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Abstract 

RNA Binding proteins (RBP) play key roles in post-transcriptional regulation. Their binding sites cover a larger 

amount of the genome than coding exons, but most of the current variant prioritization methods ignore RBP 

regulations and only focus on transcriptional-level regulation. Here, we integrated the full catalog of eCLIP, RNA 

Bind-n-Seq, and shRNA RNA-Seq experiments from ENCODE to deeply annotate the RBP regulome. We proposed 

a variant impact scoring framework, RADAR (RNA BinDing protein regulome Annotation and pRioritization), 

which uses human and cross-species conservation, RNA structure, network centrality and RBP motifs to provide a 

baseline impact score. Then RADAR incorporated user-specific inputs, such as differential expression/mutational 

profiles or prior knowledge of regulators or genes to further highlight disease- and tissue-specific variants. Results on 

somatic and germline variants demonstrate that RADAR can successfully pinpoint intronic, splicing-disruptive 

variants in key genes such as TP53, which cannot be fully detected by current methods. 
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Introduction  

Dysregulation of gene expression is a hallmark of many diseases, including cancer1. In recent years, the 

accumulation of transcription-level functional characterization data, such as transcriptional factor binding, 

chromatin accessibility, histone modification, and methylation, has brought great success to annotating and 

pinpointing deleterious variants. However, beyond transcriptional processing, genes also experience 

various delicately controlled steps, including the conversion of premature RNA to mature RNA, and then 

the transportation, translation, and degradation of RNA in the cell. Dysregulation in any one of these steps 

can alter the final fate of gene products and result in abnormal phenotypes2-4. Furthermore, this post-

transcriptional regulome covers an even larger amount of the genome than coding exons and demonstrates 

significantly higher cross-population and cross-species conservation. Unfortunately, the impact of variants 

in the post-transcriptional regulome has been barely investigated, partially due to the lack of large-scale 

functional mapping. 

 

RNA binding proteins (RBPs) have been reported to play essential roles in both co- and post-transcriptional 

regulation5-7. RBPs bind to thousands of genes in the cell through multiple processes, including splicing, 

cleavage and polyadenylation, editing, localization, stability, and translation8-12. Recently, scientists have 

made efforts to complete these post- or co-transcriptional regulomes by synthesizing public RBP binding 

profiles13-16, which have greatly expanded our understanding of RBP regulation. Since 2016, the 

Encyclopedia of DNA Elements (ENCODE) consortium started to release data from various types of assays 

on matched cell types to map the functional elements in post-transcriptional regulome. For instance, 

ENCODE has released large-scale enhanced crosslinking and immunoprecipitation (eCLIP) experiments 

for hundreds of RBPs17. This methodology provides high-quality RBP binding profiles with strict quality 

control and uniform peak calling to accurately catalog the RBP binding sites at a single nucleotide resolution. 
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Simultaneously, ENCODE performed expression quantification by RNA-Seq after knocking down various 

RBPs. Finally, ENCODE has quantitatively assessed the context and structural binding specificity of many 

RBPs by Bind-n-Seq experiments.18 

 

In this study, we aimed to construct a comprehensive RBP regulome and a scoring framework to annotate 

and prioritize variants within it. We collected a full catalog of 318 eCLIP (for 112 RBPs), 76 Bind-n-Seq, 

and 472 shRNA RNA-Seq experiments from ENCODE to construct a comprehensive post-transcriptional 

regulome. By combining polymorphism data from large sequencing cohorts, like the 1,000 Genomes 

Project, we demonstrated that 88 and 94 percent of RBPs showed increased cross-population conservations 

in both coding and noncoding regions, respectively, compared to the genomic average. This strongly 

indicates the purifying selection of the RBP regulome. Furthermore, we developed a scoring scheme, named 

RADAR (RNA BinDing Protein regulome Annotation and pRioritization), to investigate the variant impact 

in such regions. RADAR first combines RBP binding, conservation, network, and motif disruption features 

with polymorphism data to quantify variant impact described by a universal baseline score. Then, it allows 

tissue- or disease-specific inputs, such as differential expression, somatic mutation, and prior knowledge of 

genes, to further highlight relevant variants (Fig. 1). By applying RADAR to both somatic and germline 

variants from disease genomes, we demonstrate that it can pinpoint disease-associated variants missed by 

other methods. Thus, RADAR provides an effective approach to analyzing genetic variants in the RBP 

regulome, and can be leveraged to expand our understanding of post-transcriptional regulation. To this end, 

we have implemented the RADAR annotation and prioritization scheme into software for community use 

(radar.gersteinlab.org).  

Results 
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Defining the RBP regulome using eCLIP data 

We used the binding profiles of 112 distinct RBPs from ENCODE to fully explore the human RBP 

regulome (Supplementary Table 1), which has been previously underinvestigated. Many of these RBPs are 

known to play key roles in post-transcriptional regulation, including splicing, RNA localization, 

transportation, decay, and translation (Supplementary Fig. 1). 

 

Our definition of the RBP regulome covers 52.6 Mbp of the human genome after duplicate and blacklist 

removal (Fig. 2A). This is 1.5 and 5.9 times the size the whole exome and lincRNAs, respectively. In addition, 

only 53.1% of the RBP regulome has transcription-level annotations, such as transcription binding sites, 

open chromatin regions, and enhancers (Supplementary Fig. 2). Unlike the transcription regulome, which 

has many distal elements, 55.1% of the RBP regulome is in the immediate neighborhood of the exome 

regions, such as coding exons, 3’ or 5’ untranslated regions (UTRs), and nearby introns (Fig. 2B; see 

methods section for more details). Furthermore, we observed significantly higher conservation scores in the 

peak regions versus the non-peak regions in almost all annotation categories, providing additional evidence 

of regulatory roles of RBP peaks (Fig. 2C). In summary, the large size of the regulome, the limited overlap 

with previous annotations, and the elevated conservation scores highlight the necessity of our computational 

efforts to define the RBP regulome. 

Using universal features for baseline RADAR score 

To annotate and prioritize variants in RBP binding sites, we built a baseline score framework for RADAR 

that includes three components: (1) sequence and structure conservation; (2) network centrality; and (3) 

nucleotide impact from motif analysis. 
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Sequence and structure conservation in the RBP regulome 

Cross-species sequence comparisons have been widely used to discover regions with biological functions 

\cite{CADD, Funseq, GWAVA}. For example, GERP score maps the human genome to other species to 

identify nucleotide-level evolutional constraints19,20. We used the GERP score in our baseline RADAR 

framework to detect potentially deleterious mutations in the RBP regulome. 

 

Because the enrichment of rare variants indicates a purifying selection in functional regions in human 

genomes21-23, we also inferred conservation of RBP binding sites by integrating population-level 

polymorphism data from large cohorts (i.e. the 1,000 Genomes Project)24,25. GC percentage may confound 

such inference by introducing read coverage variations, which is a sensitive parameter in the downstream 

variant calling process26,27. Therefore, we calculated the fraction of rare variants, defined as those with 

derived allele frequencies (DAFs) less than 0.5%, within each RBP binding site and compared them with 

those from regions with similar GC content as the background (see methods section for more details). In 

total, 88.4% of the RBPs (99 out of 112) showed elevated rare variant fraction in coding regions after GC 

correction (Fig. 3A). Similarly, in the noncoding part of the binding sites, 93.8% of RBPs (105 out of 112) 

exhibited an enrichment of rare variants. This observation convincingly demonstrates the accuracy of our 

RBP regulome definition (Supplementary Table 2). 

 

Some well-known disease-causing RBPs demonstrate the largest enrichment of rare variants. For example, 

the oncogene XRN2, which binds to the 3’ end of transcripts to degrade aberrantly transcribed isoforms, 

showed significant enrichment of rare variants in its binding sites28. Specifically, it demonstrates 12.7% 

and 10.3% more rare variants in coding and noncoding regions, respectively (adjusted P values are 1.89×10-

9 and 2.85×10-118 for one-sided binomial tests)29. Hence, we used the enrichment of rare variants to infer the 
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selection pressure in RBP binding sites to weight the variants in such regulator regions (see methods for 

more details). 

 

RNA secondary structures have been reported to affect every step of protein expression and RNA stability30. 

We incorporated structural features predicted by Evofold, which uses phylogenetic stochastic context-free 

grammars to identify functional RNAs in the human genome that are deeply conserved across species31. 

We found that the RBP binding sites demonstrated significantly higher conversation after intersecting with 

conserved structural regions defined by Evofold. Thus, we used the Evofold regions in our baseline score. 

Incorporating network information 

Highlighting variants in binding hubs 

It has been reported that genes within network hubs demonstrate elevated cross-population conservations 

by demonstrating enrichment of rare variants—a sign of strong purifying selection21,22,32. We hypothesized 

that RBP binding hubs would show similar characteristics because once mutated larger regulation 

alterations may be introduced. To test this, we separated the regulome based on the number of associated 

RBPs. Most regulome regions (62%) were associated with only one RBP (Fig. 3B and Supplementary Fig. 

4). As the number of RBPs increased, we observed a clear trend of larger rare variant enrichment. For 

instance, noncoding regions with at least five or 10 RBPs exhibited 2.2% or 13.4% more rare variants, 

respectively (top 5% and 1%, Fig 3C). This observation supports our hypothesis that the RNA regulome 

hubs are under stronger selection pressure and, thus, should be given high priority when evaluating the 

functional impacts of mutations. 
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Emphasizing genes differentially expressed after RBP knockdown 

RNA-seq expression profiling before and after shRNA mediated RBP depletion from ENCODE can help 

to infer the gene expression changes introduced by RBP knockdown. Variants with disruptive effects on 

RBP binding may affect or even completely remove the RBP binding and hence affect gene expressions in 

a similar way. Therefore, we extracted the differentially expressed genes from RNA-Seq before and after 

shRNA-mediated RBP depletion. Then, we up-weighted all variants that were located near differentially 

expressed genes and simultaneously disrupted the binding of the corresponding RBPs (schematic in 

Supplementary Fig. 5). 

Using motif analysis to determine nucleotide impact 

Mutations that change the RBP binding affinity may alter RBP regulation via motif disruption. We 

quantified the difference of position weight matrix scores of the mutant allele against the reference allele. 

RADAR consists of two sources of motifs. First, we used the motifs identified from RNA Bind-n-Seq 

experiments from ENCODE because it has been reported that many RBP binding events in vivo can be 

captured by binding preferences in vitro. Second, we used the de novo motifs discovered directly from 

binding peaks using the default settings in DREME (details see methods). For each variant, we quantified the 

nucleotide effect using the highest motif score from these two sources. 

Incorporating user-specific features to reweight variant impact 

Variant Prioritization can be improved if informative priors can be appropriately incorporated in to the 

scoring system. Therefore, our RADAR framework allows various types of user-input to help identify 

disease-relevant variants. Specifically, we adopted a top-down scheme to incorporate regulator, element, 

and variant level information to up-weight any factors that are possibly associated with target disease. 
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Highlighting key regulators through expression profiles 

Key regulators are often associated with disease progression, so variants that affect such regulation should 

be prioritized. Therefore, we used RADAR to find disease-specific expression profiles, RADAR tried to 

find such key regulators by combining the RBP regulatory network information with expressions. 

Specifically, we first constructed the RBP network from the eCLIP profiles and defined differentially 

expressed genes from disease and normal cell types. Then for each RBP, we quantified the regulation power 

for each RBP by association with aggregated disease-to-normal differential expressions from many samples. 

We applied this approach on 19 cancer types from TCGA and the regulation powers are given in Fig. 4. 

We found that among many of the RBPs with larger for each RBP power have been reported as cancer-

associated genes (with * in Fig. 4B, Table S3). Interestingly, the regulatory power of two key genes PPIL4 

and SUB1 were found to be significantly associated with patient survival (Fig. 4C).  

 

In our RADAR framework, we further highlight variants that are associated with significant regulators in 

their corresponding cancer types by adding extra point to their baseline scores (details see methods). We 

can easily extend such analysis for other diseases by incorporating differential expression profiles from 

others cohorts such as GTEx33,34. 

 

Up-weighting key elements from either prior knowledge or mutational profiles 

RADAR reconsiders the functional impact difference among RBP peaks either by their associated genes or 

cohort-level mutational profiles. Users can input a prioritized gene list, such as well-documented risk genes 

for a disease of interest, and RADAR up-weights all the RBP peaks that are close to these genes. Genes 

that undergo significant expression or epigenetic changes are mostly cell type specific and be can be used 

to highlight more relevant variants.  
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In addition, RADAR can incorporate variant recurrence, which has been widely used to discover key 

disease regions, to reweight different RBP peaks. Regions with more mutations than expected are often 

considered to be disease-driving35-37. For example, we used RADAR to define a local background somatic 

mutation rate from a large cohort of cancer patients to evaluate the mutation burden in each RBP peak. 

Variants that are associated with burdened elements are given higher priority in the scoring scheme. 

Prioritizing variants with a RADAR weighted scoring scheme 

By integrating the universal and user-specific information described above, our entropy-based scoring 

scheme investigates the functional impacts of variants that are specific to post-transcriptional regulation 

(Fig. 1, Table 1, and Supplementary Fig. 5). First, RADAR adds up the (weighted) score of variants for all 

universal features, which include sequence and structure conservation, binding hubs, and motif disruptions. 

Then, depending on the user inputs, RADAR further up-weights variants with mutations in the key RBP 

binding sites, nearby genes of interest, or within regulatory elements. 

 

Table 1. Features used by RADAR 

Category Feature Source Scoring Scheme 

Universal 

Selection pressure eCLIP Corrected-entropy 

Binding hotspots eCLIP Corrected-entropy 

RBP-gene association shRNA RNA-seq Entropy 

Motif disruption 
Bind-n-Seq 

Corrected-entropy 
DREME 

Structure sensitivity Evofold Entropy 

Conservation Gerp Entropy 

User-specific 

RBP regulatory power 
Survival 

Entropy 
Expression 

Key genes Prior knowledge Entropy 

Mutation Recurrence Mutation profiles Entropy 
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Applying RADAR to pathological germline variants 

We calculated baseline RADAR scores on all pathological variants from HGMD. We used the 1,000 

Genomes variants as the background to compare the distribution of scores. As expected, the HGMD variants 

scored significantly higher than somatic mutations (Supplementary Fig. 6). For example, the mean RADAR 

score for HGMD variants is 0.445, while it is only 0.044 for 1,000 genomes variants (P value <2.2e-16 for 

two sided Wilcoxon test). We further compared RADAR scores of HGMD variants with other methods 

(Supplementary Table 6). In total, 992 HGMD variants were identified by only our methods, 29.6% of 

which were noncoding variants located in a nearby intron, 5’UTR, or 3’UTR (and their extended regions). 

An example of such a variant is shown in Fig. 5; this variant is located 28 base pairs away from the acceptor 

site of exon 3 in TP53. eCLIP experiments showed strong binding evidence in seven RBPs, most of which 

are splicing factors. The co-binding of these above-mentioned splicing factors strongly indicate that this is 

a key splicing regulatory site. Specifically, the A to T mutation strongly disrupts the binding motif of SF3B4, 

increasing the possibility of splicing alteration effects. Our finding is not reflected in previous methods for 

variant prioritization. 

Applying RADAR to somatic variants in cancer 

We next aimed to leverage our scheme to evaluate the deleteriousness of somatic variants from public 

datasets. Due to the lack of a gold standard, we evaluated our results from two perspectives. First, we 

reasoned that since hundreds of cancer-associated genes are known to play essential roles through various 

pathways38,39, variants associated with these genes are likely to have the highest functional impact21. To test 

this hypothesis, we first linked each variant with a gene by the shortest distance according to the Gencode 

v19 annotation. We tested four cancer types, breast, liver, lung, and prostate cancer, and found in all cases 

that variants associated with cancer-related genes showed significant enrichment, with a larger RNA level 

functional impact (Supplementary Fig. 7). For example, we found a 3.27- and 3.36-fold increase in high-
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impact variants at a threshold level of 2.5 and 3, respectively, in breast cancer patients (P < 2.2e-16, single-

sided Wilcoxon).  

 

In our second approach, we hypothesized that variant recurrence could be a sign of functionality and may 

indicate an association with cancer21-23. Thus, we compared the variants’ score distribution from RNA 

binding peaks with or without recurrence. Specifically, we separated the peaks of variants from more than 

one sample from those that were mutated in only one sample, and then compared the percentage of high-

impact scores. We found that in most cancer types, elements with recurrent variants were associated with a 

larger fraction of high-impact mutations. For example, in breast cancer recurrent elements demonstrated a 

1.20, 1.55, and 1.77-fold enrichment of high-impact variants with RADAR greater than 1.5, 2.5, and 3.0, 

respectively, resulting in a P value of 1.71e-19 (one-sided Wilcoxon test). 

A case study on breast cancer patients 

We applied our method on a set of breast cancer somatic variants from 963 patients released by Alexandrov 

et al40. We used COSMIC genes and expression and mutational profiles as additional features. In total, we 

determined that around 3% of the 68,000 variants alter post-transcriptional regulation to some degree. 

Specifically, 169 out of the 501 highly ranked variants only reported by our tool were located in noncoding 

regions, with 15, 28, and 24 from nearby introns, the 5’ UTR, and the 3’ UTR, respectively (Supplementary 

Fig. 8). We found that variants in the intronic region usually bind within 30 bp of the splice sites and break 

the motifs of many splicing factor binding sites. For the 3’ UTR regions, variants reported only by RADAR 

were within the binding peaks of cleavage stimulation factor binding sites, strongly indicative of a role in 

the polyadenylation of pre-mRNAs. The discovery of such meaningful results indicates the ability of 

RADAR to differentiate deleterious mutations that disrupt post-transcriptional regulation. 

Discussion 
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In this study, we integrated the full catalog of eCLIP, Bind-n-Seq, and shRNA RNA-Seq experiments from 

ENCODE to build a RNA regulome for post-transcriptional regulation. Although DNA-level regulation takes 

up a larger part of the genome, our defined RBP regulome is larger than previously thought and covered as 

much as 56.2 Mbp of the genome (Fig. 2A). In fact, the regulome is larger than the size of whole exome 

and only showed limited overlap with previous transcription-level annotations (Supplementary Fig. 2.). 

Furthermore, we found that the RBP regulome demonstrated noticeably larger conservation in two areas: 

higher cross-species conservation across all annotation categories (Fig. 2C) and significant enrichment in 

rare variants for most RBPs (Fig. 3A). These two sources of evidence support the notion that the RBP 

regulome is under strong purifying selection and carries out important biological functions. In addition, 

these results signify the necessity of computational tools to annotate and prioritize variants in the RBP 

regulome, which are under investigated. 

 

By integrating a variety of regulator-, element-, and nucleotide-level features, we propose an entropy-based 

scoring frame, RADAR, to investigate impact of somatic and germline variants. The variant prioritization 

framework of RADAR contains two parts. First, by incorporating eCLIP, Bind-n-Seq, shRNA RNA-seq 

experiments with conservation and structural features, we built a pre-defined data context to quantify the 

baseline variant impact score. This approach is suitable for multiple-disease analysis or cases where no 

other prior information can be used. Applying this score to HGMD pathological variants highlighted many 

candidates that were solely discovered by RADAR and provided detailed explanation of the underlying 

disease-causing mechanism (Fig. 5). In addition to the baseline score, RADAR also allows user-specific 

inputs such as prior gene knowledge, patient expression, and mutation and survival profiles for a re-

weighting process to highlight relevant variants in a disease-specific manner. As an example, we performed 

a breast cancer variant prioritization and score re-weighting scheme with user inputs in the well-known 
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tumor suppressor gene TP53. Also results from somatic variants from several cancer types and showed that 

this scheme is able to identify relevant variants (Supplementary Fig. 7). 

 

In summary, we have shown that RADAR is a useful tool for annotating and prioritizing post-transcriptional 

regulomes for RBPs, which has not been covered by most of the current variant functional impact interpretation 

tools. Our method also provides additional layers of information to current gene regulomes. Importantly, 

the RADAR scoring scheme can be used in conjunction with current transcriptional variant functional 

evaluation tools, such as Funseq, to evaluate variant impacts. Given the fast expanding collection of RBP 

binding profiles from additional cell types, we envision that RADAR can better tackle the functional 

consequence of mutations from both somatic and germline genomes.  

 

Methods 

 

eCLIP Data Processing and Quality Control 

We collected 318 eCLIP experiments of 112 unique RBP from the ENCODE data portal 

(encodeprojects.org, released and processed by July 2017). eCLIP data was processed through the 

ENCODE 3 uniform data processing pipeline and peaks with score 1,000 were used in our analysis. We 

then removed binding site locations containing blacklisted regions. We further separated the peaks into 

coding regions and the noncoding regions. 
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Cross-population conservation inference 

We used germline variants from the 1,000 Genomes Project to infer the selection pressure of RBP binding 

sites by evaluating their enrichment of rare variants. Specifically, for any RBP 𝑖, suppose its binding peaks 

contain 𝑛𝑖
𝑟 rare variants (DAF<= 0.005) and 𝑛𝑖

𝑐 common variants. The percentage of rare variants is defined 

as 

𝑟𝑖 =
𝑛𝑖

𝑟

𝑛𝑖
𝑟+𝑛𝑖

𝑐                                                                    (1) 

In order to correct for potential GC bias, we first binned the genome into 500 base pair bins and grouped 

them according to their GC percentage. For RBP 𝑖 with GC percentage 𝑔𝑐𝑖, we only selected bin groups 

with closest GC to calculate the background rare variant percentage 𝑟𝑏𝑔
𝑔𝑐𝑖 . As a result, the corrected 

enrichment of rare variants was defined as 

�́�𝑖
𝑔𝑐 = 𝑟𝑖 𝑟𝑏𝑔

𝑔𝑐𝑖⁄                                                           (2) 

Regions with �́�𝑖
𝑔𝑐  larger than 1 suggested a purifying selection. 

 

RBP Network information 

We first separated the RBP regions into coding and noncoding regions and then calculated the number of 

RBPs binding in each nucleotide. Then we grouped the RBP regulome by the number of binding RBPs and 

calculated the GC corrected enrichment of rare variants for each group in coding and noncoding regions 

separately by equation (2). We found that the conservation level of the binding sites increases as the number 

of binding RBPs grows.  

 

Specifically, we selected regions with at least the top 5 and 1 percent of binding RBPs as the hot and ultra-

hot regions to give extra score in our RADAR framework. 
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Motif Analysis 

We used the changes of PWMs by a variant to quantify the motif disruptiveness effect through 

motiftools(https://github.com/hoondy/MotifTools). We defined the D-score as in equation (3) to represent 

the difference between sequence specificities in reference to an alternative sequence. 

𝐷𝑠𝑐𝑜𝑟𝑒 =  𝑚𝑜𝑡𝑖𝑓𝑠𝑐𝑜𝑟𝑒𝑟𝑒𝑓 − 𝑚𝑜𝑡𝑖𝑓𝑠𝑐𝑜𝑟𝑒𝑎𝑙𝑡 = −10 × log10 (
𝑝𝑟𝑒𝑓

𝑝𝑎𝑙𝑡
)                            (3) 

To quantify a motif breaking event, we require that the p value for the reference allele is at least 5e-4(JZ2JL: 

correct?). There are two motif sources in our analysis. First, we identified RBP motifs using DREME 

software (Version 4.12.0) directly from RBP peaks. Then, we also utilized an in vitro RNA binding assay, 

RNA Bind-N-Seq (RBNS, Lambert et al. Molecular cell 54.5 (2014): 887-900 JZ2JL: fix), to characterize 

sequence and structural specificities of RBPs. For the RBNS motifs, we selected sequences based on an 

enrichment Z-score cutoff of 3 (JZ2JL: check the details of their paper). For each variant that affected 

multiple RBP binding profiles, we determined the max score. 

 

Baseline Variant Scoring 

We considered 6 different features in the RADAR baseline scoring scheme (details in Table S10). For any 

continuous feature 𝑖 listed in Table S10, we first calculated the percent of SNPs from 1,000 Genomes that 

are falling into this feature category and denote it as 𝑓. Then the entropy related weight is used to evaluate 

the functional impact. 

𝑆𝑖 = 1 + 𝑓𝑖 × log(𝑓𝑖) + (1 − 𝑓𝑖) × log (1 − 𝑓𝑖)                               (4) 

Specifically, for the motif analysis, for any motif breaking event with D-score �́�, 𝑓𝑖 should be the percent 

of SNPs with equal or larger D-scores among all the 1,000 Genomes SNPs. 

https://github.com/hoondy/MotifTools
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𝑓𝑖 =
#(𝑑≥�́�)

𝑛
                                                                   (5) 

For any continuous feature that used the weighted entropy value, we further used the GC corrected rare 

variant enrichment �́�𝑖
𝑔𝑐

 of the RBP as a coefficient to reweight the score S. Finally, the overall baseline 

RADAR score is 𝑆 = ∑ 𝑆𝑖𝑖  

 

 

RBP Regulatory Power from Linear Regression 

RADAR allows inputs in addition to the pre-built context used to calculate the baseline variant score. In 

this paper, we used the TCGA expression profiles as an example on the cancer variant prioritization. 

Specifically, we downloaded expression profiles of xxx cancer patients of 24 types from TCGA. To get a 

robust differential expression analysis, we excluded 5 cancer types that have less than 10 normal expression 

profiles and used DESeq to find tumor-to-normal differentially expressed genes (corrected p-val from 

DESeq <0.05). Let 𝑦𝑖
𝑘 represent the differential expression status of gene 𝑖 of the 𝑘𝑡ℎ cancer type. 

 

Then we tried to set up RBP regulatory network directly from the RBP peaks. We used the full set of protein 

coding genes in Gencode v19, and then extracted their 3’UTR regions. For any protein coding gene, a RBP 

is supposed to regulate this gene if this RBP has a binding peak intersecting the 3’UTR region. For any 

RBP, 𝑥𝑖 = 1 if it regulate gene 𝑖. 𝑥𝑖 = 0 otherwise. 

 

We inferred the regulatory power of each RBP by through a regression approach of the above differential 

expression and RBP network connectivity as �⃗⃗� = 𝛽0 + 𝛽1�⃗⃗� . The associated p-value is also an indication of 

the statistical significance that such a regulatory potential exists. The full table of regulatory power in all 
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19 cancer types were given in Table S7 and Figure S9. Interestingly, we found that for the RBPs with larger 

regulatory power are those tends to be known to associate with cancer, as listed in Table S8. 

 

For RBPs with high regulator powers, we also performed a patient-wise regulatory power inference, where 

the differential expression is determined as the individual expression fold change. Then, we tried to use 

such individual regulatory power to predict disease prognosis. We downloaded the patient survival data 

from TCGA and performed survival analysis using the survival package in R (version 2.4.1-3). The full list 

of RBPs that are associated with patient survival are given in Table S9. 

 

Recurrence in Somatic Mutations 

We prioritized variants that fell in elements (RBP binding sites) that were statistically enriched for somatic 

mutations. In order to do this, we first binned the genome using 1Mbp windows, and counted the number 

of somatic mutations in each window. This provided us a with a local mutation rate. Then, for each RBP 

binding site, we counted the number of somatic mutations, and compared it to the nearest local 1Mbp 

context using a one-sided binomial test. If a specific RBP binding site was enriched for somatic mutations, 

the variant falling in that site was given higher priority via the entropy scoring scheme. 

 

Resource and Software Accessibility 

We have made this RNA variant prioritization tool available as an open-source Python source at 

radar.gersteinlab.org. The website contains details on usage, examples, resources, and dependencies. We 

recommend a system with 10gb of RAM to avoid slowed performance for variant sets with a sample size 

below 1 million. We also provided a genome-wide pre-built RADAR score for every base pair on the 

genome (hg19 version of genome). Users can directly query the annotation and functional impact score 



 

19 

 

 

from radar.gersteinlab.org. In addition, we released the RBP-gene regulatory network at 

radar.gersteinlab.org. 
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