
Comprehensive resource and integrative model for 

functional genomics of the adult brain 

Abstract 
Understanding how genomic variation influences brain phenotypes remains a key challenge in 
neuroscience, one where the potential of functional genomic approaches has not yet been fully 
realized. To this end, the psychENCODE consortium developed a comprehensive, population-
level resource that includes thousands of samples processed for healthy controls and 
neuropsychiatric disorders. Available online, the resource comprises genotyping, RNA-seq, 
ChIP-seq, and single-cell data, in addition to analytic summaries of quantitative trait loci 
(>5,000,000 expression QTLs and >5,000 chromatin QTLs), brain-active enhancers, 
differentially expressed genes and transcripts, and novel non-coding RNAs. Leveraging and 
comparing this resource with other data, we show that the brain has distinct expression and 
epigenetic profiles as evident from spectral analysis and more non-coding transcription from 
most other tissues. Also, using single cell data, we deconvolved the tissue-level gene 
expression of this resource to find the populations of different cell types corresponding to 
particular phenotypes. Finally, we developed and built an integrative epigenome- and 
transcriptome-wide association model (eTWAS) to predict the brain phenotypes using high-
dimensional functional genomics data with genotype-phenotype associations in this resource to 
highlight key brain genes and modules and relate the mechanisms on how variants in these 
affect gene expression. This model allows us to quantitatively impute missing transcriptional and 
epigenetic information for samples with genotypes only. This model also shows that the 
integrated data has significantly improved the prediction accuracy over individual genomic data 
types and relates these predictions to well characterized functions and pathways in the brain.  

Introduction 
The brain is the most complex organ in adult human, playing a commander role for the human 
body. [[need more and Jim’s help to lead off]].  
 
A variety of genomic elements have been found to associate with psychiatric behaviors such as 
ones in mental diseases. For example, the Psychiatric Genomics Consortium (PGC) identified a 
wide variety of genomic variants including SNPs and CNVs associated with psychiatric 
disorders; e.g., 108 GWAS loci associated with schizophrenia (SCZ) and >90k SNPs imputed 
from GWAS explained  ~20% liability across major disorders \cite{23933821}. In addition to 
genotype, a number of genes have been reported to have specific transcriptional activities in 
mental diseases. For example, the differentially expressed genes were found for SCZ (n=xxx), 
BP (n=xxx), ASD (n=xxx). In another context, to systematically discover the gene expression 
and regulation patterns in brain, recent large consortia like GTEx, ENCODE and Epigenomics 
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Roadmap have generated large-scale RNA-seq and ChIP-seq data for brain tissues and cell 
lines, trying to systematically detect the brain specific genes, transcripts and regulatory 
elements. However, these studies only focused on the normal healthy brains, so their data is 
unable to find the specific genomic elements for additional phenotypes especially for mental 
health. The CommonMind Consortium and others thus have provided the gene expression and 
genotyping data for both healthy and schizophrenia samples (N=279 vs. 258) and identified 
~693 differentially expressed genes in schizophrenia, but their results still suggested needing 
thousands of samples to achieve the statistical power of 0.8 for detecting differentially 
expression of eQTL-associated genes [refs]. Therefore, given that the complexity of brain 
samples of mental diseases, we need a variety of additional samples to gain more statistical 
powers for discovering a complete set of genomic elements for mental diseases or other 
phenotypes. Moreover, individual molecules are not independent to affect brain. Instead, they 
interact with each other forming a network. Thus, effort is needed to model and analyze the 
molecular interactions that drive the phenotypes of adult brain including psychiatric disorders. 
 
In fact, understanding the molecular mechanisms on how these genomic elements affect 
various brain functions and phenotypes is still a key challenge in neuroscience. To address it, 
the PsychENCODE Consortium integrates a group of projects to produce a public resource of 
multi-dimensional genomic data from thousands of high quality healthy and diseased human 
post-mortem brains (6). Particularly, it has generated and assembled a robust large-scale 
dataset on the adult human brain to address this challenge, including genotyping, RNA-seq, 
ChIP-seq and single-cell transcriptomic data on ~2000 brain tissue samples with different 
phenotypes. The rich data generated by the PsychENCODE Consortium are an integrative 
resource for studying regulatory mechanisms in the human brain [1], such as for major 
psychiatric disorders, age, gender, etc. PsychENCODE datasets have been assembled by 
many investigators over several years, and they are housed in a central depository (xxxx) and 
shared with the public. Integration of these multi-dimensional and large-scale datasets 
potentially benefits understanding the molecular mechanisms for adult brain, which however still 
remains challenge. 
 
To address this challenge, we integrated the PsychENCODE and relate datasets over all ~2000 
samples, compared them against various phenotypes and diseases in adult brain, and 
developed a comprehensive and online available resource for the adult brain. The core datasets 
in PsychENCODE are a large amount of functional genomic and genotype data with phenotype 
information relating to the brain. However, to maximize the data size, we also uniformly 
reprocessed and interconnected data with other related genomic resources to develop such a 
comprehensive resource for the brain functional molecules across genomic, transcriptomic, 
epigenomic and regulatomic levels. In particular, these other resources include ENCODE, 
CommonMind, GTEx, Epigenomics Roadmap, etc. Also, we uniformly processed and integrated 
the recent single cell RNA-seq data for both neuronal and non-neuronal cell types to find gene 
expression signatures and calculate the corresponding cell fractions of individual tissues. Thus, 
this resource comprises all possible functional genomic elements for adult brain including the 
brain-active enhancers, transcripts, expression models, imputed regulatory networks, eQTLs 
and cQTLs for various phenotypes. We then analyzed this resource and found the specific 
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genomic and transcriptomic activities on genome wide in brain including gene expression, non-
coding transcription and enhancers. Finally, we developed and built an integrative model to 
reveal how the interactions among genomic variants, gene expression, enhancers and 
phenotypes, trying to explain the molecular mechanisms from genotypes to brain phenotypes. 

Comprehensive resource for adult brain functional genomics 

The PsychENCODE consortium has generated and assembled a robust large-scale dataset on 
the adult human brain, including genotyping, RNA-seq, ChIP-seq and single-cell transcriptomic 
data on ~2000 individual brain tissues with different phenotypes including mental diseases 
(Assay summary in Methods). To harmonize and integrate the datasets across multiple 
consortia, we uniformly processed these datasets using common standard pipelines (Methods). 
In particular, we adopted the ENCODE standard such as RNA-seq and ChIP-seq data 
processing pipelines for PsychENCODE and reprocessed all other major datasets from other 
resources using this standard. This step uniformly processed cross-resource functional genomic 
data and enables the comparisons across phenotypes such as brain data from PsychENCODE 
vs. other tissues from GTEx and Epigenomics Roadmap. We also used the GTEx eQTL pipeline 
to uniformly process the PsychENCODE genotype data and find the QTLs for various brain 
genomic activities in the resource.  All these uniformly processed datasets are also available in 
our resource. Finally,  we also compared the resource data against various phenotypes, and 
identified the brain specific data (derived data type). For example, this resource includes the 
regulatory variants such as QTLs, brain active enhancers, differentially expressed genes and 
transcripts, novel transcribed regions and non-coding RNAs, and putative genome-wide 
regulatory networks. It is also publicly accessible and available on the PyschENCODE website 
(xxxx), such as using the interactive web app.  
 
Overall, this resource is structured in a pyramid shape (Figure 1), with the largest scale and raw 
data at the bottom level and the lightest and most interpretive data at the top level. 
 
At the bottom, we have the large scale raw data and the phenotype information for ~2000 
individuals, much of which is private and under controlled access. Based on this, we have then 
uniformly processed raw datasets from PyschENCODE and other consortia (ENCODE, 
CommonMind, GTEx, Epigenomics Roadmap, etc),  including RNA-seq expression 
quantifications, ChIP-seq signal track qualifications and peak identifications using ENCODE 
standard pipelines, and private imputed genotypes. The processed functional genomic data is 
much easier to interpret but still rather large scale. In details, they include the following major 
types: 
 
Phenotypes - the PsychENCODE data covers a number of phenotypes on mental health. They 
are normal control (n=xxx), SCZ (n=xxx), BP (n=xxx), ASD (n=xxx), Male (n=xxx), Female 
(n=xxx), Age (distribution), etc. (Supplement).  
 

Formatted: Heading 2, Line spacing:  multiple 1.38 li

Deleted: ... [1]

Deleted: and can be used as

Deleted: tool



Epigenomics - we used the ENCODE standard ChIP-seq pipeline and uniformly processed the 
ChIP-seq data of available samples in PsychENCODE and Roadmap Epigenomics for the 
signal track qualifications and peak identifications.  
 
Transcriptomics - we also used the ENCODE standard RNA-seq pipeline to uniformly process 
the RNA-seq data of available samples from a number of PsychENCODE-relate studies, 
ENCODE and GTEx to quantify the expression levels for the protein coding genes, transcripts, 
noncoding RNA and novel transcribed regions. 

System identification of the QTLs associated with adult brain 
transcriptomics 
To understand how the genotype affects the transcriptomic and epigenetic activities in adult 
brain, we first used the resource data as above to identify more interpreted association 
relationship data such as the quantitative trait loci (QTLs) affecting gene expression and 
chromatin activities. In particular, we merged genotype and gene expression and chromatin 
data of Brain DFC region from a number of studies relating to PyschENCODE. We calculated 
the association of imputed SNPs with normalized gene expression and chromatin states 
(Methods) to find the quantitative trait loci associating with gene expression and epigenomic 
activities in adult brain, including three major categories: expression QTLs (eQTLs), chromatin 
QTLs (cQTLs) and splicing QTLs (sQTLs). We used the GTEx pipeline for discovering eQTLs to 
find the associations, which is based on an additive linear model from QTLtools. Given the 
complex relationships between genotype and phenotype, potentially driven by batch effects and 
biases (e.g., merging different chromatin datasets), this linear model was also adjusted by 
covariates like PEER factors of gene expression, genotype PCs and disease diagnosis. Among 
these SNPs, we identified a great number of the regulatory variants significantly associated with 
brain transcriptional and epigenomic activity: >2 million expression QTLs (eQTLs) with ~11k 
eGenes, >5 thousand chromatin QTLs (cQTLs) for histone modification signals, and xxx splicing 
QTLs for alternative splicing patterns.  
 
We also compared them with existing QTLs databases and subdivided our QTLs into different 
functional categories, mainly including the disease GWAS SNPs, the SNPs breaking the TF 
binding sites, etc (Table/Figure xxx). For example, we found that these variants cover a larger 
fraction of disease-associated brain GWAS SNPs than any previous analyses, suggesting 
potential molecular targets for these associations (xx% for SCZ, xx% for BP, ASD) and 
approaching the saturation of human mutations (Figure xxx). We also evaluated the overlap of 
eQTLs with cQTLs and found that XX% of cQTLs are overlapped with eQTLs. The SNPs in cis-
eQTL list(Cis-eSNPs) were enriched within XXXX, and depleted XXXXXX (Fig. X). We 
examined the enrichment of most significant eQTLs per gene in Roadmap Epigenomics 
Consortium and ENCODE enhancers across XX human tissues and cell lines. Cis-eQTL were 
enriched for enhancer sequences present in brain tissues  and the strongest enrichment is 
observed in DLPFC enhancers. We also calculate the enrichment  of cis-QTLs on GWAS SNPs 
of brain related disorders (schizophrenia, bipolar disorders and parkinson’s disease) and non-
brain related disorders (CAD, asthma and type 2 diabetes ). Cis-QTLs have more significant 
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enrichment for GWAS SNPs of brain related disorders than the ones of non-brain related 
disorders. In addition, we link the QTLs that overlap the enhancers and promoters in the 
resource to reveal the potential regulatory activities. We thus classified the QTLs into subgroups 
in terms of their gene regulatory characteristics including the regulatory QTLs (rQTLs) that 
break TF binding sites on promoters and/or enhancers, and the modular QTLs (mQTLs) that 
highly associate with a set of co-expressed genes. Finally, we found that the eQTLs/eGenes 
number can be predicted from the sample size using a fitted curve (Figure xxx).  
 

System identification of the specific transcriptomic and 
epigenomic elements in adult brain 

In addition to identifying the genomic variants such as QTLs for adult brain, at the middle of 
resource, we also identified the genomic elements that have specific activities in adult brain. We 
used the uniformly processed data and compared against various phenotypes to have even 
more interpreted functional elements such as sets of differentially expressed genes 
characterizing various brain regions and phenotypes, sets of aggregated brain enhancers from 
merging the the K27 peaks on the ENCODE regulatory elements. And then above these 
individual elements, we even identified more interpreted association relationship data such as 
the QTLs affecting gene expression and enhancers, and imputed the regulatory networks 
consisting of QTLs, transcriptional factors (TFs), enhancers and genes. This includes: 
 
Brain active enhancers - We identified the brain enhancers from the uniformly processed ChIP-
seq data and related them with the regulatory elements in ENCODE and Epigenomics 
Roadmap , and summarize a list of xxx PsychENCODE brain enhancers, mainly active on 
DLPFC and CBC (Supplement).  
 
Differentially expressed genes, transcripts and brain splicing patterns - we compared the 
expression changes from uniformly processed RNA-seq data across PsychENCODE-relate 
studies, ENCODE and GTEx, and found the xxx genes and transcripts that express in brain 
samples,and xxx eGenes associated with eQTLs (Methods). We also discovered xxx non-
coding RNAs and novel transcribed regions in brain. Also, we compared them against all 
possible phenotypes and derived the phenotype-specific genes and transcripts. In addition, we 
calculated the alternative splicing patterns at the transcript level; i.e., the percentage of the 
transcript abundance over its gene abundance, and found the brain-specific spliced transcripts. 
We finally created a map linking all these brain differentially expressed and spliced genes and 
transcripts with corresponding phenotypes such as disorders and developmental stages. 
 
Gene regulatory networks - we also integrated and imputated the regulatory relationships in 
brain such as the enhancers, transcription factors (TFs), miRNAs and target genes [refs] in this 
resource (Methods). For example, we found the TF binding motifs using ENCODE data and 
inferred the TF-target gene relationships if TFs have enriched binding motifs on the target 
gene’s regulatory regions such as promoters and enhancers. In total, we included xxx 
enhancer-gene, xxx TF-gene, and xxx miRNA-gene regulatory linkages, providing a reference 
wiring network on gene regulation in brain. The activations of various wires may change across 
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phenotypes. Thus, using these “wiring” regulatory relationships, we inferred the gene regulatory 
networks that identify the regulatory connectivities on how QTLs, enhancers, and transcription 
factors relate to target gene expression (Methods). In particular, given a target gene, we found 
its related regulatory elements from the resource including the eQTLs, the enhancers that 
control its gene expression [JEME] plus their cQTLs, and predicted the transcription factors 
(TFs) that have enriched binding sites on these enhancers and its promoter. We then used 
RNA-seq and ChIP-seq data based on the Elastic Net model with regularization that combines 
the L1 and L2 penalties of the lasso and ridge regressions to predict the regression coefficients 
of genotypes of various QTLs, the chromatin stages of enhancers, splicing patterns and TFs 
gene expression to the target gene expression, and identified the highly predictive relationships 
(i.e., large coefficients). We repeated this for all genes and found how various subgroups of 
QTLs affect gene expression; e.g., a significantly number of predictive QTLs break the TFBSs 
on the enhancers or promoters (xx%, Figure xxx). We thus constructed a gene regulatory 
networks consisting of the QTLs, enhancers, TFs and target genes with high predictive 
relationships (coeff. > xxx, Methods), revealing the biological mechanisms on how QTLs 
regulate the target gene expression in the adult brain. 
 
In summary, the establishment of this comprehensive resource enables the modeling and 
analysis for the biological processes in adult brain and helps understand the molecular 
mechanisms between genotypes and phenotypes. Therefore, we later analyzed and modeled 
the data from this resource to further reveal the brain specific genomic and transcriptomic 
activities, and the biological mechanisms explaining how the brain specific elements affect the 
phenotypes and diseases in the adult brain.  

Comparative analysis reveals that brain has specific genomic and 
transcriptomic activity  
This comprehensive resource allows us to discover the specific functional genomic elements 
that relate the brain phenotypes as above. Thus, we leveraged this resource against various 
phenotypes and compared with other tissue types to reveal the unique brain genomic activities, 
particularly relating to transcriptomic and regulatory binding activities such as RNA abundances 
and open chromatins. In particular, we first performed the spectral analysis for comparing the 
similarities of gene expression other tissue samples from GTEx (Figure xxx), using uniformly 
reprocessed RNA-seq data. It shows that the brain samples, though from different studies are 
clustered together in a major cluster, significantly separated from the other major cluster 
consisting of non-brain samples from their leading reduced dimension. This suggests that there 
exist the brain has unique and distinct gene expression programs, involved by the brain 
elements including differentially expressed genes and non-coding RNAs in our resource that 
make brain very different from other tissues. In addition, this major brain cluster has a particular 
geometric pattern showing that the normal samples (e.g., GTEx) form an inner core, and the 
disease ones expand this core to the entire cluster. This suggests that the psychiatric diseases 
still have different expression programs from the normal, though even more distant from other 
organs. Also, the major cluster can be further subdivided into several subclusters, each of which 
mainly comprises the samples from same brain region; e.g., the cortex and cerebellum clusters 
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in Figure xxx. However, the distances among these sub brain clusters are significantly less than 
the ones among other organs, suggesting that the brain regions, though functionally different, 
still need to more closely coordinate with each other than other organs. Additionally,  to 
understand where the human brain sits in regards of its the transcription diversity compared to 
other tissues, we estimated the proportion of genome that is transcriptionally active across 
hundreds of samples. We first found that transcript diversity is mostly saturated at the scale of 
hundreds of individuals (Figure xxx). The saturation is observed for both the coding and non-
coding portions of the genome. The human brain does not stand as a highly diverse in protein 
coding regions. For example, the tissues such as the testis is highly diverse [Ref]; however, we 
found that the brain has more transcriptional activity at the non-coding and novel transcribed 
regions than most other tissues (Figure xxx). Which implies that the non-coding transcription is 
highly likely another factor to make the brain tissues unique.  
 
Our comparative analysis reveals that the brain is different from other organs in either gene 
expression. Thus, we are then interested to identify the functional genomic elements in brain 
that give rise to the uniqueness of brain. To systematically find the specific expressed functional 
elements in brain, we identified the differentially expressed genes and non-coding RNAs for 
various phenotypes including mental disease, gender, regions (Methods and Table XXX) for the 
resource. For example, XXX genes have been found to differentially express between male and 
female samples. We also checked the enriched pathways and functions among the SCZ genes, 
and indeed found that many are relating to male. Moreover, we also found that these brain dex 
genes are significantly less/greater than DEX genes for other tissues in GTEX (p<xxx), which 
suggesting that the brain expression uniqueness is highly driven by a small/large set of genes. 
As previously described, we report the DEX genes for all phenotypes in our resource along with 
their enriched functions and pathways in supplement. Also, the brain specific gene expression is 
likely driven by a group of genes, rather than individual genes, so we constructed the gene co-
expression network using all PsychENCODE and GTEx samples, and clustered it into gene co-
expression modules using WGCNA [Methods]. The genes clustered in a same module are 
highly likely co-regulated by similar mechanisms. Our co-expression analysis indeed found 
several modules whose eigengenes show very different expression levels between brain and 
non-brain samples (Figure xxx, Supplement), which suggests that there exist brain specific 
regulatory mechanisms drive these brain co-expression modules.  
 
As shown above, the brain samples have different chromatin and gene co-expression activities 
from other organs, implying that the brain also has specific gene regulatory activities. Therefore, 
we are further interested to compare the regulatory regions between brain and other tissues to 
see any brain specific regulatory activities. We integrated the chromatin data in the resource 
and performed the consistent spectral analysis for gene expression as above to compare the 
similarities of epigenetic profiles of PsychENCODE samples with Epigenomics Roadmap data. It 
is also interesting to somewhat similar patterns with the gene expression comparison; e.g., the 
brain samples can also cluster together in terms of active enhancer similarity (Figure xxx). This 
result suggests that the brain has specific and distinct epigenomic activities as well, involving 
the brain active enhancers from our resource. More importantly, the brain active enhancers or 
gene expression patterns are intermediate phenotypes, potentially driven by particular 
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regulatory variants, so we are further interested to find such variants highly associated with 
gene expression and enhancer signal changes across brain samples. 
 
 

Single cell analysis and deconvolution explain gene expression 
changes across adult phenotypes 
One issue with the changes of gene expression in our brain tissue samples is whether the 
changes are driven by gene expression in a particular cell type or different cell-type populations. 
To address this tissue, we integrated the single cell gene expression data to discover the 
expression changes of brain tissue genes across various cell types including both neuronal and 
non-neuronal. We also used the biomarker genes with strong expression signals in single cell to 
deconvolve the gene expression data of individual tissues over both novel and known cell types 
to find the cell fractions for individuals, and relate to the individual phenotypes. We found that 
the gene expression changes across adult brain phenotypes at the tissue level can more easily 
be explained by the changes of cell fractions.   
 
Specifically, we integrated and used the same pipeline to uniformly process the single cell RNA-
seq data for ~800 cells from PsychENCOCE, ~3000 neuronal cells with 8 excitatory and 8 
inhibitory types [Lake’s 2016 paper], and ~400 cells including 5 non-neuronal types,  astrocytes, 
endothelial, microglia, oligodendrocytes and OPC, and xxx novel cell types in embryonic and 
fetal tissues. We then compared these single cells based on the (biomarker) gene expression 
similarity using tSNE, and found that the same-type cells generally can be clustered together 
(Figure xxx). In particular, xx% PsychENCODE cells have been found to cluster together with 
known cell types (xx% neuronal, xx% non-neuronal, details in supplement). In addition, xx% 
PsychENCODE cells form their own clusters, away from known cell types, suggesting that the 
potential novel cell types found by PyschENCODE for brain tissues. We also include these 
single cell data and cell-type biomarker genes in the resource. 
 
For those differentially expressed genes at the tissue level from our resource, we further 
checked their expression changes across various single cells, and found that a group of 
differentially expressed genes indeed show the expression dynamic changes among cells. For 
example, the SCZ gene, XXX is (or ww% of SCZ genes) significantly more highly expressed in 
YYY and ZZZ neuronal cells than others (Figure xxx), suggesting that the cell fractions of YYY 
and ZZZ drive the SCZ gene expression changes across tissues[ref]. Therefore, we 
deconvolved the tissue-level gene expression data of all 2000 samples using single-cell gene 
expression data of xxx biomarker genes to find the proportions of different cell types 
corresponding, and compare cell fractions across different phenotypes (Y=WX, Methods). The 
single cells used in deconvolution cover all 16 neuronal types, five non-neuronal types and xxx 
additional PsychENCODE types. For example, it is very interesting that we can explain much 
(R2=~80%) of the individual variation in gene expression of both male and female samples in 
terms of changing proportions of basic cell types, rather than changes in individual genes 
(Figure xxx covariance). In addition, we found that the cell fractions of individuals vary across 
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different phenotypes (Figure xxx), and a number of cell population changes highly associate 
with brain phenotypes. For example, the fraction(s) of neuronal type(s) (Inhibitory X) is 
significantly anti-correlated with Age (r = xxx). The non-neuronal cell populations increase 
significantly in SCZ (or Male) samples (p<xxx) while the neuronal cells decreasing. Finally, we 
report the individual cell populations along with significantly associated relationships between 
particular cell type fractions and phenotypes (Supplement). 
 
Furthermore, we are interested to see if any genotype is also associated with two single cell 
features: (1) the cell fractions and (2) the gene expression changes that can’t be explained by 
the cell fractions. In particular, we used our QTL pipeline and identified xxx SNPs whose 
genotypes are significantly associated with yyy neuronal cell fractions across individuals, (or zzz 
non-neuronal cell types). This suggests that these SNPs potentially can be used to predict the 
yyy cell fractions in adult brain. Moreover, we identified xxx SNPs significantly associated with 
the gene expression changes across individual tissues unexplained by our single cell 
deconvolution; i.e., Y-WX (Methods). These SNPs are likely causing certain gene expression 
changes driven by unknown cell types in adult brain. 

Integrative modeling to explain the molecular mechanisms for 
genotype-phenotype relationships in adult brain  
The interactions between genotypes and phenotypes is a very complex process experiencing 
multiple intermediate stages including gene expression, signaling, modulation and so on. Thus, 
to understand the entire processes how genotypes and phenotypes affect to each other, we 
built an integrative model to understand how the brain genomic variants affect gene expression 
and regulation, and eventually predict the phenotypes (Figure xxx). This model integrated all 
high dimensional functional data types in this resource including genomics, transcriptomics, 
epigenetics and regulatomics, and genotype-phenotype relationships, and also allowed us to 
quantitatively impute missing transcriptional and epigenetic information for samples with 
genotypes only. Specifically, we named this model, a Deep Boltzmann Machine-based eTWAS 
model that directly embeds regulatory network information to predict genotype-phenotype 
associations. It uses the undirected edges rather than the directed edges of deep neural 
network modeling because the phenotypes potentially impact back to the intermediate stages 
like gene expression. As shown in Figure xxx, the eTWAS consists of four layers: 1) genotypes 
such as QTLs; 2) gene expression and enhancers; 3) intermediate modules and 4) phenotypes 
such as brain traits, and provides the additively predictive relationships between layer nodes. In 
particular, the model is constructed based on the Deep Boltzmann Machine (RBM) but has a 
hybrid structure. On one hand, it incorporates the contemporary deep learning ideas to model 
these large scale datasets with a multi-layer architecture with interconnections between layers, 
and also explicitly allow integrating additional genomic elements into the model such as 
incorporating imputed eQLTs and cQTLs. The RBM architecture, especially undirected edges 
can reveal the relationships among functional genomic elements across layers from a number of 
directions, rather than one direction in classical deep neural networks. Moreover, using these 
relationships, the model can be used to better predict phenotypes from genotypes, through 
adding predictive powers from gene expression and chromatin data; e.g., gene regulatory 

Deleted: . We found that there exist 

Deleted: that 

Deleted: brain 

Deleted: called 

Deleted: feed-forward



networks. On the other hand, given known associated genotypes and phenotypes, this model 
can trace their all possible connectivities and better pinpoint them to a predictive trajectory 
including specific gene expression, activate enhancer(s) and dysregulated gene modules across 
different layers. For example, this latter use, of course, enables us to better localize the specific 
activities at the molecular level happening from genotypes to associated phenotypes such as 
psychiatric disorders. 
																																	  
Specifically, we built this model as follows. We first inferred the gene regulatory networks that 
identify the regulatory connectivities on how QTLs, enhancers, and transcription factors relate to 
target gene expression (Methods). In particular, given a target gene, we found its related 
regulatory elements from the resource including the eQTLs, the enhancers that control its gene 
expression [JEME] plus their cQTLs, and predicted the transcription factors (TFs) that have 
enriched binding sites on these enhancers and its promoter. We then used RNA-seq and ChIP-
seq data based on the Elastic Net model that combines lasso and ridge regressions to predict 
the target gene expression from genotypes of various QTLs, the chromatin stages of enhancers, 
splicing patterns and TFs gene expression using the resource samples, and identified the highly 
predictive relationships (i.e., large coefficients). We repeated this for all genes and found how 
various subgroups of QTLs affect gene expression; e.g., a significantly number of predictive 
QTLs break the TFBSs on the enhancers or promoters (xx%, Figure xxx). We thus constructed 
a gene regulatory networks consisting of the QTLs, enhancers, TFs and target genes with high 
predictive relationships (coeff. > xxx, Methods), revealing the biological mechanisms on how 
QTLs regulate the target gene expression in the adult brain. 
 
We then connected the nodes on Layer 2 of our model to follow the inferred gene regulatory 
network structures. In particular, many intermediate-layer modules (i.e., strongly predictive 
features on Layer 3) that correspond to known gene sets associated with well-characterized 
pathways and functions in the brain; e.g., the module xxx is connecting to the genes enriched 
with ZZZ pathways (p<xxxx). Also, some modules are used to capture the information on single 
cell populations; e.g., the module yyy is connecting to Age, and represents the neuronal cell 
populations. We show that this integrated model has significantly improved the prediction 
accuracy over individual genomic data types. For example, its AUC/MSE for classifying SCZ 
and health samples is xxx beating other classification methods using gene expression only 
(Table XXX). Furthermore, we used this model to recapitulate the pathways comprising the 
cross-layer nodes and predictive edges for particular phenotypes. For example, as highlighted 
in Figure xxx, The trait of schizophrenia (SCZ) is activated by two modules, x, and y 
corresponding to dopamine-related pathways and complement pathways, respectively. Each 
module is connected by a set of genes including C4 genes, which are regulated by 
corresponding QTLs and enhancers as shown in blowup gene regulatory mechanism. For each 
phenotype, we also provide a list of such eTWAS pathways on resource websites. In addition, 
this model also allows us to quantitatively impute the missing transcriptional and epigenetic 
information by inputting given genotype data only. Moreover, we also make the model available 
as a set of distributive software from the resource.  Finally, the model is made available as a set 
of simplified files, where one can explicitly see the correlations being used at various stages.  

Deleted: Autism 

Deleted: neuronal cell fractions



Discussion 
We integrated the genomic, transcriptomic and regulatomic PsychENCODE datasets from 
~2000 samples and developed this comprehensive resource consisting of various functional 
genomic elements for the adult brain. Developing this resource and integrated model to a 
population-level scale serves as an important step in gaining meaningful biological insights from 
functional genomics studies in neuroscience. In particular, we compared it with other tissues 
such as GTEx data and identified the genotypes and QTLs, the specific expressed genes, 
transcripts and noncoding RNAs, active chromatin regions, the regulatory networks that 
significantly relate with different brain phenotypes at both cellular and tissue levels. For 
example, the QTLs allow one to potentially interpret most of the known brain-associated GWAS 
SNPs in terms of perturbations to specific genes. Thus, the neuroscientist can use this resource 
as a reference to compare with their data, generate hypotheses and help design experimental 
validations. In addition, this resource is publicly available online and can be extendable and 
scalable to integrate additional data types and phenotypes. For example, it can add the 
individual’s fMRI image features measuring functional neuro-connectivity, and use our model to 
identify the genotypes that associated with image features such as image-QTLs (iQTLs) [xx]. 
Also, our resource can incorporate with the neurodegenerative diseases like Alzheimer or 
developmental stages.  
 
Moreover, we built an integrative epigenome- and transcriptome-wide association model 
(eTWAS), built on the  Deep Boltzmann Machine (RBM) and integrates the high dimensional 
functional genomic and phenotypic data at multiple layers, using the hierarchical structures in 
deep learning. The model reveals the relationships among various data types from a number of 
directions for genotype to phenotype. In particular, this model also incorporates the derived data 
types into its hierarchical structure such as imputed gene regulatory networks and QTLs, and 
provides the additional statistical powers to better predict the genotype to phenotype. This 
model allows us to quantitatively impute missing transcriptional and epigenetic information for 
samples with genotypes only. More importantly, it integrates high-dimensional functional 
genomics data with genotype-phenotype associations to highlight key brain genes and modules 
and relate how variants in these regulate gene expression. This integrative model is also 
available online as a general purpose platform. The users can apply it to impute missing data , 
predict the genotype-phenotype relationships, and reveal potentially novel gene regulatory 
mechanisms and modules for additional phenotypes. Also, the model can be used to make in-
silico predictions for the perturbation outcomes. For example, we can identify the module X that 
have the extremely highest connection weights to Austin, and thus knocking down the genes 
connecting to the module highly likely will deactivate Autism. Furthermore, while the model does 
provide better predictive performance, some of these correlations are deliberately set to be 
interpreted simplifications, such as the known enhancers, or gene regulatory network structure, 
to make the model more interpretable and easier to use. Thus,  another major goal of the model 
is to provide a compression of larger amount of functional genomic datasets for brain; e.g., XXX 
KB of model files vs. XXX TB of total resource data, beyond a purely predictive network from 
genotype to phenotype. 
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Though single cell remains challenging to reliably quantify the low-abundant transcripts/genes 
and interrogate the biological variations using single-cell sequencing technology, it is still 
worthwhile using the biomarker genes with strong expression signals in single cell to 
deconvolve the gene expression data of individual tissues over both novel and known cell types 
to find the cell populations for individuals, and relate to the individual phenotypes. With 
increasing amount of single cell data in near future, we could deconvolve the resource data at 
tissue level to find potential new cell types and obtain more complete cell populations. The 
current single-cell sequencing technology suffers from the low capture efficiency [PMCID: 
PMC4758375, PMCID: PMC4132710]. Due to this reason, the single-cell sequencing will only 
measure a small fraction of cellular transcriptome as the final sequencing library only contains a 
subset of input materials. Furthermore, the limited amount of RNA molecules in single cell 
makes it even harder to capture the weak signals, which makes the data sensitive to technical 
noise. Thus, given that the RNA decaying issues in single cell RNA-seq, we could also relate 
this resource to the in situ transcriptomic data such as optogenetic techniques measuring the 
spatial gene expression, and find the consistent expressed gene for the brain phenotypes at the 
tissue level. 	
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To systematically understand the molecular functions and 
mechanisms how genomic variants affect associated phenotypes 
in the brain, we need to find the related molecules that have 
specific activities for the brain phenotypes. Therefore, t 

 

 


