTEx, Epigenomics Roadmap, etc),  including RNA-seq expression 
quantifications, ChIP-seq signal track qualifications and peak identifications using ENCODE 
standard pipelines, and private imputed genotypes. The processed functional genomic data is 
much easier to interpret but still rather large scale. In details, they include the following major 
types: 
 
Phenotypes - the PsychENCODE data covers a number of phenotypes on mental health. They 
are normal control (n=xxx), SCZ (n=xxx), BP (n=xxx), ASD (n=xxx), Male (n=xxx), Female 
(n=xxx), Age (distribution), etc. (Supplement).  

Deleted: corresponding cell 
Deleted: individual tissues. Thus, this resource 
comprises

Deleted: analyzed this resource and found
Deleted: specific genomic and transcriptomic activities 
on genome wide in
Deleted: including 
Deleted: . Finally, we developed
Deleted: built
Deleted: reveal
Deleted: the 
Deleted: among
Deleted: and phenotypes, trying to explain the 
molecular mechanisms from genotypes to brain 
phenotypes
Deleted: robust 
Deleted: on the adult human brain, including genotyping
Deleted: on
Deleted: individual brain tissues
Deleted: different phenotypes including
Deleted: diseases (
Deleted: uniformly 
Deleted: common 
Deleted: In particular
Deleted: standard such as RNA-seq and ChIP-seq data 
Deleted: PsychENCODE
Deleted: reprocessed all other major datasets from 
other resources using this standard. This step uniformly 
processed cross-resource functional genomic data and 
enables the comparisons across phenotypes such as 
brain data from PsychENCODE vs. other tissues from 
GTEx and Epigenomics Roadmap. We also used 
Deleted: uniformly process the PsychENCODE 
genotype data and find the QTLs for various brain 
genomic activities in the resource. Moreover, we used 
a same pipeline relating
Deleted: ENCODE RNA-seq data processing to 
integrate and uniformly process recent single cell RNA-
seq data for both neuronal and non-neuronal cells 
[bs&lake&quaker].
Deleted: also 
Deleted: .



 
Epigenomics - we used the ENCODE standard ChIP-seq pipeline and uniformly processed the 
ChIP-seq data of available samples in PsychENCODE and Roadmap Epigenomics for the 
signal track qualifications and peak identifications.  
 
Transcriptomics - we also used the ENCODE standard RNA-seq pipeline to uniformly process 
the RNA-seq data of available samples from a number of PsychENCODE-relate studies, 
ENCODE and GTEx to quantify the expression levels for the protein coding genes, transcripts, 
noncoding RNA and novel transcribed regions. 
 
System identification of the specific transcriptomic and epigenomic 
elements in adult brain 
Given the large-scale transcriptomic and epigenomic data in resource, we further integrated 
them and identified the genomic elements that have specific activities in adult brain. We used 
the uniformly processed data and compared against various phenotypes to have even more 
interpreted functional elements such as sets of differentially expressed genes characterizing 
various brain regions and phenotypes, sets of aggregated brain enhancers from merging the the 
K27 peaks on the ENCODE regulatory elements. And then above these individual elements, we 
even identified more interpreted association relationship data such as the QTLs affecting gene 
expression and enhancers, and imputed the regulatory networks consisting of QTLs, 
transcriptional factors (TFs), enhancers and genes. This includes: 
 
Brain active enhancers - We identified the brain enhancers from the uniformly processed ChIP-
seq data and related them with the regulatory elements in ENCODE and Epigenomics 
Roadmap , and summarize a list of ~88k PsychENCODE brain enhancers which are activated 
on major brain regions including frontal cortex and cerebellar cortex (Supplement).  
 
Differentially expressed genes, transcripts and brain splicing patterns - we compared expression 
changes in uniformly processed RNA-seq data from brain samples across PsychENCODE-
related studies, ENCODE, and GTEx, and found xxx expressed genes and transcripts, ~11k  
eGenes associated with eQTLs (Methods), and xxx non-coding RNAs and novel transcribed 
regions. We also derived phenotype-specific genes and transcripts. In addition, we calculated 
the alternative splicing patterns at the transcript level; i.e., the percentage of the transcript 
abundance over its gene abundance, and found the brain-specific spliced transcripts. Our 
resource contains differentially expressed and spliced genes and transcripts across a number of 
biological variables, including neuropsychiatric disorders and developmental stages. 
 
We should emphasize that our comparative analysis to find brain enhancers, genes and 
transcripts is consistent; e.g., via comparing with a same set of brain regions and non-brain 
organs from GTEx and Epigenomics Roadmap. 
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System identification of the QTLs and gene regulatory networks associated 
with adult brain transcriptomics and epigenomics 
To understand how the genotype affects the transcriptomic and epigenetic activities in adult 
brain, we first used the resource data as above to identify more interpreted association 
relationship data such as the quantitative trait loci (QTLs) affecting gene expression and 
chromatin activity. In particular, we merged genotype and gene expression and chromatin data 
of Brain DFC region from a number of studies relating to PyschENCODE. We calculated the 
association of imputed SNPs with normalized gene expression and chromatin states (Methods) 
to find the quantitative trait loci associating with gene expression and epigenomic activities in 
adult brain, including three major categories: expression QTLs (eQTLs), chromatin QTLs 
(cQTLs) and splicing QTLs (sQTLs). We used the GTEx standard pipeline for discovering 
eQTLs to find the associations, which is based on an additive linear model from QTLtools. 
Given the complex relationships between genotype and phenotype, potentially driven by batch 
effects and biases (e.g., merging different chromatin datasets), this linear model was also 
adjusted by covariates like PEER factors of gene expression, genotype PCs and disease 
diagnosis. Among these SNPs, we identified a great number of the regulatory variants 
significantly associated with brain transcriptional and epigenomic activity: >1 million expression 
QTLs (eQTLs) with ~11k eGenes, >5 thousand chromatin QTLs (cQTLs) for histone 
modification signals, and xxx splicing QTLs for alternative splicing patterns. The distributions of 
detailed QTL annotations on genomic regions are shown in Figure xxx. 
 
Given a great number of QTLs we identified, we are further interested to see how they relate to 
the known variants for brain. In particular, we compared them with existing QTLs databases and 
subdivided our QTLs into different functional categories, mainly including the disease GWAS 
SNPs, the SNPs breaking the TF binding sites, etc (Table/Figure xxx). For example, we found 
that these variants cover a larger fraction of disease-associated brain GWAS SNPs than any 
previous analyses, suggesting potential molecular targets for these associations (xx% for SCZ, 
xx% for BP, ASD) and approaching the saturation of human mutations (Figure xxx). We also 
evaluated the overlap of eQTLs with cQTLs and found that XX% of cQTLs are overlapped with 
eQTLs. The SNPs in cis-eQTL list(Cis-eSNPs) were enriched within XXXX, and depleted 
XXXXXX (Fig. X). We examined the enrichment of most significant eQTLs per gene in 
Roadmap Epigenomics Consortium and ENCODE enhancers across XX human tissues and cell 
lines. Cis-eQTL were enriched for enhancer sequences present in brain tissues  and the 
strongest enrichment is observed in DLPFC enhancers. We also calculate the enrichment  of 
cis-QTLs on GWAS SNPs of brain related disorders (schizophrenia, bipolar disorders and 
parkinson’s disease) and non-brain related disorders (CAD, asthma and type 2 diabetes ). Cis-
QTLs have more significant enrichment for GWAS SNPs of brain related disorders than the 
ones of non-brain related disorders. In addition, we link the QTLs that overlap the enhancers 
and promoters in the resource to reveal the potential regulatory activities. We thus classified the 
QTLs into subgroups in terms of their gene regulatory characteristics including the regulatory 
QTLs (rQTLs) that break TF binding sites on promoters and/or enhancers, and the modular 
QTLs (mQTLs) that highly associate with a set of co-expressed genes. Finally, we found that 
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the eQTLs/eGenes number can be predicted from the sample size using a fitted curve (Figure 
xxx).  
 
Gene regulatory networks - we also integrated and imputated the regulatory relationships in 
brain such as the enhancers, transcription factors (TFs), miRNAs and target genes [refs] in this 
resource (Methods). For example, we found the TF binding motifs using ENCODE data and 
inferred the TF-target gene relationships if TFs have enriched binding motifs on the target 
gene’s regulatory regions such as promoters and enhancers. In total, we included xxx 
enhancer-gene, xxx TF-gene, and xxx miRNA-gene regulatory linkages, providing a reference 
wiring network on gene regulation in brain. It should be noted that activations of these regulatory 
wires are highly attributed to the genotypes of QTLs, leading to various phenotypes. Thus, using 
these “wiring” regulatory relationships, we inferred the gene regulatory networks that identify the 
regulatory relationships on how QTLs, enhancers, and transcription factors relate to target gene 
expression (Methods). In particular, given a target gene, we found its related regulatory 
elements from the resource including the eQTLs, the enhancers that control its gene expression 
[JEME] plus their cQTLs, and predicted the transcription factors (TFs) that have enriched 
binding sites on these enhancers and its promoter. We then used RNA-seq and ChIP-seq data 
based on the Elastic Net model with regularization that combines the L1 and L2 penalties of the 
lasso and ridge regressions to predict the regression coefficients of genotypes of various QTLs, 
the chromatin stages of enhancers, splicing patterns and TFs gene expression to the target 
gene expression, and identified the highly predictive relationships (i.e., large coefficients). We 
repeated this for all genes and found how various subgroups of QTLs affect gene expression; 
e.g., a significantly number of predictive QTLs break the TFBSs on the enhancers or promoters 
(xx%, Figure xxx). We thus constructed a gene regulatory networks consisting of the QTLs, 
enhancers, TFs and target genes with high predictive relationships (coeff. > xxx, Methods), 
revealing the biological mechanisms on how QTLs regulate the target gene expression in the 
adult brain. 
 
In summary, the establishment of this comprehensive resource enables the modeling and 
analysis for the biological processes in adult brain and helps understand the molecular 
mechanisms between genotypes and phenotypes. Therefore, we later analyzed and modeled 
the data from this resource to further reveal the brain specific genomic and transcriptomic 
activities, and the biological mechanisms explaining how the brain specific elements affect the 
phenotypes and diseases in the adult brain.  

Comparative analysis reveals that brain has specific 
transcriptomic and epigenomic activity  
This comprehensive resource allows us to discover the specific functional genomic elements 
that relate the brain functions and phenotypes as above. Thus, we leveraged this resource 
against various phenotypes and compared with other tissue types to reveal the unique brain 
genomic activities, particularly relating to transcriptomic and epigenomic activities. In particular, 
we performed a same spectral analysis for comparing the similarities of gene expression and 
binding signals on enhancers between brain versus other tissues. 
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For gene expression, we compared with the other tissue samples from GTEx (Figure xxx), using 
uniformly reprocessed RNA-seq data. It shows that the brain samples, though from different 
studies are clustered together in a major cluster, significantly separated from the other major 
cluster consisting of non-brain samples from their leading reduced dimension. This suggests 
that there exist the brain has unique and distinct gene expression programs, involved by the 
brain elements including differentially expressed genes and non-coding RNAs in our resource 
that make brain very different from other tissues. In addition, this major brain cluster has a 
particular geometric pattern showing that the normal samples (e.g., GTEx) form an inner core, 
and the disease samples form a subcluster having larger radius than the subcluster consisting 
of the normal samples (e.g., GTEx). The cluster radii were estimated by Gaussian mixture 
model (Methods). This suggests that the psychiatric diseases still have larger variations of gene 
expression,  and different gene regulatory programs from the normal, though even more distant 
from other organs. Also, the major cluster can be further subdivided into several subclusters, 
each of which mainly comprises the samples from same brain region; e.g., the cortex and 
cerebellum clusters in Figure xxx. However, the distances among these sub brain clusters are 
significantly less than the ones among other organs, suggesting that the brain regions, though 
functionally different, still need to more closely coordinate with each other than other organs. 
Additionally,  to understand where the human brain sits in regards of its the transcription 
diversity compared to other tissues, we estimated the proportion of genome that is 
transcriptionally active across hundreds of samples. We first found that transcript diversity is 
mostly saturated at the scale of hundreds of individuals (Figure xxx). The saturation is observed 
for both the coding and non-coding portions of the genome. The human brain does not stand as 
a highly diverse in protein coding regions. For example, the tissues such as the testis is highly 
diverse [Ref]; however, we found that the brain has more transcriptional activity at the non-
coding and novel transcribed regions than most other tissues (Figure xxx). Which implies that 
the non-coding transcription is highly likely another factor to make the brain tissues unique.  
 
As shown above, the brain samples have different chromatin and gene expression activities 
from other organs, implying that the brain also has specific gene regulatory activities. Therefore, 
we are further interested to compare the regulatory regions between brain and other tissues to 
see any brain specific regulatory activities. We integrated the ChIP-seq signal data of enhancers 
in the resource and performed the consistent spectral analysis for gene expression as above to 
compare the similarities of epigenetic profiles of PsychENCODE samples with Epigenomics 
Roadmap data. It is also interesting to somewhat similar patterns with the gene expression 
comparison; e.g., the brain samples can also cluster together in terms of active enhancer 
similarity (Figure xxx). This result suggests that the brain has specific and distinct epigenomic 
activities as well, involving the brain active enhancers from our resource. More importantly, the 
brain active enhancers or gene expression patterns are intermediate phenotypes, potentially 
driven by particular regulatory variants such as our QTLs as previously described. 
 
Our comparative analysis reveals that the brain is different from other organs in either gene 
expression. Thus, we are then interested to identify the functional genomic elements in brain 
that give rise to the uniqueness of brain. To systematically find the specific expressed functional 
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elements in brain, we identified the differentially expressed genes and non-coding RNAs for 
various phenotypes including mental disease, gender, regions (Methods and Table XXX) for the 
resource. For example, XXX genes have been found to differentially express between male and 
female samples. We also checked the enriched pathways and functions among the SCZ genes, 
and indeed found that many are relating to male. Moreover, we also found that these brain dex 
genes are significantly less/greater than DEX genes for other tissues in GTEX (p<xxx), which 
suggesting that the brain expression uniqueness is highly driven by a small/large set of genes. 
As previously described, we report the DEX genes for all phenotypes in our resource along with 
their enriched functions and pathways in supplement. Also, the brain specific gene expression is 
likely driven by a group of genes, rather than individual genes, so we constructed the gene co-
expression network using all PsychENCODE and GTEx samples, and clustered it into gene co-
expression modules using WGCNA [Methods]. The genes clustered in a same module are 
highly likely co-regulated by similar mechanisms. Our co-expression analysis indeed found 
several modules whose eigengenes show very different expression levels between brain and 
non-brain samples (Figure xxx, Supplement), which suggests that there exist brain specific 
regulatory mechanisms drive these brain co-expression modules.  

Single cell analysis and deconvolution explain gene expression 
changes across adult phenotypes 
The brain tissues have been found to comprise a variety of cell types including neuronal and 
non-neuronal cells such as astrocytes [refs]. One issue with the changes of gene expression in 
our brain tissue samples is whether the changes are driven by gene expression in a particular 
cell type or different cell-type populations. To address this tissue, we integrated the single cell 
gene expression data to discover the expression changes of brain tissue genes across various 
cell types including both neuronal and non-neuronal. We also used the biomarker genes with 
strong expression signals in single cell to deconvolve the gene expression data of individual 
tissues over both novel and known cell types to find the cell fractions for individuals, and relate 
to the individual phenotypes. We found that the gene expression changes across adult brain 
phenotypes at the tissue level can more easily be explained by the changes of cell fractions.   
 
Specifically, we integrated and used the same pipeline to uniformly process the single cell RNA-
seq data for ~800 cells from PsychENCOCE, ~3000 neuronal cells with 8 excitatory and 8 
inhibitory types [Lake’s 2016 paper], and ~400 cells including 5 non-neuronal types,  astrocytes, 
endothelial, microglia, oligodendrocytes and OPC, and xxx novel cell types in embryonic and 
fetal tissues. We then compared these single cells based on the (biomarker) gene expression 
similarity using tSNE, and found that the same-type cells generally can be clustered together 
(Figure xxx). In particular, xx% PsychENCODE cells have been found to cluster together with 
known cell types (xx% neuronal, xx% non-neuronal, details in supplement). In addition, xx% 
PsychENCODE cells form their own clusters, away from known cell types, suggesting that the 
potential novel cell types found by PyschENCODE for brain tissues. We also include these 
single cell data and cell-type biomarker genes in the resource. 
 



We are then interested to see if the brain gene expression at the tissue level in our resource is 
contributed by the above cell types. Thus, we decomposed the gene expression data across 
individuals using non-negative matrix factorization (NMF, see Methods). Indeed, we found that 
two groups of top NMF PCs capturing the most covariance of brain gene expression across 
individual tissues, highly correlate with the biomarker gene expression signatures of  neuronal 
and non-neuronal cell types as above, respectively (Figure xxx). This suggests that the large 
portion of tissue’s gene expression changes is a linear combination of these neuronal and non-
neuronal cells’ gene expression. Thus, we want to further identify the cell fractions showing how 
single cells contribute the tissue’s gene expression. 
 
For those differentially expressed genes at the tissue level from our resource, we further 
checked their expression changes across various single cells, and found that a group of 
differentially expressed genes indeed show the expression dynamic changes among cells. For 
example, the SCZ gene, XXX is (or ww% of SCZ genes) significantly more highly expressed in 
YYY and ZZZ neuronal cells than others (Figure xxx), suggesting that the cell fractions of YYY 
and ZZZ drive the SCZ gene expression changes across tissues[ref]. Therefore, we 
deconvolved the tissue-level gene expression data of all 2000 samples using single-cell gene 
expression data of xxx biomarker genes to find the proportions of different cell types 
corresponding, and compare cell fractions across different phenotypes (Y=WX, Methods). The 
single cells used in deconvolution cover all 16 neuronal types, five non-neuronal types and xxx 
additional PsychENCODE types. For example, it is very interesting that we can explain much 
(R2=~80%) of the individual variation in gene expression of both male and female samples in 
terms of changing proportions of basic cell types, rather than changes in individual genes 
(Figure xxx covariance). In addition, we found that the cell fractions of individuals vary across 
different phenotypes (Figure xxx), and a number of cell population changes highly associate 
with brain phenotypes. For example, the fraction(s) of neuronal type(s) (Inhibitory X) is 
significantly anti-correlated with Age (r = xxx). The non-neuronal cell populations increase 
significantly in SCZ (or Male) samples (p<xxx) while the neuronal cells decreasing. Finally, we 
report the individual cell populations along with significantly associated relationships between 
particular cell type fractions and phenotypes (Supplement). 
 
Furthermore, we are interested to see if any genotype is also associated with two single cell 
features: (1) the cell fractions and (2) the gene expression changes that can’t be explained by 
the cell fractions. In particular, we used our QTL pipeline and identified xxx SNPs whose 
genotypes are significantly associated with yyy neuronal cell fractions across individuals, (or zzz 
non-neuronal cell types). This suggests that these SNPs potentially can be used to predict the 
yyy cell fractions in adult brain. Moreover, we identified xxx SNPs significantly associated with 
the gene expression changes across individual tissues unexplained by our single cell 
deconvolution; i.e., Y-WX (Methods). These SNPs are likely causing certain gene expression 
changes driven by unknown cell types in adult brain. 



Integrative modeling to explain the molecular mechanisms for 
genotype-phenotype relationships in adult brain  
The interactions between genotypes and phenotypes is a very complex process experiencing 
multiple intermediate stages including gene expression, signaling, modulation and so on. Thus, 
to understand the entire processes how genotypes and phenotypes affect to each other, we 
built an integrative model, eTWAS to understand how the brain genomic variants affect gene 
expression and regulation, and eventually predict the phenotypes (Figure xxx). This model is 
built based on Deep Boltzmann Machine, and integrated all high dimensional functional data 
types in this resource including genomics, transcriptomics, epigenetics and regulatomics, and 
genotype-phenotype relationships, and also allowed us to quantitatively impute missing 
transcriptional and epigenetic information for samples with genotypes only. It uses the 
undirected edges rather than the directed edges of deep neural network modeling because the 
phenotypes potentially impact back to the intermediate stages like gene expression. As shown 
in Figure xxx, the eTWAS consists of four layers: 1) genotypes such as QTLs; 2) gene 
expression and enhancers; 3) intermediate modules and 4) phenotypes such as brain traits, and 
provides the additively predictive relationships between layer nodes. In particular, the model is 
constructed based on the Deep Boltzmann Machine (RBM) but has a hybrid structure. On one 
hand, it incorporates the contemporary deep learning ideas to model these large scale datasets 
with a multi-layer architecture with interconnections between layers, and also explicitly allow 
integrating additional genomic elements into the model such as incorporating imputed eQLTs 
and cQTLs. The RBM architecture, especially undirected edges can reveal the relationships 
among functional genomic elements across layers from a number of directions, rather than one 
direction in classical deep neural networks. Moreover, using these relationships, the model can 
be used to better predict phenotypes from genotypes, through adding predictive powers from 
gene expression and chromatin data; e.g., gene regulatory networks. On the other hand, given 
known associated genotypes and phenotypes, this model can trace their all possible 
connectivities and better pinpoint them to a predictive trajectory including specific gene 
expression, activate enhancer(s) and dysregulated gene modules across different layers. For 
example, this latter use, of course, enables us to better localize the specific activities at the 
molecular level happening from genotypes to associated phenotypes such as psychiatric 
disorders. 
																																	  
Specifically, we built this model as follows. We first used the imputed gene regulatory networks 
from the resource that identify the regulatory connectivities on how QTLs, enhancers, and 
transcription factors relate to target gene expression (Methods). We then connected the nodes 
on Layer 2 of our model to follow the inferred gene regulatory network structures; i.e., 
embedding the gene regulatory network. In particular, many intermediate-layer modules (i.e., 
strongly predictive features on Layer 3) that correspond to known gene sets associated with 
well-characterized pathways and functions in the brain; e.g., the module xxx is connecting to the 
genes enriched with ZZZ pathways (p<xxxx). Also, some modules are used to capture the 
information on single cell populations; e.g., the module yyy is connecting to Age, and represents 
the neuronal cell populations. We show that this integrated model has significantly improved the 
prediction accuracy over individual genomic data types. For example, its AUC/MSE for 



classifying SCZ and health samples is xxx beating other classification methods using gene 
expression only (Table XXX). Furthermore, we used this model to recapitulate the pathways 
comprising the cross-layer nodes and predictive edges for particular phenotypes. For example, 
as highlighted in Figure xxx, The trait of schizophrenia (SCZ) is activated by two modules, x, 
and y corresponding to dopamine-related pathways and complement pathways, respectively. 
Each module is connected by a set of genes including C4 genes, which are regulated by 
corresponding QTLs and enhancers as shown in blowup gene regulatory mechanism.  
 
Moreover, the model also enables practical imputation of a subset of the transcriptome and 
epigenome, with an accuracy of ~70% (Figure xxx). We use the model to improve prediction of 
biological variables and psychiatric diseases by the addition of transcriptomic data to genotype, 
as compared to genotype alone. In particular, we can predict bipolar disease and schizophrenia 
with much higher accuracy from the transcriptome than from genotype alone; i.e., three times 
improvements (+18% vs. +6%) from the random prediction 50% for schizophrenia, Figure XXX). 
The imputed transcriptome also clearly adds predictive value, as we can predict schizophrenia 
with an accuracy of 61% using our model and an imputed transcriptome compared to 56% with 
genotype alone. This result demonstrates the usefulness of even a limited amount of functional 
genomics information for unraveling gene-disease relationships. On the resource website, we 
provide a list of eTWAS pathways for each endophenotype and disease. We also make the 
model available as distributive software and as a set of simplified files summarizing represented 
genotype-phenotype pathways.  

Discussion 
We integrated the genomic, transcriptomic and regulatomic PsychENCODE datasets from 
~2000 samples and developed this comprehensive resource consisting of various functional 
genomic elements for the adult brain. Developing this resource and integrated model to a 
population-level scale serves as an important step in gaining meaningful biological insights from 
functional genomics studies in neuroscience. In particular, we compared it with other tissues 
such as GTEx data and identified the genotypes and QTLs, the specific expressed genes, 
transcripts and noncoding RNAs, active chromatin regions, the regulatory networks that 
significantly relate with different brain phenotypes at both cellular and tissue levels. For 
example, the QTLs allow one to potentially interpret most of the known brain-associated GWAS 
SNPs in terms of perturbations to specific genes. Thus, the neuroscientist can use this resource 
as a reference to compare with their data, generate hypotheses and help design experimental 
validations. In addition, this resource is publicly available online and can be extendable and 
scalable to integrate additional data types and phenotypes. For example, it can add the 
individual’s fMRI image features measuring functional neuro-connectivity, and use our model to 
identify the genotypes that associated with image features such as image-QTLs (iQTLs) [xx]. 
Also, our resource can incorporate with the neurodegenerative diseases like Alzheimer or 
developmental stages.  
 
Moreover, we built an integrative epigenome- and transcriptome-wide association model 
(eTWAS), built on the  Deep Boltzmann Machine (RBM) and integrates the high dimensional 
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functional genomic and phenotypic data at multiple layers, using the hierarchical structures in 
deep learning. The model reveals the relationships among various data types from a number of 
directions for genotype to phenotype. In particular, this model also incorporates the derived data 
types into its hierarchical structure such as imputed gene regulatory networks and QTLs, and 
provides the additional statistical powers to better predict the genotype to phenotype. This 
model allows us to quantitatively impute missing transcriptional and epigenetic information for 
samples with genotypes only. More importantly, it integrates high-dimensional functional 
genomics data with genotype-phenotype associations to highlight key brain genes and modules 
and relate how variants in these regulate gene expression. This integrative model is also 
available online as a general purpose platform. The users can apply it to impute missing data , 
predict the genotype-phenotype relationships, and reveal potentially novel gene regulatory 
mechanisms and modules for additional phenotypes. Also, the model can be used to make in-
silico predictions for the perturbation outcomes. For example, we can identify the module X that 
have the extremely highest connection weights to Austin, and thus knocking down the genes 
connecting to the module highly likely will deactivate Autism. Furthermore, while the model does 
provide better predictive performance, some of these correlations are deliberately set to be 
interpreted simplifications, such as the known enhancers, or gene regulatory network structure, 
to make the model more interpretable and easier to use. Thus,  another major goal of the model 
is to provide a compression of larger amount of functional genomic datasets for brain; e.g., XXX 
KB of model files vs. XXX TB of total resource data, beyond a purely predictive network from 
genotype to phenotype. 
 
Though single cell remains challenging to reliably quantify the low-abundant transcripts/genes 
and interrogate the biological variations using single-cell sequencing technology, it is still 
worthwhile using the biomarker genes with strong expression signals in single cell to 
deconvolve the gene expression data of individual tissues over both novel and known cell types 
to find the cell populations for individuals, and relate to the individual phenotypes. With 
increasing amount of single cell data in near future, we could deconvolve the resource data at 
tissue level to find potential new cell types and obtain more complete cell populations. The 
current single-cell sequencing technology suffers from the low capture efficiency [PMCID: 
PMC4758375, PMCID: PMC4132710]. Due to this reason, the single-cell sequencing will only 
measure a small fraction of cellular transcriptome as the final sequencing library only contains a 
subset of input materials. Furthermore, the limited amount of RNA molecules in single cell 
makes it even harder to capture the weak signals, which makes the data sensitive to technical 
noise. Thus, given that the RNA decaying issues in single cell RNA-seq, we could also relate 
this resource to the in situ transcriptomic data such as optogenetic techniques measuring the 
spatial gene expression, and find the consistent expressed gene for the brain phenotypes at the 
tissue level. 	
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) and shared with the public. Integration of these multi-dimensional and large-scale datasets 
potentially benefits understanding the molecular mechanisms for adult brain, which however still 
remains challenge. 
 
To address this challenge, we integrated the PsychENCODE and relate datasets over all ~2000 
samples, compared them against various biological variables and psychiatric diseases in adult 
brain, and developed a comprehensive and online available resource for the adult brain. The 
core datasets in PsychENCODE are a large amount of functional genomic and genotype 
 

 


