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1 Defining the RBP regulome using eCLIP data 
1.1 Functional Annotation of RBPs 

eCLIP is an enhanced version of the crosslinking and immunoprecipitation (CLIP) assay, 
and is used to identify the binding sites of RNA binding proteins (RBPs). We collected all 
available eCLIP experiments from the ENCODE data portal (encodeprojects.org). There were 
178 experiments from K562 and 140 experiments from HepG2, totaling 318 eCLIP experiments 
from all available ENCODE cell lines (released and processed by July 2017).  

These experiments targeted 112 unique RBP profiles. eCLIP data was processed per 
ENCODE 3 uniform data processing pipeline. The eCLIP peak calling method and processing 
pipeline were developed by Gene Yeo’s lab at the University of California, San Diego 
(https://github.com/YeoLab/clipper, CLIP-seq cluster-identification algorithm[1]). For each 
peak, the enrichment significance was calculated against a paired input, and we filtered those 
peaks with a flag of 1000, which are considered to be the statistically significant peaks.  

We summarized the list of available RBPs in Table S1 (in separate data package) and 
provided detailed annotation as we can. We also summarized different categories of RBPs in 
Figure S 1. 

Figure S 1 Annotation summary of RBPs 
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1.2 Functional Annotation of RBP binding sites 

From the raw peaks from ENCODE, we further removed the ones overlapped with either 
blacklist regions from ENCODE (https://www.encodeproject.org/annotations/ENCSR636HFF/, 
select hg19) or gap regions like Telomere and Centromere from ucsc 
(ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/gap.txt.gz). In total, over 99% of the 
binding locations are preserved after blacklist removal. 

We further tried to annotate these peak regions by dividing them into different annotation 
categories from Gencode V19. Specifically, we extracted 7 different annotation categories, 
including coding exons, 3’UTR, 5’UTR,  3’UTR extended (1000bp downstream), 5’UTR 
extended (1000bp upstream), nearby intron (up to 100bp to the exon/intron junctions), and deep 
introns. For any region that might overlap two annotation categories, we only preserve one in the 
order mentioned above. The raw number of nucleotides in each annotation category is given in 
Table S2.  

Table S2. RBP binding peaks within annotated regions 

Annotation Type Nucleotides 

Coding Exon 156069 

3’ UTR 65447 

5’ UTR 28339 

3’ UTR extended 39985 

5’ UTR extended 45036 

Nearby Intron 102892 

Deep Intron 312424 

1.3 Inference of cross-population conservation of RBP binding sites 

We tried to infer the cross-population conservation level of the RBP binding sites from 
polymorphism data in large sequencing cohorts like the 1,000 Genomes Project. Specifically, for 
each RBP we divided all the binding peaks into coding and noncoding regions separately and 
then calculated the number of common (𝑛𝑐) and rare variants (𝑛𝑟) in these two categories. Then a 
one-sided binomial test of 𝑛𝑐, 𝑛𝑟, vs. the genome background 𝑓 was calculated to evaluate the 
enrichment of rare variants. 

However, in our analysis we found that GC content might be a potential bias in such 
calculation. As in Figure S 2, the background rare variant percentage 𝑓 demonstrates noticeable 
changes with GC percentage. One possible explanation is that GC content usually affects read 
coverage in high-throughput sequencing experiments, which is a sensitive parameter in the 
downstream variant calling process. Therefore, to remove such bias, we calculated the GC 
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adjusted background rare variant percentage by dividing the coding/noncoding regions into 
500bp bins, and grouping these bins at GC resolution of 0.02. For each RBP, when calculating 
the background, we only select the bins with closest GC percentage. The comparison of 
foreground and background rare variant percentage for every RBP in coding and noncoding 
regions are given in Figure S 3. 

Figure S 2. Background Rare variant percentage vs. GC 

For some RBPs, if there are no coding/noncoding rare/common variants in their binding 
sites, the 𝑓 value for binomial test will be missing. We provided the full raw calculation of GC 
corrected rare variant enrichment for each RBP in Table S3. 
Figure S 3. Rare variant enrichment after GC correction in coding and noncoding regions respectively. The dashed 
blue/red line is the genome average without GC correction for coding and noncoding regions, and the solid blue/red 
line is the background after GC correction. Blue/Red star on top of each bar indicate significantly enriched in rare 
variants after GC correction in one sided binominal test against the coding/noncoding average. 

(A) (B)
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Inference of cross-species conservation of RBP binding sites  

PhastCons conservation scores were downloaded from UCSC genome browser. For each 
annotation category ( coding exons, 3’UTR, 5’UTR,  nearby introns), we separate the annotation 
into regions covered by RBP peak and those not covered. After deduplication and merging of the 
bed files, we then calculated the average PhastCons score in each region using the tool 
bigWigAverageOverBed (downloaded from UCSC genome browser). Then the boxplots of peak 
vs. nonpeak regions were given in Figure S 2 in the main manuscript. 

1.4 Inference of structure conservations 

We downloaded the Evofold bed files for hg19 from UCSC Genome Browser and used it as 
a feature for our analysis. Specifically, we found that after requiring that any RBP peaks should 
also be with conserved structure in Evofold, these binding sites significantly increases its 
population-level conservations (as shown in Figure S 4). 
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Figure S 4. Increased cross-population conservation after added Evofold feature to RBP peaks 

 

2 RBP binding network analysis 
We also investigated the RBP binding events interactions from two aspects: co-binding 

analysis and RBP binding hub analysis. Details are given in the following sections. 

2.1 RBP co-binding analysis 

We defined the co-binding percent of each RBP pair by the ratio of overlapping nucleotides 
over the union of nucleotides in their binding peaks. Then we constructed a co-binding 
percentage matrix for all RBPs to measure their co-binding status. Then, we performed a 
hierarchical clustering of this matrix by the “pvrect” package in R with an alpha value of 0.02 to 
identify the co-binding pairs. The resulting clusters of RBPs with significance were found to 
follow patterns of functional co-binding found in literature and results are given in Figure S 5. 
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Using a significance level threshold of 0.05, we found several pairs of well-known 
regulatory partners with different binding preferences. For example, the famous heterogeneous 
nuclear ribonucleoprotein (hnRNP) family protein HNRNPU and its paralog HNRNPUL1 were 
found to bind together in the nearby intron region, probably regulating the pre-mRNA splicing 
process[2]. F3A3 and SF3B4, which encode two units of splicing factor 3a protein, were also 
found to co-bind in the nearby intron region in our data[3, 4]. The SR family protein U2AF1 and 
U2AF2 are found to co-bind near the intron/exon junctions to jointly control splicing events[4, 
5]. Two cleavage stimulation factor (CSTF) complex proteins, CSTF2 and CSTF2T, were found 
to bind near the 3’ UTR, and were reported to be associated with 3' end cleavage and 
polyadenylation of pre-mRNAs. Consistent with previous report, three functional similar genes 
FMR1, FXR1, and FXR2 were found to co-express, and shuttle between the nucleus and 
cytoplasm and associate with polyribosomes, predominantly with the 60S ribosomal subunit[6, 
7]. The discovery of the co-binding of such functional relevant proteins at various regions 
indicates the high quality of our regulome. 

2.2 RBP network hub analysis 

We also inferred the RBP binding hubs and hypothesized that they are under higher negative 
selection since once mutated, there is a higher chance to alter RBP regulations. Specifically, we 
calculated the number of RBPs that bind to each nucleotide and the distribution is given in 
Figure S 6. As expected, due to the specificity of RBP binding events, the majority (over 60%) of 
the RBP regulome was surrounded by only one RBP. 

Figure S 5. Co-binding analysis of RBPs 
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Figure S 6. Distribution of binding RBP numbers. 

 
We then calculated the enrichment of rare variants for regions with at least 1, 2, 3, …, 112 

RBPs. We corrected the GC bias in a similar way to section 1.3. As expected, as the number of 
RBPs increased, we observed an obvious trend of enrichment of rare variants (Figure S 7 and 
Figure S 8 ). For instance, in the noncoding region, around 5% of the regulome is surrounded 
with at least 5 RBPs, and they exhibited 3% more rare variants compared to the whole genome. 
For regions that are surrounded by at least 10 RBPs, which are around 1% of the whole 
regulome, we observed up to 12% more rare variants (Figure S 8). This observation significantly 
supports our hypothesis that the RNA regulome hubs are under stronger purifying selection, and 
should be given higher priority when evaluating the functional impacts of mutations. 
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Figure S 7. Corrected rare variant percentage vs. number of RBPs binding in coding regions. Regions with top 5% 
and 1% of RBPs binding are defined as the hot and ultra-hot regions. 
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3 Motif analysis 
In our RADAR framework, we incorporated two sources of motifs: (1) motifs from RNA 

Bind-n-Seq experiments[8]; (2) de novo discoveries from RBP peaks by DREME [9]. For each 
variant, we used the changes of PWM scores to quantify the binding affinity alterations. If one 
variant breaks more than one PWM, RADAR will choose the maximum score for it. 

3.1 Motifs from RNA Bind-n-Seq experiments 

It has been reported that many of the RBPs’ binding events in vivo can be captured by 
binding preferences in vitro. Hence, we utilized an in vitro RNA binding assay, RNA Bind-N-
Seq[8] to characterize sequence and structural specificities of RBPs. We used RBNS motifs from 
78 human RBPs to prioritize germline and somatic variants that could potentially disrupt an 
RNA-binding domain. 

Briefly, we called on RBNS motifs based on an enrichment Z-score cutoff of 3. Some RBPs 
had up to four motifs, which ranged from 5-mer to 9-mers. In total, there are 17 RBPs 
overlapped with eCLIP RBPs, which are listed in Table S4 below. We treated all RBNS motifs 
independently from eCLIP-based de novo motifs. 
 

Table S4 List of RBPs that have both eCLIP and Bind-n-Seq experiments 
 

 RBP Name RBNS motif  

1 EIF4G2  
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Figure S 8. Corrected rare variant percentage vs. number of RBPs binding in noncoding regions. Regions with top 
5% and 1% of RBPs binding are defined as the hot and ultra-hot regions. 



11 

2 EWSR1 

 

3 FUBP3 

 

4 HNRNPC 

 

5 HNRNPK 

 

6 IGF2BP1 

 

7 IGF2BP2 

 

8 KHSRP 

 

9 PCBP2 

 

10 RBFOX2 
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11 RBM22 

 

12 SFPQ 

 

13 SRSF9 

 

14 TAF15 

 

15 TARDBP 

 

16 TIA1 

 

17 TRA2A 

 

 

3.2 Motifs from de novo discovery 

We collected the binding peaks for each RBP after blacklist removal. For any peak that is 
less than 150 bp in length, we extended it to 150 bp from both sides. For those longer than 
150bp, we kept the original peak length. We then extracted sequence information from hg19 and 
performed de novo motif discovery DREME[9] with default settings (Version 4.12.0, 
http://meme-suite.org/tools/dreme). 
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3.3 Motif disruption calculation using MotifTools 

We used D-score defined in MotifTools (https://github.com/hoondy/MotifTools) to evaluate 
the binding affinity alterations introduced by a variant. We only considered positive D-scores, 
which denote a variant that decreases the likelihood that a protein will bind the motif (motif-
break). For variants that affect multiple RBP binding profiles, we used the max score over all D-
scores. 

4 RBP-gene association by RBP KD experiments 
RNA-seq expression profiling before and after shRNA mediated RBP depletion from 

ENCODE can help infer the gene expression changes introduced by RBP knockdown. Variants 
with disruptive effect on RBP binding may affect or even completely remove RBP binding and 
hence affect gene expressions in a similar way. A schematic of our procedure is given in Figure 
S 9. 

Specifically, we first collected 472 shRNA RNA-seq experiments (Table S5) and extracted 
the differentially expressed genes (Table S6) from such experiments. For example, in Fig. S7, we 
define the G1-RBP2 association from the RBP knockdown experiment. Then within the 
extended G1 region, we extracted all motif breaking variant effect for all possible RBPs (within 
peaks). If any variant breaks RBPs that has an association with G1, we give it an extra credit in 
our baseline score. 
Figure S 9. Schematic of highlighting variants that breaks gene-RBP association from RBP knockdown experiments. 
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5. Highlighting key regulators through expression 
profiles 
In order to detect the key RBP regulators that drive the disease-specific gene expression 

patterns, we constructed RBP regulatory networks and incorporated gene expression profiles to 
find RBPs that are associated with expression changes in patient cohorts. 

Specifically, we first downloaded the full set of TCGA expression profiles for 24 cancer 
types. In order to get a robust differential expression analysis, we excluded 6 cancer types that 
have less than 10 normal expression profiles. For each cancer type, both tumor and normal 
expression were given to DESeq2[10] to identify tumor-specific gene differential expression 
status. 

Then we tried to set up RBP regulatory network directly from the RBP peaks. We used the 
full set of protein coding genes in Gencode v19, and then extracted their 3’UTR regions. For any 
protein coding gene, a RBP is supposed to regulate this gene if this RBP has a binding peak 
intersecting the 3’UTR region. 

We inferred the regulation power of each RBP by through a regression approach of the 
above differential expression status and RBP network connectivity. We used the absolute value 
of regression coefficient as the aggregated RBP regulation power. The full table of regulation 
powers in all 18 cancer types were given in Table S7. Interestingly, we found that for the RBPs 
with larger regulation power are those tends to be known to associated with cancer, as listed in 
Table S8. 

For RBPs with high regulation powers, we also performed a patient-wise regulation power 
inference, where the differential expression is determined as the individual expression fold 
change. Then, we tried to use such individual regulatory power to predict disease prognosis. We 
downloaded the patient survival data from TCGA and performed survival analysis using the 
survival package in R (version 2.4.1-3). 

6. Applying RADAR to pathological germline variants 
HGMD variants (version 2015) were used in our analysis. For Figure 5, the signal tracks for 

the eCLIP experiments were directly downloaded from ENCODE. Funseq and CADD scores 
were directly calculated from their website. The list of highly prioritized variants discovered only 
by RADAR were provided in Table S9. The comparison of RADAR baseline scores of HGMD 
vs 1kg variants were given in Figure S 10. Since the majority of 1kG variants are located far 
away from the exon regions, we further extracted variants that are only inside the RBP regulome 
for both HGMD and 1kG variants and compared their RADAR baseline scores. 
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Figure S 10. Baseline RADAR scores of all HGMD vs. all 1kG variants 

 

7. Applying RADAR to somatic variants in cancer 
The breast, liver, lung, and prostate cancer variants were downloaded from the paper by 

Alexandrov et al[11]. We first calculated the baseline RADAR scores on these four cancer types. 
We found that in most cancer types, COSMIC genes and recurrent RBP peaks are associated 
with more high impact variants. Results are shown in Figure S 11. 
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Figure S 11. Baseline RADAR score in somatic variants 
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We also used expression profiles were downloaded from TCGA and the mutational variants 
as disease-specific features to prioritize breast cancer variants. Several more interesting examples 
from breast cancer were given in the following figures. 

 

 
 

Figure S 12. Highlighted breast cancer somatic variants in 3'UTR region 



17 

 
 
1. Lovci MT, Ghanem D, Marr H, Arnold J, Gee S, Parra M, Liang TY, Stark TJ, Gehman 

LT, Hoon S, et al: Rbfox proteins regulate alternative mRNA splicing through 
evolutionarily conserved RNA bridges. Nat Struct Mol Biol 2013, 20:1434-1442. 

2. Ye J, Beetz N, O'Keeffe S, Tapia JC, Macpherson L, Chen WV, Bassel-Duby R, Olson 
EN, Maniatis T: hnRNP U protein is required for normal pre-mRNA splicing and 
postnatal heart development and function. Proc Natl Acad Sci U S A 2015, 
112:E3020-3029. 

3. van Roon AM, Oubridge C, Obayashi E, Sposito B, Newman AJ, Seraphin B, Nagai K: 
Crystal structure of U2 snRNP SF3b components: Hsh49p in complex with Cus1p-
binding domain. RNA 2017, 23:968-981. 

4. Lin PC, Xu RM: Structure and assembly of the SF3a splicing factor complex of U2 
snRNP. EMBO J 2012, 31:1579-1590. 

5. Obeng EA, Ebert BL: Charting the "Splice" Routes to MDS. Cancer Cell 2015, 
27:607-609. 

6. Rousseau F, Labelle Y, Bussieres J, Lindsay C: The fragile x mental retardation 
syndrome 20 years after the FMR1 gene discovery: an expanding universe of 
knowledge. Clin Biochem Rev 2011, 32:135-162. 

7. Crawford DC, Acuna JM, Sherman SL: FMR1 and the fragile X syndrome: human 
genome epidemiology review. Genet Med 2001, 3:359-371. 

8. Lambert N, Robertson A, Jangi M, McGeary S, Sharp PA, Burge CB: RNA Bind-n-Seq: 
quantitative assessment of the sequence and structural binding specificity of RNA 
binding proteins. Mol Cell 2014, 54:887-900. 

9. Bailey TL: DREME: motif discovery in transcription factor ChIP-seq data. 
Bioinformatics 2011, 27:1653-1659. 

10. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2. Genome Biol 2014, 15:550. 

11. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell 
GR, Bolli N, Borg A, Borresen-Dale AL, et al: Signatures of mutational processes in 
human cancer. Nature 2013, 500:415-421. 

 


