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http://www.genenetwork.nl/bloodeqtlbrowser+
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Supplementary+Table+4+
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and+E6MTAB61708).+
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Identifying the downstream effects of disease-associated  
SNPs is challenging. To help overcome this problem,  
we performed expression quantitative trait locus (eQTL)  
meta-analysis in non-transformed peripheral blood samples 
from 5,311 individuals with replication in 2,775 individuals. 
We identified and replicated trans eQTLs for 233 SNPs 
(reflecting 103 independent loci) that were previously 
associated with complex traits at genome-wide significance. 
Some of these SNPs affect multiple genes in trans that are 
known to be altered in individuals with disease: rs4917014, 
previously associated with systemic lupus erythematosus 
(SLE)1, altered gene expression of C1QB and five type I 
interferon response genes, both hallmarks of SLE2–4. DeepSAGE 
RNA sequencing showed that rs4917014 strongly alters the  
3  UTR levels of IKZF1 in cis, and chromatin immunoprecipitation 
and sequencing analysis of the trans-regulated genes implicated 
IKZF1 as the causal gene. Variants associated with cholesterol 
metabolism and type 1 diabetes showed similar phenomena, 
indicating that large-scale eQTL mapping provides insight into 
the downstream effects of many trait-associated variants.

Genome-wide association studies (GWAS) have identified thou-
sands of variants that are associated with complex traits and diseases. 
However, because most variants are noncoding, it is difficult to iden-
tify causal genes. Several eQTL-mapping studies5–8 have shown that 
disease-predisposing variants often affect the gene expression levels 
of nearby genes (cis eQTLs). A few recent studies have also identified 
trans eQTLs5,9–13, showing the downstream consequences of some 

variants. However, the total number of reported trans eQTLs is low, 
mainly owing to the multiple-testing burden. To improve statisti-
cal power, we performed an eQTL meta-analysis in 5,311 peripheral 
blood samples from 7 studies (EGCUT14, InCHIANTI15, Rotterdam 
Study16, Fehrmann5, HVH17–19, SHIP-TREND20 and DILGOM21) and 
replication analysis in another 2,775 samples. We aimed to ascertain 
to what extent SNPs affect genes in cis and in trans and to determine 
whether eQTL mapping in peripheral blood could identify down-
stream pathways that might be drivers of disease processes.

Our genome-wide analysis identified cis eQTLs for 44% of all tested 
genes (6,418 genes at probe-level false discovery rate (FDR) <0.05 and 
4,690 genes with a more stringent Bonferroni multiple-testing correc-
tion; Table 1, Supplementary Figs. 1–3 and Supplementary Tables 
1–3). Our trans-eQTL analysis focused on 4,542 SNPs that have been 
implicated in complex disease or traits (derived from the Catalog of 
Published GWAS; see URLs). In the discovery data set, we detected 
trans eQTLs for 1,513 significant trans eQTLs that included 346 unique 
SNPs (FDR <0.05; 8% of all tested SNPs; Table 1, Supplementary Fig. 4  
and Supplementary Table 4) affecting the expression of 430 different 
genes (643 trans eQTLs, including 200 unique SNPs and 223 different 
genes with a more stringent Bonferroni correction).

We used stringent procedures for trans-eQTL detection 
(Supplementary Note) and various benchmarks to ensure reliability:  
for 26 trans-eQTL genes, the eQTL SNP affected multiple probes 
within these genes (Supplementary Table 5), always with consistent 
allelic directions, suggesting that our probe-filtering procedure was 
effective in preventing false-positive trans eQTLs. Trans eQTLs showed 
similar effect sizes across the various cohorts (Supplementary Fig. 5).  

Systematic identification of trans eQTLs as putative 
drivers of known disease associations
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We did not find evidence that trans eQTLs were driven by differences 
in age or blood cell counts between individuals (Supplementary Fig. 6,  
Supplementary Table 6 and Supplementary Note). However,  
we cannot exclude this possibility entirely because FACS analyses 
on individual cell types had not been conducted. We also detected  
previously reported blood trans eQTLs5 in this study (Supplementary 
Fig. 7, Supplementary Table 7 and Supplementary Note).

To ensure reproducibility of the detected trans eQTLs, we replicated 
trans eQTLs from our discovery meta-analysis in 2 independent studies  
of peripheral blood gene expression: 52% in KORA F4 (n = 740  
samples)22 and 79% in BSGS (n = 862 samples)23 (FDR < 0.05; 
Supplementary Fig. 8). Irrespective of significance, 91% and 93% 
of all 1,513 significant trans-eQTL SNP-probe combinations showed 
consistent allelic direction in these replication cohorts compared with 
in the discovery analysis. A meta-analysis of the two replication studies  
improved replication rates: 89% of the 1,513 trans eQTLs were sig-
nificantly replicated (FDR <0.05), with 99.7% showing a consistent 
allelic direction. Irrespective of significance, 97% of the trans eQTLs 
showed a consistent allelic direction in this replication meta-analysis 
(Supplementary Fig. 8). We found that some trans eQTLs could be 
detected in three cell type–specific data sets (283 monocyte samples9, 
282 B cell samples9 and 608 HapMap lymphoblastoid cell line (LCL) 
samples24; Supplementary Figs. 9 and 10). Despite the different tis-
sues analyzed in these three studies, we were able to significantly 
replicate 7%, 4% and 2% of the trans eQTLs (FDR <0.05), respectively. 
As 95% of the trans-eQTL SNPs explained less than 3% of the total 

expression variance (Supplementary Fig. 11 and Supplementary 
Table 6), we lack statistical power to replicate most trans eQTLs in 
these smaller replication cohorts.

We subsequently confined further analyses to 2,082 different SNPs 
that have been found to be associated with complex traits at genome-
wide significance (trait-associated SNPs; reported P < 5 × 10−8;  
out of 4,542 unique SNPs that we tested). These 2,082 SNPs showed 
a significantly higher number of trans-eQTL effects compared with 
the 2,460 tested SNPs with reported disease associations at lower 
significance levels (P = 8 × 10−22; Supplementary Fig. 12 and 
Supplementary Note): 254 of these 2,082 SNPs showed a trans-
eQTL effect in the discovery analysis (reflecting 1,340 SNP-probe 
combinations; 1,201 of these were significantly replicated in blood, 
reflecting 233 different SNPs and 103 independent loci). For 671 of 
these 1,340 trans eQTLs (50%), the trait-associated SNP (or a SNP 
in strong linkage disequilibrium, LD) was the strongest trans-eQTL 
SNP within the locus or was unlinked to the strongest trans-eQTL 
SNP (Supplementary Table 8 and Supplementary Note). The 2,082 
trait-associated SNPs were 6 times more likely to cause trans-eQTL 
effects than were randomly selected SNPs (matched for distance to 
the gene and allele frequency; P = 5.6 × 10−49; Supplementary Fig. 13 
and Supplementary Note). SNPs associated with (auto)immune or 
hematological traits were twice as likely to underlie trans eQTLs com-
pared with other trait-associated SNPs (P = 5 × 10−25; Supplementary 
Note). Trait-associated SNPs that also caused trans eQTLs affected 
the expression levels of nearby transcription factors in cis more fre-
quently than trait-associated SNPs that did not affect genes in trans 
(Fisher’s exact P = 0.032; Supplementary Note), suggesting that some 
trans eQTLs arise owing to altered cis gene expression levels of nearby 
transcription factors.

We examined the genomic properties of the trans-eQTL SNPs (and 
their perfect proxies identified using data from the 1000 Genomes 
Project25,26): these SNPs were significantly enriched for mapping 
within microRNA (miRNA) binding sites (Fisher’s exact P < 0.05; 
Fig. 1a). They mapped to regions in K562 (myeloid) and GM12878 
(lymphoid) cell lines showing enrichment of histone enhancer signals 
(fold change >2.5; Fig. 1b) compared to the signals observed in six 
non-blood cell lines. Enhancer enrichment in myeloid and lymphoid 
cells supports the validity of our blood-derived trans eQTLs. These 
results suggest that trans-eQTL effects are tissue specific, a notion that 
is supported by our inability to replicate a trans eQTL that was previ-
ously identified in adipose tissue13 for SNP rs4731702, associated with 

both type 2 diabetes (T2D) and lipid levels.
These trans eQTLs can provide insight into 

the pathogenesis of disease. Although RNA 
microarray studies have identified dysregu-
lated pathways for many complex diseases, 
it is often unclear whether associated SNPs 
first cause defects in the pathways whose 
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Figure 1 Trans-eQTL SNPs are enriched for 
functional elements. We investigated whether 
trans-eQTL SNPs are enriched for certain 
functional elements using the online tools 
SNPInfo, SNPNexus and HaploReg that rely on 
data from, among others, the ENCODE Project. 
(a) Trans-eQTL SNPs are enriched for mapping 
within miRNA binding sites. (b) Trans-eQTL 
SNPs show strong enrichment (as annotated 
using HaploReg) for enhancer regions that 
are present in K562 (myeloid) and GM12878 
(lymphoid) cell lines (error bars, 1 s.d.).

Table 1 Results of cis- and trans-eQTL mapping analyses
Cis-eQTL analysis Trans-eQTL analysis

FDR <0.05 
significance

Bonferroni 
significance

FDR <0.05 
significance

Bonferroni 
significance

Number of significant  
unique SNP-probe pairs

664,097 395,543 1,513 643

Number of significant  
unique eQTL SNPs

397,310 266,036 346 200

Number of significant  
unique eQTL probes

8,228 5,738 494 240

Number of significant  
unique eQTL-regulated 
genes

6,418 4,690 430 223

Number of significant  
unique eQTL probes not 
mapping to genes

636 326 35 13
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dysregulation ultimately leads to disease or vice-versa. One example 
of this type of complex disease is SLE, which is an autoimmune dis-
ease causing inflammation and tissue damage. Individuals with SLE 
have increased type I interferon (IFN- ) levels, increased expression 
of IFN-  response genes4,27,28 and decreased expression of the C1Q 
complement genes. We observed that four common SLE-associated 
variants affected IFN-  response genes in cis (IRF5, IRF7, TAP2 and 
PSMB9; Supplementary Table 3). As most SLE-associated SNPs do 
not map near complement or IFN-  response genes, we assessed 
whether SLE-associated SNPs affect these genes in trans. This was 
the case for rs4917014, for which the SLE risk allele (rs4917014[T]; 

showing genome-wide significance in Asian populations and nominal 
significance in European populations1,24) not only increased expres-
sion of five different IFN-  response genes (HERC5, IFI6, IFIT1, 
MX1 and TNFRSF21; Fig. 2) but also decreased expression of three 
different probes in CLEC10A. We also observed a nominally signifi-
cant association of rs4917014[T] with decreased expression of C1QB  
(P = 5.2 × 10−6; FDR = 0.28), encoding a subunit of the C1q com-
plement complex, which has a protective role in lupus: complete 
deletion of the genes encoding the C1q subunits practically ensures 
the development of SLE29,30. CLEC10A and CLEC4C belong to the  
C-type lectin family, which includes mannose-binding lectins (MBLs). 

SLE risk allele rs4917014[T] 
affects IKZF1 in cis and many

genes in trans
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Although, to our knowledge, CLEC10A and CLEC4C have not been 
studied in the context of SLE, the role of MBLs is similar to that of 
the C1q complex, and MBLs are a risk factor for the development 
of autoimmunity in humans and mice3. The rs4917014 trans eQTLs 
replicated well in the peripheral blood and monocyte replication data 
sets and reinforce the role of altered expression of the IFN-  pathway, 
C-type lectin and C1Q genes in SLE. Individuals without SLE but 
who carry the rs497014[T] risk allele show these pathway alterations, 
indicating that these affected pathways are not solely a consequence 
of SLE but could precede SLE onset.

We investigated the underlying mechanisms of the effects exerted 
by rs4917014. IKZF1 is the only gene overlapping the rs4917014 
locus. As this gene encodes a transcription factor (Ikaros-family 
zinc finger 1), cis-regulatory effects of rs4917014 on IKZF1 and con-
sequent altered IKZF1 protein levels could constitute a mechanism 
for the detected trans-eQTL effects. However, because our meta-
analysis did not initially detect a cis eQTL on the Illumina probe 
for IKZF1 located near the 5  UTR of the gene, we investigated the  
3  UTR using Deep Serial Analysis of Gene Expression (DeepSAGE) 
next-generation RNA sequencing data from 94 peripheral blood  
samples31. The variant rs4917014[T] allele increased expres-
sion levels of the 3  UTR of IKZF1 (Spearman’s correlation = 0.45;  
P = 6.29 × 10−6). Using Encyclopedia of DNA Elements (ENCODE) 
Project32 chromatin immunoprecipitation and sequencing (ChIP-
seq) data, we observed significantly increased IKZF1 protein 
binding within genomic locations corresponding with trans eQTL– 
upregulated genes compared with all other genic DNA (Wilcoxon  
P value = 0.046) and with SLE cis eQTL–upregulated genes outside of 
the IKZF1 locus (Wilcoxon P value = 4.3 × 10−4), thereby confirm-
ing the importance of IKZF1 in SLE. IKZF1 is also important for 
other phenotypes: rs12718597, an unlinked intronic variant within 
IKZF1, is associated with mean corpuscular volume (MCV)33 and 
affects the expression of Illumina probe 4390086 near the 5  end of 
IKZF1 in cis. Ikzf1 knockout mice show abnormal erythropoiesis34, 
suggesting a causal role for human IKZF1 in MCV as well. However, 
although rs12718597[A] was associated in trans with the upregula-
tion of 31 genes and with the downregulation of 19 genes, none of the 
SLE trans-regulated genes overlapped with the MCV trans-regulated 
genes. The latter were mainly involved in hemoglobin metabolism 
and did not show increased IKZF1 binding (Wilcoxon P value = 0.35).  
In summary, these results indicate that IKZF1 has multiple functions 
and that different SNPs near IKZF1 elicit function-specific effects.

We identified other trans eQTLs showing similar phenomena. 
For example, rs174546 (located in the 3  UTR of FADS1 and asso-
ciated with metabolic syndrome35 and with low-density lipopro-
tein (LDL) and total cholesterol levels36,37) affected the expression 
of TMEM258, FADS1 and FADS2 in cis and the expression of 
LDLR in trans (Supplementary Fig. 14). LDLR encodes the LDL  
receptor and contains common variants that are also associated with 
lipid levels37. LDLR gene expression levels correlated negatively  
(P < 3.0 × 10−4) with total, high-density lipoprotein (HDL) and LDL 
cholesterol levels in the tested cohorts (Rotterdam Study and EGCUT; 
Supplementary Table 9), indicating that peripheral blood is a use-
ful tissue for gaining insight into the downstream effects of lipid- 
regulating SNPs.

For 21 different complex traits, at least 2 unlinked variants that 
have been associated with these diseases affected exactly the same 
gene in trans (compared with 1 complex trait similarly affected by 
variants from equally sized but permuted lists of trans eQTLs; Table 2, 
Supplementary Fig. 15 and Supplementary Table 10). Although most 
of these traits are hematological (for example, mean platelet volume or 

serum iron levels), we also observed this convergence for blood pres-
sure, celiac disease, multiple sclerosis and type 1 diabetes (T1D).

rs3184504 (located in an exon of SH2B3) and its proxy rs653178 
(located in an intronic region of ATXN2 on chromosome 12) have 
been associated with several autoimmune diseases, including T1D38,39 
and the production of autoantibodies therein38,39, celiac disease8,40, 
hyperthyroidism41, vitiligo42 and rheumatoid arthritis40, as well as 
with other complex traits such as blood pressure43,44, chronic kidney 
disease45 and eosinophil counts46. We observed a cis-eQTL effect for 
this SNP on SH2B3 (FDR < 0.05) and trans-eQTL effects on 14 genes 
(FDR < 0.05; Fig. 3), all of which are highly expressed in neutrophils. 
Because the trans-eQTLs effects could be explained by known effect 
of rs3184504 on differences in cell count proportions46, we correlated  

Table 2 Complex traits where multiple unlinked SNPs affect the 
same downstream genes

Trait type Complex trait
Genes affected by at least two 
unlinked trait-associated SNPs

Immune-related 
traits

T1D GBP4, STAT1

T1D autoantibodies GBP4, STAT1
Celiac disease CXCR6, FYCO1
Multiple sclerosis CD5

Blood pressure 
traits

Diastolic blood pressure LOC338758

Systolic blood pressure LOC338758
Hematological 

traits
Hemoglobin ALAS2

Hematological parameters FBXO7
F cell distribution ESPN, PHOSPHO1, GNAS, 

TSPAN13, VWCE,
Hematocrit ALAS2
Serum markers of iron 

status
ALAS2

Red blood cell traits ALAS2
Serum iron levels ALAS2
Glycated hemoglobin levels ALAS2
Hematology traits ALAS2
Serum hepcidin ALAS2
-thalassemia PHOSPHO1, VWCE, TSPAN13, 

ESPN
Hematological and  

biochemical traits
AL109955.37-3, RBM38, TRIM58

Mean corpuscular  
hemoglobin

ALAS2, C18orf10, DNAJB2, ESPN, 
HBM, KEL, PDZK1IP1, PIM1, 
PRDX5, RAP1GAP, UBXN6, 
VWCE, XK

Mean corpuscular volume ALAS2, B4GALT3, C18orf10, 
C1orf128, C22orf13, C5orf4, 
CCBP2, CSDA, DNAJB2, 
EIF2AK1, ESPN, FBXO7, HAGH, 
HBM, HPS1, KEL, KLC3, KRT1, 
LGALS3, MARCH8, MCOLN1, 
OSBP2, PDZK1IP1, PHOSPHO1, 
PIM1, PLEK2, PPP2R5B, 
PRDX5, PTMS, RAP1GAP, 
RIOK3, TGM2, TSTA3, UBXN6, 
VWCE, XK

Mean platelet volume ABCC3, AL353716.18, AQP10, 
C19orf33, C6orf152, CABP5,  
CTDSPL, CTTN, CXCL5, ESAM, 
F13A1, GNB5, GNG11, GP9,  
GUCY1A3, ITGA2B, ITGB5, 
LIMS1, LY6G6F, MMRN1, MPL, 
NRGN, PARVB, PRDX6, PTCRA, 
RAB27B, RBPMS2, SAMD14, 
SH3BGRL2, TSPAN9, VCL
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the expression levels of trans-regulated genes with cell counts in 
two cohorts (Rotterdam Study and EGCUT) but did not observe 
significant correlations (Supplementary Table 9). The identified 
trans eQTLs describe different biological functions: the T1D risk 
allele rs3184504[T] was associated with decreased expression of nine 
genes, most of which are involved in Toll-like receptor signaling47 
(C12orf75, FOS, IDS, IL8, LOC338758, NALP12, PPP1R15A, S100A10 
and TAGAP) and with increased expression of five genes involved 
in the interferon-  response (GBP2, GBP4, STAT1, UBE2L6 and 
UPP1). We observed that another T1D risk allele, rs4788084[C]38,39 
on chromosome 16, was also associated with increased expression of 
GBP4 and STAT1, showing how different T1D risk alleles converge, 
with both alleles causing an increase in the expression of interferon-  
response genes.

In summary, our eQTL meta-analysis identified and replicated 
downstream effects for 233 trait-associated SNPs. Our analyses 
show that trans-eQTL mapping in blood for lipid-regulatory and 
immune-mediated disease variants yields insights into downstream 
pathways that are biologically meaningful. Future, larger-scale 
trans-eQTL analyses in blood will likely uncover many more of these  
regulatory relationships.

URLs. Catalog of Published GWAS (16 July 2011), http://www.
genome.gov/gwastudies/.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. We have made a browser available for all  
significant trans eQTLs and cis eQTLs at http://www.genenetwork.nl/
bloodeqtlbrowser. This browser also provides all trans eQTLs that we 

detected at a somewhat less stringent FDR of 0.5 to enable more in-depth 
post hoc analyses. Gene expression data are available for download at the 
Gene Expression Omnibus (GEO) (GSE36382, GSE20142, GSE20332, 
GSE33828, GSE33321, GSE47729; GSE48348 and GSE48152) and  
ArrayExpress (E-TABM-1036, E-MTAB-945 and E-MTAB-1708).

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Study populations. We performed a whole-genome eQTL meta-analysis of 
5,311 samples from peripheral blood divided over a total of 9 data sets from 7 
cohorts, including EGCUT14 (n = 891), InCHIANTI15 (n = 611), Rotterdam 
Study16 (n = 762), Fehrmann5 (n = 1,240 on the Illumina HT12v3 platform 
and 229 on the Illumina H8v2 platform), HVH17–19 (n = 43 on the Illumina 
HT12v3 platform and 63 on the Illumina HT12v4 platform), SHIP-TREND20 
(n = 963) and DILGOM21 (n = 509). Gene expression data for each data set 
were obtained by isolating RNA using either PAXGene (Becton Dickinson) 
or Tempus (Life Technologies) tubes and then hybridizing RNA to Illumina 
whole-genome Expression BeadChips (HT12v3, HT12v4 or H8v2 arrays). 
Gene expression platforms were harmonized by matching probe sequences 
across the different platforms. Mappings for these sequences were obtained by 
mapping the sequences against Build 36 of the human genome (Ensembl Build 
54, hg18) using the BLAT, BWA and SOAPv2 sequence alignment programs. 
Highly stringent alignment criteria were used to ensure that probes mapped 
unequivocally to a single genomic position. Genotype data were acquired using 
different genotyping platforms and were harmonized by imputation, using the 
HapMap 2 CEU population as a reference48. Each data set was individually 
checked for sample mix-ups using MixupMapper49. For a full descriptions of 
the individual data sets, the results of the sample mix-up analysis, specifics  
on the gene expression platforms used and probe mapping and filtering pro-
cedures, see the Supplementary Note.

Gene expression normalization. Gene expression data were quantile nor-
malized to the median distribution and were subsequently log2 transformed. 
Probe and sample means were centered to zero. Gene expression data were 
then corrected for possible population structure through the removal of four 
multidimensional scaling components using linear regression. We reasoned 
earlier that normalized gene expression data still contain large amounts of non-
genetic variation5. Therefore, after correction for population stratification, we 
performed principal-component analysis (PCA) on the sample correlation 
matrix. We performed a separate QTL analysis for each principal compo-
nent to ascertain whether genetic variants could be detected that affected 
each principal component. If we found an effect on the principal component, 
we did not correct the expression data for this component to ensure that we 
would not unintentionally remove genetic effects from the expression data. 
We established the significance of these associations by controlling the FDR, 
testing each association against a null distribution created by repeating the 
analysis 100 times (permuting the sample labels for each iteration50). Principal 
components that did not show significance at the FDR threshold of 0.0 were  
removed from the gene expression data by linear regression. In all but 2 very 
small data sets, the first 40 principal components were removed (excluding 
those components for each cohort that showed a QTL effect). We observed 
that the removal of these 40 components resulted in the identification of the 
highest number of eQTLs in each data set. Although principal-component 
correction might remove some eQTL effects, we observed that the majority 
of trans-eQTL effects (95% when removing 35 principal components and 90% 
when removing 45 principal components) were independent of the number of 
principal components removed (Supplementary Fig. 16).

eQTL mapping. After normalization of the data, we performed both cis- 
and trans-eQTL mapping. eQTLs were deemed cis eQTLs when the distance 
between the SNP chromosomal position and the probe midpoint was less than 
250 kb, whereas eQTLs with a distance greater than 5 Mb were defined as trans 
eQTLs. Only SNPs with a minor allele frequency (MAF) of >0.05 and a Hardy-
Weinberg equilibrium P value of >0.001 were included in the analyses. Because 
most cohorts had generated gene expression data using the HT12v3 platform, 
we chose to only include probes that were present on this platform. We only 
tested SNP-probe pairs when the SNP passed quality control in at least three 
cohorts. Furthermore, to address issues with respect to computational time and 
multiple testing, we confined our trans-eQTL analysis to those SNPs present 
in the Catalog of Published GWAS (see URLs; accessed 16 July 2011). We 
reasoned that, for genes with strong cis-eQTL effects, a cis-eQTL effect might 
obscure the detectability of trans eQTLs. Therefore, we used linear regression 
to remove cis-eQTL effects before trans-eQTL mapping and observed a 12% 

increase in the number of detected trans eQTLs (Supplementary Fig. 17). 
For each cohort, eQTLs were mapped using a Spearman’s rank correlation 
on imputed genotype dosages. We used a weighted z-score method for sub-
sequent meta-analysis51. To generate a realistic null distribution, we permuted 
the sample identifiers of the expression data and repeated this analysis ten 
times (Supplementary Fig. 18). In each permutation, the sample labels were 
permuted. We then corrected for multiple testing by setting the FDR at 0.05, 
testing each P value in the real data against a null distribution created from 
the permuted data sets50 (Supplementary Note). It has been suggested that 
false-positive eQTL effects can arise owing to polymorphisms in the probe 
sequences52,53. Therefore, we tested whether a significant cis-eQTL SNP was 
in LD (r2 > 0.2) with any SNP in the cis probe sequence, using the Western 
European subpopulations of the 1000 Genomes Project25 (2011-05-21 release; 
286 individuals, excluding Finnish individuals) as a reference. If we observed 
this to be the case, the respective cis eQTLs were removed. Furthermore, for 
each trans eQTL, we investigated whether portions of the probe sequence 
could be mapped to the vicinity of the trans-eQTL SNP (which would imply 
a cis-eQTL rather than a trans-eQTL effect). For this analysis, we tried to 
map the trans-eQTL probe sequences, using very permissive settings, within a  
5-Mb window centered on the trans-eQTL SNP. SNP-probe combinations 
where at least 15 bp of the probe mapped within this 5-Mb window were 
deemed false positives and were removed from further analysis. After this 
filtering, we recalculated the FDR for both the cis- and trans-eQTL results.

Trans-eQTL replication. Replication of the trans-eQTL results was carried 
out in 5 independent data sets from 4 cohorts, including data obtained from 
LCLs (HapMap 3, n = 608)24, B cells and monocytes (Oxford, n = 282 and 
283, respectively)9 and whole peripheral blood (KORA F4, n = 740 and BSGS,  
n = 862)22,23. All cohorts applied the same methodology as used in the discovery  
phase to normalize gene expression data, check for sample mix-ups and per-
form trans-eQTL mapping, including ten permutations to establish the FDR 
threshold at 0.05. Finally, we performed a sample size–weighted z-score meta-
analysis on the two peripheral blood replication cohorts (KORA F4 and BSGS). 
Further details on these data sets can be found in the Supplementary Note.

Enhancer enrichment and functional annotation. To determine whether 
the significant trans-eQTL SNPs were enriched for functional regions on the 
genome, we annotated the trans-eQTL SNPs using SNPInfo54, SNPNexus55,56 
and HaploReg57, which integrate multiple data sources (such as the ENCODE 
Project32, Ensembl58 and several miRNA databases). We limited these analyses 
to those trans-eQTL SNPs that were previously shown to be associated with 
complex traits at genome-wide significance (trait-associated SNPs; reported 
P < 5 × 10−8). These SNPs were subsequently pruned (using the –clump com-
mand in PLINK with r2 < 0.2). We used permuted trans-eQTL data to generate 
realistic null distributions for each of these tools: we selected equally sized sets 
of unlinked SNPs (r2 < 0.2 in the Western European subpopulations of the 1000 
Genomes Project25, 2011-05-21 release; 286 individuals, excluding Finnish 
individuals) that showed the highest significance in the permuted data, ensur-
ing that only trait-associated SNPs were included in the null distribution, as it 
is known that trait-associated SNPs in general already have different functional 
properties than randomly selected SNPs59 (for example, trait-associated SNPs 
typically map in closer proximity to genes than randomly selected SNPs).  
We also ensured that none of the SNPs in the null distribution were affect-
ing genes in trans or were linked to those SNPs (r2 < 0.2 in 1000 Genomes 
Project data). We then identified perfect proxies (r2 = 1.0 in 1000 Genomes 
Project data). For SNPInfo and SNPNexus, we calculated the enrichment for 
each functional category using a Fisher’s exact test. We examined enhancer 
enrichment in nine different cell types using HaploReg, averaging enhancer 
enrichment over the ten permutations.

Convergence analysis. We determined which unlinked trait-associated SNPs 
showed eQTL effects on exactly the same gene: for each trait, we analyzed the 
SNPs that are known to be associated with the trait and assessed whether any 
unlinked SNP pair (r2 < 0.2; distance between SNPs of >5 Mb) showed a cis- 
and/or trans-eQTL effect on exactly the same gene, as previously described5. 
To determine whether the number of traits for which we observed this 
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 phenomenon was higher than expected by chance, we repeated this analysis 
20 times, each time using a different set of permuted trans eQTLs, equal in 
size to the non-permuted set of trans eQTLs.

SLE IKZF1 ENCODE ChIP-seq analysis. We used IKZF1 ChIP-seq signal 
data obtained from the ENCODE Project32 (IKZF1 ChIP-seq data acquired 
and processed by UCSC, ENCODE; March 2012 Freeze). For every human 
gene, we determined the average signal (corrected for gene size and bias in GC 
content) and performed a Wilcoxon Mann-Whitney test to determine whether 
the upregulated genes (MX1, TNFRSF21, IFIT1-LIPA, HERC5, CLEC4C and 
IFI6) showed a higher ChIP-seq signal than the average signal for all other 
human genes.
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