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Abstract

[[GG2MG: 265 words, still too long]] Functional genomics experiments (FGEs) provide

a wealth of insight on genomic activities (i.e gene expression or transcription factor bind-

ing) related to developmental stages or diseases that are essential for personilized medicine.

Although these activities are not necessarily tied to an individual’s genotype, quantification

of such activities is only possible using sequencing data that involves individual’s genotypes.

Mapped reads from FGEs of these experiments are considered to be an important set point,

in which there is high private information leakage and therefore access to them require special

permission. This is not ideal due to the challanges of storing and moving big amount of private

data as well as the difficulties in developing privacy-preserving calculations and result sharing.

Moreover, in some special cases (low depth ChIP-Seq experiments) reads might sometimes

be considered to be safe to share due to inadequatue sequencing depth and incompleteness.

Here we focus on the quantity of sensitive information in FGEs functional genomics data.

We derive novel information theory based measures and apply these measures to quantify the

amount of leaked information in 24 functional different genomic assays from ENCODE at

varying coverages. We show that individuals are vulnerable to identification even when small

amounts of sequencing data are available to adversaries. We also show that with summation of

low depth FGEs and imputation through linkeage disequilibrium, the leaked number of variants

can reach the total number of variants in an indivudals genome. We then provide a theoretical

framework where the amount of leaked information can be estimated from depth and breadth

of the coverage as well as the bias of experiments. Based on our findings, we propose pri-

vacy enhancing file formats that enable sharing mapped reads without sensitive information

leakage and loss of utility. Our file formats allow private data to be stored in small files, while

public data to include maximum possible amount of information necessary for functional ge-

nomics quantifications.Presented frameworks here can be used for quantification of private

information from functional genomics datasets before their release and conversion of sensitive

data to private and public formats.
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1 Introduction

With the decreasing cost of DNA sequencing technologies, the number and the size of the avail-

able genomic data have exponentially increased and become available to a wider group of audi-

ences such as hospitals, research institutions and individuals [1]. In turn, privacy of individuals has

become an important aspect of biomedical data science [2, 3] as availability of genetic informa-

tion gives rise to privacy concerns such that genetic predisposition to diseases may bias insurance

companies [4] or create unlawful discrimination by employers.

Early genomic privacy studies focused on identification of individuals in a mixture by using

phenotype-genotype association [5, 6]. These revealed that private information of an individual

such as participation to a drug-abuse study [5, 6] can be revealed. With the increase of large-scale

genomic projects such as Personal Genome Project (PGP) [7] or recreational/ direct-to-consumer

genomic databases, researchers showed that multiple datasets can be linked together to infer sensi-

tive information such as pariticipant’s surnames [8] or addresses [9]. Such cross-referencing relies

on quasi-identifiers, which are pieces of information that are not unique identifiers by themselves,

but are well correlated with unique identifiers or can be unique identifiers when combined with

other quasi-identifiers [10].

Functional genomics experiments provide a wealth of information on genomic activities re-

lated to developmental stages or diseases that are essential for personilized medicine. These are

large-scale, high-throughput assays to quantify transcription (RNA-Seq) [11], epigenetic regula-

tion (ChIP-Seq) [12] or 3D organization of genome (Hi-C) [13] in a genome-wide fashion under

different conditions (e.g. samples from patients and healthy individuals). In turn, these experi-

ments provide layers of data obtained directly from the machines and further be computed that

we refer as the data stack. The first layer of the stack is sequencing data that involves sequencing

reads with individual’s genotypes and is stored in special file formats called fastq [?]. The sec-
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ond layer is the mapping of these sequences to the human genome and this data is stored in files

formats SAM/BAM/CRAM [?, ?, ?]. [[GG2MG: Are following highlighted sentences accurate?]]

Mapped read files provide around 2 fold reduction compared to fastq files. Mapping fastq reads

to human reference genome is extremely time and computational resource consuming and since

there are tools [?] to convert between BAM/SAM/CRAM format to fastq, sharing and storing of

fastq files is irrelevant in this context. However, mapped read files are still large and their storage,

transfer or computation take computational time and space. Mapped reads contain a significant

amount of sensitive genetic information. They can be used to identify the private SNPs, small

indels, and structural variants and therefore their accession requires oftentimes special permission.

Nonetheless, sequencing data of functional genomics experiments that does not require substantial

depth are sometimes considered to be safe to share without privacy concerns as the nature of these

data is biased and partial. A good example is that the genome of HeLa cell line requires special

access, while we can access the mapped reads from ChIP-Seq data [17]. The second layer in the

data stack is the signal profiles, in which base pair resolution of sequencing depth is reported. The

signal profiles are often assumed to be free of sensitive information. However, a recent study has

shown that they leak small indels and large deletions and can be used as personally identifying

information [16]. The last layer is the quantification based on the signal tracks such as TF binding

peaks or gene expression levels. Although gene quantification itself does not reveal sensitive in-

formation , when combined with genotype-phenotype correlation succesful linking attacks can be

made [14, 15]. A detailed description of the data stack and how functional genomics experiments

work are depicted in Fig. 1.

On the flip side of the coin is the utility of the sequencing data, which is the base layer in the

data stack and challenges related to moving, storage of private data that are computationally costly

and sharing of results based on private data. For example, big consortia such as ENCODE [18],

TCGA [?] or GTEx [?] fund multiple research institutions and enable a collaborative working
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environment through dedicated phone calls and meetings. In turn, all the participants need to go

through required access procedures with their institutions. Otherwise any communication based on

this data cannot happen. Moreover, the institutions with access to the same data cannot exchange

files that contain the data or data derived from it. In turn, all the participants are expected to have

special permissions to any external or internal genomics data, otherwise any computation based on

the private data cannot be shared or presented. This creates a bottleneck and hinder the progress of

important biomedical findings. In addition, open data helps the advancement of biomedical data

science not only with the easy access to the data, but also helping with the speedy assesment of

tools and methods and in turn reproducibility. Funding agencies and research organizations are

increasingly supporting new means of data sharing and new requirements for making data publicly

available while preserving the participant’s privacy [?]. Embracing the both side of the coin, we

ask the questions of how much information is enough information to identify individuals and how

we can protect the sensitive information with minimum loss of utility in a publicly data sharing

mode. To this end, we derive novel information theory based measures and apply these measures to

quantify the amount of leaked information in 24 functional genomic assays from ENCODE [18] at

varying coverages. Based on our findings, we develop new file formats that allow the public sharing

of read alignments of functional genomics experiments while protecting the sensitive information

as well as minimizing the amount of private data that requires special access and storage.

In this study, we use NA12878 as a case example and her 1000 genomes [20] genotypes as gold

standard genotypes. We sample reads from the sequencing data of functional genomics experi-

ments at increasing coverages and detect SNVs and indels using Genome Analysis Toolkit (GATK)

best practices recommendations [21, 22]. We propose a new metric for qantifying the amount of

information that can be obtained from sequencing data with respect to the gold standard. We next

present a simple and practical instantiation of a linking attack with the assumption of adversaries

accesing only a portion of the seqencing data. We show that individuals are vulnerable to iden-
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tifications even at small coverages of sequencing data. We further show that with summation of

functional genomics experiments and imputation through linkeage disequilibrium, the leaked num-

ber of variants can reach the total number of variants in an indivudals genome. We then provide

a theoretical framework where the amount of leaked information can be estimated from depth and

breadth of the coverage as well as the bias of the experiments. Finally, we focus on ways to pub-

licly share alignment data without comprimizing individual’s sensitive information. We propose

privacy enhancing file formats that hide variant information, are compressed and have minimum

amount of utility loss.

2 Results

[GG2MG: equations are reformatted]

2.1 Information Theory to quantify private information in an individual’s

genome

An individual’s genome can be represented as a set of variants. Each variant is composed of the

chromosome it belongs to, location on that chromosome, the alternative allele and its correspond-

ing genotype. Let S = {s1,s2, ..,si, ..sN} be the set of variants, then each variant can be represented

as si = {vi,gi}, where vi consists of the location and alternative allele information and gi denotes

the genotype of the variant as 1 for heterozygous variant and 2 for homozygous variant. We can

then calculate the naive self-information of S in bits as

h(S) =−
i=N

∑
i=1

log2(p(si)). (1)

In eq.1 N is the total number of variants in an individual’s genome, p(si) = ni/nT , where ni is

the number of individuals with variant si and nT is the total number of individuals in the panel.
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Note that we denote h(S) as “naive” information, because it is an estimate of the real information

in a situation where the population that the individual belongs to is not known and the number of

inidivuals are finite. Eq.1 holds only if variants are independent of each other, which is not the case

due to the correlation between variants in linkage disequilibrium (LD). In theory, the population

that the individual belongs to can easily be predicted by using a few variants. However, from an

adversary’s perspective, this will add one more layer of calculation, i.e computational and time

cost to identification attack. Eq.1 also an estimate to the information when we consider all the

individuals in the world (i.e limnt→∞ h(S)).

To be able to understand whether naive information is a good estimate, we first calculate the

information with the consideration of LD scores taken from the European population of HapMap

project [23]. LD scores are pairwise correlations between variants, which we consider as the prior

information on the existence of a variant given other variants in the same LD block exist in a

genome. Then the information with LD consideration is calculated as

hLD(S) =−
i=N

∑
i=1

(1−mLD(si,s j))h(si) (2)

LD(si,s j) is the maximum LD correlation of variant si such that mLD(si,s j)= max
i 6= j, j∈(1,..,N)

LD(si,s j),

where mLD(si,s j) 6= mLD(s j,si).

Figure 2a shows a negligible difference between the naive information and information with

LD consideration for NA12878 genome. To understand the lack of difference better, we calculate

the self-information of each variant in an LD block with and without LD consideration. We show

that highly informative variants do not exhibit any difference due to the low LD correlations (Fig-

ure 2b). We further show that the number of variants that have difference between information

with and without LD consideration is small compared to highly informative variants having low

LD correlations on average.
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We then estimate the information when the population size is infinite [24]. We sample frac-

tions in the order of 10%, 20%,..., 100% individuals from the 1000 genomes phase I panel (total

of 2504 individuals) and calculate the information using the sampled distribution of genotypes.

We repeat this calculation for 100 times and calculate the mean information for each sampled

fraction. The relationship between the inverse of the sample fraction and the information fits best

to a power function with two terms (y = axb + c, R = 0.99). The y-intercept (c) of the curve is the

extrapolation of information when the population size goes to infinity (1/∞ = 0, Figure 2c). We

again found a negligible difference between the naive information and the information when the

population size is infinite (Figure 2a). The information is also calculated by starting from a single

individual and adding individuls one by one to the population (SI Figure 1a). These individuals

are simulated using the genotype frequencies in the 1000 genomes panel and the LD information

from HapMap project (see SI methods). Both the information calculation and the KL-divergence

between different size populations show that as the size of the population increases, the difference

in the information decreases and eventually becomes negligible (SI Figure 1a-b)

In summary, calculations above show that the naive information can be an accurate approximate

to the private information content of an individal’s genome when the individual’s population is not

known and the population size is bound by the number of individuals in 1000 genomes panel due to

the relationship of information at n → ∞ ≥ naive information ≥ information with LD (Figure 2a).

That is, an adversary with no prior knowledge on the population of the sample and limited number

of individuals in a known genotype panel can accurately approximate the private information in

the sample.
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2.2 Information Theory to quantify private information leakage in a func-

tional genomics experiment

In an effort to understand the relationship between the leaked information and the coverage

as well as for a fair comparison, k amount of reads were sampled from the 24 different functional

genomic experiments and from WGS and WES data of NA1278 (see SI Table 1). Genome Analysis

Tool Kit (GATK) is used to call SNVs and indels with the parameters and filtering suggested in

GATK best practices [21, 22]. The genotypes in 1000 genomes panel for NA1278 is used as the

gold standard. We use “naive” pointwise mutual information (pmi) as a measure to quantify the

association between the gold standard and the called variants. If SGS = {s∗1, ..,s
∗
i , ...,s

∗
M} is the

set of variants from the gold standard and SFGE(k) = {s1, ..,si, ...,sM} is the set of variants called

from the k reads of a functional genomics experiment, then the set A = SGS⋂SFGE(k) contains the

variants that are called and are in the gold standard set. If A = {a1, ..,ai, ..,aT}, then

pmi(SGS;SFGE(k)) =−
i=T

∑
i=1

log2(p(ai)) (3)

We then add k more reads to the sampled reads and repeat the calculation. This procudere

is repeated till we deplete all the reads of a functional genomics experiment. Overall process is

depicted in Figure 2e.

2.3 Private information leakage in 24 functional genomics experiment at

different coverages

The pmi values for 24 functional genomics experiments are calculated at different coverages.

These experiments involve whole genome approaches such as Hi-C, transcriptome-wide assays

such as RNA-Seq and targeted assays such as ChIP-Seq of histone modifications and transcrip-

tion factor binding. In addition, the pmi is also calculated for WGS, WES, and SNP-ChIP for
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comparison (Figure 3).

As expected Hi-C data contains almost as much information as WGS and more information

than SNP ChIP arrays. In the beginning of the sampling process, WGS data contains more in-

formation than Hi-C. As we sample nucleotides that are between around 1.1 and 10 billion bps,

the information content of Hi-C surpasses the WGS data (Figure 3a). We speculate that this is

due to better genotyping quality of the genomics regions that are in spatial proximity, as Hi-C has

a bias of sequencing more reads from those regions. As expected, we cannot infer as much in-

formation from ChIP-Seq reads (Figure 3b). However, surprisingly many of the ChIP-Seq assays

such as the ones targeting CTCF and RNAPII contain a great amount of information at low cover-

ages. Furthermore, comparison between WES and different RNA-Seq experiments show that none

of the RNA-Seq experiments contain as much information as WES, which is due to the fact that

RNA-Seq captures reads only from expressed genes in a given cell (Figure 3c). The unexpected

observation is that more information can be inferred from polyA RNA-Seq data at low coverages

compared to WES and total RNA-Seq. To be able to make a fair comparison between all these

assays, we calculate the pointwise mutual information per bp at the lowest coverages depicted in

Figure 3a–c (pmi(SFGE(kmin);SGS)/kmax). We found that ChIP-Seq reads targeting CTCF contains

even more information per basepair than WGS data at the lowest coverage we sample (Figure 3d).

2.4 Genotyping accuracy

In light of the above findings, in which genotyping can be done using low depth, biased func-

tional genomics experiments, we asses the accuracy of genotyping by calculating the false discov-

ery rate at different coverages. This also measures how much noise that each assay captures. The

false discovery rate is defined as the ratio between the information obtained from the incorrectly

called variants (h(SFGE | SGS)) and the information obtained from all the called variants (h(SFGE)),
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namely

FDR(SFGE(k)) = h(SFGE(k) | SGS)/h(SFGE(k)) (4)

Figure 4a shows that the false discovery rate for Hi-C data is lower compared to WGS data

at lower coverages. We attribute it to the deeper sequencing of the genomics regions in close

spatial proximity. Hence, sampling more reads from those regions at low coverages is more likely

compared to uniform sampling of reads from WGS. ChIP-Seq data has comparable false discovery

rate to WGS and Hi-C data, ChIP-Seq targeting CTCF having the lowest FDR (Figure 4b). We

further find that assays targeting transcriptome such as WES and RNA-Seq produce the noisest

genotypes among all the assays, only around 10% of the called variants being the correctly called

variants (Figure 4c).

2.5 Linking attack scenario

Linking attacks aim at re-identification of an individual by cross-referencing datasets (Fig-

ure 5a). For example, in an hyphotetical scenario, the attacker aims at querying an individual’s

HIV status from his/her phenotype data available through functional genomics experiments. The

majority of linking attacks to this date focused on phenotypes, which the attacker finds the relation-

ship between the phenotype and genotype data and use this relationhip to link the HIV status to the

genotype data set. [GG2MG: do you think following sentence contradicts with above?] However,

in this study, we go one step back from the phenotype data and directly inferred genotypes from

the read files associated with the phenotype as, for example, majority of fastq and bam files of

ChIP-Seq experiments are publicly available. For this, the attacker calls variants directly from the

reads of anonymized functional genomic experiments. Then he/she compares the called noisy and

incomplete genotypes to the genotype data panel and finds the entry that have the highest pointwise

mutual information. This reveals the sensitive information for the linked indivudal to the attacker.

We also consider a scenario that the attacker has access increasing amount of reads in situations
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such as the attacker can query the sequencing data from a consortium certain amount at a time or

has limited computing power.

Based on the pmi values of each experiment at different coverages, we define a metric for linking

accuracy called gapi. To calculate this metric, we first rank all the pmi(SFGE(k);Si) where SFGE(k)

is the set of called genotypes from the functional genomics experiment at total coverage k and Si

is the set of genotypes of individual i in the panel of genotypes. gapi for each individual i at total

coverage k is calculated as;

gapi =















pmi(SFGE(k);Si)
pmi(SFGE(k);S j)

, if rank(pmi(SFGE(k);Si)≤ 5 and rank(pmi(SFGE(k);S j) = 2

0, otherwise

We then define that if gapi is 0 for the individual i, whose functional genomics data is used, then

the individual cannot be identified as there are other individuals in the panel that have the matching

genotypes. If 0 < gapi ≤ 1, then the individual i might be vulnerable with auxilary data such as

gender or ethnicity, because he/she is in the top 5 macthing individuals. If 1 < gapi ≤ 2, then the

individual i is vulnerable as we can identify him/her with 1 to 2 fold difference between him/her

and the second best match. Lastly, if gapi > 2, then the individual is extremely vulnerable with

more than 2 fold difference between him/her and the second best match (Figure 5a).

We find that NA12878 is extremely vulnerable even at the lowest sampled coverages for Hi-C

and RNA-Seq data (Figure 5b). More interestingly between around 1.1 and 10 billion basepairs,

the Hi-C data exhibits higher linking accuracy than WGS data, consistent with the previous obser-

vation of pmi shown in Figure 3a. The total of coverage of ChIP-Seq data compared to Hi-C and

RNA-Seq is quite low (SI Table I). However, the linking accuracy of ChIP-Seq is as good as Hi-C

and WGS (Figure 5b), which shows extreme vulnerability of individuals with respect to release
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of such small amount of data. More strikingly, attacker can link NA12878 by using the reads of

single-cell RNA-Seq data, which has small coverages with high accuracy (Figure 5d).

2.6 Individual’s genome can be accurately approximated from publicly avail-

able data by imputation

To answer the question whether an attacker can correctly assemble an individual’s variants by

only using the reads from ChIP-Seq and RNA-Seq experiments, we impute variants by using IM-

PUTE2 [25, 26, 27] using the variants called from ChIP-Seq and RNA-Seq experiments. We then

collected all the called and imputed variants in a set. Although imputed variants do not contribute

to the information due to high correlation with the called variants (SI Figure 2), total number of

captured variants increases significantly (Figure 6a). By using shallow squencing data of ChIP-

Seq and RNA-Seq, we were able to call and impute variants almost as many as the gold standard

variants.

We then ask the question if we can infer potentially sensitive phenotypes from these variants.

Figure 6b shows a small set of example variants associated with physical traits such as eye color,

hair color or freckles. Many of these variants are in the called set of Hi-C, ChIP-Seq and RNA-Seq

data. Number of variants associted with traits further increases with imputation as expected.

[GG2MG: after this point everything is new addition that you haven’t seen before]

2.7 Toy model for estimation of amount of leaked data without variant call-

ing

Genotyping from DNA sequences is the process of comparing the DNA sequence of an individial

to that of reference human genome. To be able to do succesful genotyping, one needs substantial

depth of sequencing reads for each base pair. According to the Waterman-Lander statistics for

13



DNA sequencing, when random chunks of DNA is sequenced repeteadly, the depth per basepair

follows Poisson distribution with a mean that can be estimated from the read length, number of

reads and the length of the genome [?]. Since functional genomics experiments aim at finding

highly expressed genes, TF binding enrichment or 3D interactions of the genome, it is expected

that the sequencing depth per basepair does not follow the Poisson statistics. Thus, the genotyping

using reads from functional genomics experiments is biased towards the variants that are in the

functional regions of the cell types/lines of interest.

To this end, we hyphotesized that the genotyping from the sequencing based functional genomics

data depends on the depth per base pair(d) , the total fraction of the genome that is represented at

least by one read(b | d = 1) and a parameter β that estimates the sequencing bias, i.e. how much

the distribution of depth per basepair deviates from the Poisson distribution (Fig. 6c). The bias

parameter β is composed of two terms: (1) the negative bias β− and (2) the positive bias β+.

Negative bias estimates if there is an increase in the number of low depth basepairs relative to

mean with respect to espected Poisson distribution and the positive bias estimates the increase in

the number of high depth basepairs (see SI for more details).

To quantify the genotyping from the functional genomics data, we used “naive” normalized

pointwise mutual information (npmi). It takes into account the information from the correctly

identified genotypes (pmi(SFGE ;SGS)), the information missed that is in the gold standard (h(SGS) |

h(SFGE)) and the information from the incorrectly identified genotypes, i.e FDR (h(SFGE) | h(SGS))

as;

npmi(SFGE ;SGS) =
pmi(SFGE ;SGS)

h(SFGE),h(SGS)
=

pmi(SFGE ;SGS)

h(SGS) | h(SFGE)+ pmi(SFGE ;SGS)+h(SFGE) | h(SGS)

(5)
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With the assumption of npmi(SFGE ;SGS) = f (dFGE ,bFGE | d = 1,βFGE), we used generalized

linear models to fit 40 training data points and achieved a root mean square error (RMSE) of 0.06

with the values ranging between [0,35] (Fig. 6d). 5 separate data points were used as test set and

an RMSE of 0.07 was acheieved ((Fig. 6d), see SI for more details). This toy model represents a

proof of concept suggesting a theoretical framework for the estimation of amount of leaked data

from functional genomics experiments without the need of performing time-consuming genotyping

calculations.

2.8 Unique combination of common variants contribute significantly to the

information leakage and linking accuracy

We next analyze whether individual’s genotypes can be predicted by removing rare variants

from the datasets as their contribution to the information is the highest. To understand the cut-off

for the frequency of the variants that need to be removed in order to fail at linking, we calculate

the naive information of the gold standard variants in the 1000 genomes with and without the

presence of the NA12878 (Fig. 6a). The variants that deviate from the diagonal the most are the

ones that contribute the most to the overall naive information. We group the variants into three

categories based on their contribution to the overall naive information(Fig. 6q). We remove the

variants in these categories and instantiate a linking attack based on the naive information of the

remaining variants. Comparison between the linking accuracy when we consider all of the variants

and when we removed them categorically shows that individual is extremely vulnerable to linking

attacks even when the half of the variants that have the highest contribution to the overall naive

information are removed (Fig. 6b). Our conclusion from this calculation is that not only the rare

variants but also the unique combination of common variants are identifiers of genetic make-up of

an individual.
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We then analyze the contribution of small indels to the naive information and whether accurate

linking is possible when we remove all the single nucleotide mutations from the data and keep the

indels. Fig. 6c shows the information contribution of the indels. Although naive pointwise mutual

information from indels are much smaller compared to single nucleotide mutations, a high linking

accuracy can be achived by using only indels even at small coverages (Fig. 6d). This linking attack

is done using the noisiest data set we have (total RNA-Seq) to make linking more difficult.

2.9 Privacy-enhancing file formats for functional genomics experiments

After discovering neither common variants nor indels can be publicly shared, we seek for ways

to share the mapped reads of functional genomics data. The purpose is to share maximum amount

of information with minimum utility lost while maintaining the individual’s privacy. As a privacy

metric, we aim to prevent leakage of any variants as well as any quasi-identifier that can lead to

identification of position of variants in the genome. For utility measure, we used the following

equation:

U =
d−RMSE

d
(6)

In Eq. 7, d is the mean number of reads that overlap with a basepair or with a functional unit such

as exons. RMSE is the root mean square between the real depth and the depth after distorting the

file to make it private. For a genome with N number of basepairs or exons, it can be calculates as:

RMSE =
∑N

i=1 |di −d
p
i |

N
(7)

di is the real number of reads for ith basepair, wheras d
p
i is the number of reads obtained from the

distorted file.

We categorized the reads in the SAM files from functional genomics experiments. First type is

the perfectly mapped reads that do not contain any variants. Their cigar is coded as nM, n being
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the length of the fragment. Second type is reads that do not completey mapped due to mismatches,

insertions, deletion, soft-clipping and hard-clipping. If not sequencing errors, mismatches denote

SNPs and their cigar is coded as mX , m being the number of mismatch. Insertions (cigar is aI)

and deletions (cigar is bD) leak the locations of indels and soft-clipping (cigar is cS) and hard-

clipping (cigar is dH) often indicate presence of structural variants. Third type is intronic reads

that skip over many basepairs in between mapped nucleotides and often represented as xMyNzM

in the cigar string.

Our first intiution was to remove all the reads that have [X,S,H,I,D] in the cigar from the public

files, and create a separate private file with them (see SI Methods). However, the bp and exon

resolution depth analysis shows that the biological utility of this file format may not be enough for

accurate biological interpretation (SI Fig x). This is due to the loss of great amount of reads.

We then treated the cigars with [X,S,H,I,D] as perfectly mapped cigars. This introduces noise

to the reads that has deletions as we keep the start coordinates and total length of the fragments

unchanged (Fig. 8a-b). The utility analysis of the data showed > 99.9% accordance with the

original depth of the nucleotides. As can be seen from the scatter plots, noise is mostly introduced

to basepairs with low depth (Fig. 8c-d).

We call this file format pBAM/SAM/CRAM. It does not contain any of the sequencing infor-

mation. It contains the read info from the sequencer, the flag that denotes whether or not read

is mapped, the start position of the read on the reference genome and a cigar that shows every

nucleotide is mapped to the positions on the reference genome perfectly. The pBAM file format

contain all the necessary information to be used in functional genomics pipelines such as gene

expression quantification and transcription factor binding peak calling. There are optional fields in

the SAM files such as alignment scores, which can be used as quasi-indetifiers, therefore we leave

them out from the p-BAMs.
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We then created a “.diff” file that contains the optional fields that we did not report on pBAM, as

well as the reads that contain [X,S,H,I,D]. Instead of reporting the entire sequence of a fragment,

we reported the nucleotides that are different than the reference sequence (see SI). “.diff” files are

private files that require special permission for access. The advantage of locking up the “.diff” files

instead of the entire BAM files is that they are smaller in size, hence it is easier to store and move

these files. A user is able to reach the original BAM file when they have access to the .diff file and

a script can convert pBAM + .diff + reference genome into the original BAM file (Fig 8b).

3 Discussion

Functional genomics experiments provide large amount of biological data. These are large-scale,

high-throughput assays based on sequencing. In turn, a great amount of genotype information can

be recovered from the raw reads. Therefore, raw reads almost always require special permission

for access. The size of these protected files can go up to few gigabytes. Therefore, private accesion

to this data creates one more layer of complexity in terms of processing, analysis and data transfer

by posing an excessive administrative burden on academic. Moreover, functional genomics ex-

periments advanced our undertsanding of health and disease by revealing function of the genome

under different conditions. The quantification, analysis and the interpretation of functional ge-

nomics data are still not entirely developed. Thus, sharing raw reads from functional genomics

experiments accelerate collaborative research and reproducibility.

Although re-idnetification of individuals using DNA variants is a well-studied area of genomic

privacy, the quantification of private information content of the functional genomic data and open

access to such data without comprimising individuals’ identity have not been studied yet. We

have derived information theroy based measures to systematically quantify the sesitive information

leakage of functional genomics data. Our results demonstrate that extremely accurate linking

18



attacks can be performed when an adversary have access to fairly small amount of reads from

functional genomics experiments. Although these experiments are not performed for the purpose

of detecting variants, our results show that the nature of functional genomics data is similar to

whole genome sequencing data and with imputation rich information about an individual’s identity

can easily be inferred. These results reflect the righteousness of current challenges related to

requirement of special permission to access such data.

data stack and changing privacy concern and set point

importance of utilit of released data and file formats
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Figure 1: Schematic of data types from functional genomics experiments. (a) The flow for

RNA-Seq data processing from mapped reads to the gene quantifications. (b) Different layers of

produced data from RNA-Seq pipeline. Red line denotes the set point, where privacy concern

vanishes afterwards.
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Figure 2: Comparison of naive information measure with information with LD consideration

and sample size correction. (a) Difference between the naive information, information with LD

consideration and extrapolated information when population size is infinite. (b) The maximum LD

score for each variant are averaged over per information and plotted against information. Highly

informative variants do not exhibit difference when information is calclated sing naive approach

vs. with LD consideration. (c) Naive information vs. information with LD consideration per

each variant in an LD block. Only low information variants show slight difference between two

approaches. (d) Naive information vs. inverse fraction of the data sampled from the 1000 genomes

population. y-intercept is extrapolated from the fitted curve and denotes the information when the

population size is infinite. Error bars are calculated using 100× bootstrapping. (e) The process

of sampling reads from functional genomics experiments for the calculation of pointwisw mutual

information between 1000 genomes gold standard variants for NA12878 in different coverages.
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Figure 3: The pointwise mutual information calculated for 24 different functional genomics

assays and WGS, WES and SNP ChIP data using NA12878 1000 genomes variants as gold

standard. (a) The pmi values for WGS and three different primary Hi-C experiments plotted at

different coverages. The information contents of the gold standard (1kG in blue) and SNP ChIP

(in pink) are added for comparison. (b) The pmi values for 20 different ChIP-Seq experiments

targeting histone modifications and transcription factor binding plotted at different coverages.

(c) The pmi values for WES, total RNA-Seq, polyA RNA-Seq and single-cell RNA-SEq from two

different cells plotted at different coverages. (d) The pmi values per basepair plotted using the

lowest total coverage for all the assays.
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Figure 5: Illustration of a linking attack and the accuracy of linking. (a) The publicly available

ananoymized reads from functional genomics experiments contains a set of variants and HIV sta-

tus for the sample that the functional genomics experiment was performed at increasing coverages.

The panel of genotypes contains the variants and associated genotypes for m individuals. The at-

tacker links the inferred variants and genotypes to the panel of genotypes by using the best matched

pointwise mutual information. The linking potentially reveals the HIV status for the linked indi-

vidual. (b) Comparison of gap for NA12878 at different coverages for Hi-C and Total/PolyA

RNA-Seq reads. WGS and SNP-ChIP are also added for comparison. (c) Comparison of gap for

NA12878 at different coverages for 20 different ChIP-Seq experiments. (d) Comparison of gap

for NA12878 at different coverages for single-cell RNA-Seq experiments.
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Figure 6: Individual’s genome can be approximated and sensitive phenotypes can be inferred

from publicly available data by imputation and a theoretical framework for prediction of

amount of leaked data (a) Number SNVs called from WGS data and all of the ChIP-Seq and

RNA-Seq data together with and without imputation. (b) Variants associated with physical traits

and if they present in the called variants from different functional genomics experiments before

and after imputation. (c) Features of the theoretical framework - write more. (d) Accuracy of fitted

model on training set- write more (e) Accuracy of fitted model on test set - write more
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Figure 7: Removal of rare variants and linking (a) Information of the variant before and after

addition of NA12878 to the population. We iteratively removed variants from the set as (I) only the

variants that is only NA12878 specific, (II) the variants that have an information of 11 or higher

bits after removal of NA12878 from the population, (III) the variants that have an information of

6 or higher bits after removal of NA12878 (b) Linking accuracy for every iteration of removal of

NA12878 variants from the set. (c) Information of all the variants that are called from Total RNA-

Seq reads vs. the information of the indels that are called from Total RNA-Seq reads. (d) Linking

accuracy when we consider all the variants that are called from Total RNA-Seq rads vs. the linking

accuracy when we consider only indels called from Total RNA-Seq reads.
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Figure 8: Privacy-preserving file formats for mapped reads (a) The generation of public pSAM

and private .diff files. (b) Schematic of how to go between pBAM and BAM formats by utilizing

the human reference (c) Comparison of nmber of reads for each basepair in the original SAM

file and the distorted pSAM file. Noise is mostly introduced to basepairs with low depth. (d)

Comparison of nmber of reads for each exon in the original SAM file and the distorted pSAM file.

Noise is mostly introduced to exons with low expression.
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