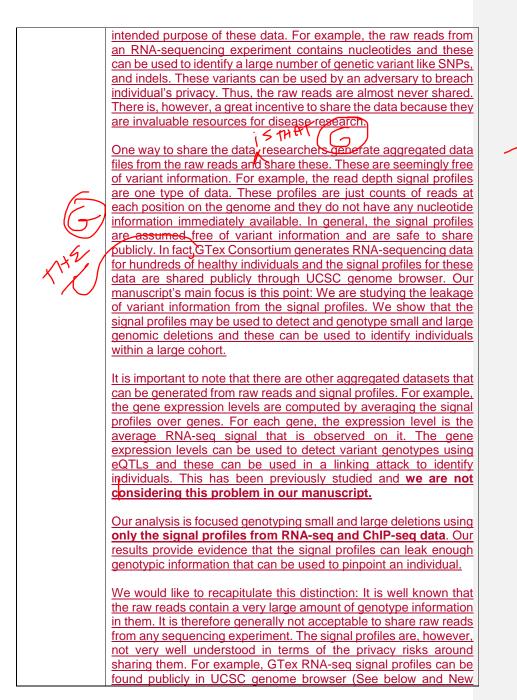
RESPONSE TO REVIEWERS COMMENTS FOR "ANALYSIS OF SENSITIVE INFORMATION LEAKAGE IN FUNCTIONAL GENOMICS SIGNAL PROFILES THROUGH GENOMIC DELETIONS"

Response Letter

-- Ref1.1: Introductory comments ---

Reviewer Comment	Built on previous work from the aspect of SNPs (published in 2016), here the authors expand onto structural variants (SVs), and onto functional genomics data such as RNS-seq and ChIP-seq.
Author Response	We sincerely thank the reviewer for the constructive comments, which we believe made our paper stronger. We respond to reviewer's comments below.


-- Ref1.2: Introductory comments ----

Reviewer	The authors' analyses provided evidence that private				
Comment	indels and other SVs can be recovered from the raw reads				
	from RNA-seq and ChIP-seq (histone modification)				
	experiments. The deletions discovered from these raw data				
	sets can be cross-linked by malicious attackers to				
	potentially reveal the identity of the individual being				
	sequenced. The authors proposed approaches such as				
	smoothing the reads profile to remove the dips in the				
	signal profile, which can alleviate the potential risk of				
	information leakage.				
Author	The reviewer's comments summarize parts of our manuscript. We				
Response	believe, however, we need to clarify some of it. The reviewer				
	indicates that our analyses provides evidence that the private SVs				
	can be recovered from the raw reads from RNA-seq and ChIP-				
	Seq experiments. This is not in our manuscript. In fact, our				
	analysis does not provide evidence that raw reads, by themselves,				
	can be used to recover SVs. Our analysis does not use raw reads,				
	at all.				
	We would like to make sure this is very clear: The data from a				
	functional genomics sequencing experiment is a very rich				
	information source. The main purpose of the functional genomics				
	experiment is to understand the differences in the regulation and				
	expression of genes under different conditions, for example among				
	individuals with cancer. However, these data may ostensibly leak				
	variant information at the same time. This is generally not the				

Deleted: 1

Moved down [1]: The authors' analyses provided evidence that private indels and other SVs can be recovered from the raw reads from RNA-seq and ChIP-seq (histone modification) experiments. The deletions discovered from these raw data sets can be cross-linked by malicious attackers to potentially reveal the identity of the individual being sequenced. The authors proposed approaches such as smoothing the reads profile to remove the dips in the signal profile, which can alleviate the potential risk of information leakage.

Moved (insertion) [1]

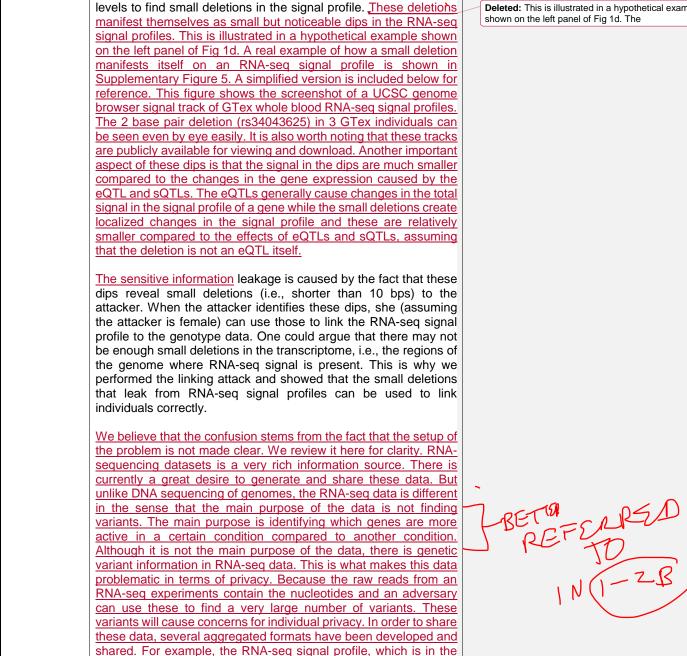
	(1-2R
	Supplementary Figure S5.) Our manuscript sheds light on this issue.	GFAM
	It is very crucial to make this distinction because our manuscript.	
N	To clarify the above point, we have made a new supplementary figure, Supplementary Figure 6, to illustrate the leakage from reads, signal profiles, and gene expression levels. We also	
	updated the introduction and discussion sections to make it clear that the central theme of our study is the signal profiles and not the	
Excerpt From	raw reads. Introduction:	
Revised Manuscript	In this study, we analyze the leakage of sensitive information from the	$(\cdot, 2\mathbb{S})$
	functional genomics data and how they can be used by an adversary in linking attacks. There are a number of motivating key points related to	
	functional genomics data and privacy. First of all, functional genomics data, such as RNA sequencing data, is unique, in that if the data comes	
	from human subjects, the raw reads have genetic variant information, which may be used to identify individuals. However, the main purpose of	FOR FOR
	RNA-Seq data is not related to the variants; main purpose is more related	- ~ 1
	to understanding dysregulation of genes under different conditions, such as cancer. Consequently, there's a great desire to share and study RNA-	MAIN
	Seq datasets, to enable helping to find cures for various diseases. Because of this, there is great incentive to make ways of sharing functional	JCAI
	genomics data without privacy protections. Large-scale privacy protections are a great encumbrance on genomic data sharing. They do	(SZ
	not allow researchers and data owners to share results on the web, use web and internet-based tools, and they exert a great burden on research.	1
	Consequently, many consortia, such as GTEx, aim at sharing RNA-Seq information to the maximum extent. The raw reads obviously cannot be	NEL DW
	shared, as they contain variant information. However, there's belief that the signal files and the gene-level quantifications can be shared. The	BELOW
	signal files simply reflect the overall depth of coverage of the RNA-Seq reads at any given point. Ostensibly, they're do not contain variant	
	information. Many of the genomics consortia have decided to openly share RNA-Seq signal information. We show that there is a high degree	
	of private information leakage in the function genomics signal profile data. The gene-level quantifications essentially are averages over the	
	signal profile over exons. Although the overall averaging reduces information, private information leakage. However, there is also private	
	information leakage through the association with variants called eQTLs. It is important to note that this is tackled in the current study, but is looked	
	at elsewhere[16, 18].	
	In this study, we analyze the sensitive information leakage from the signal profiles of several sequencing based functional genomics datasets. By	

signal profile, we refer to the genome-wide signal computed by counting the number of reads that overlap with each nucleotide on the genome. The signal profiles are just one type of aggregated data that is generated from raw reads. Another type of aggregated data is gene expression quantifications, which are averages of RNA-seq signal profiles over genes. The leakage of information from the gene expression quantifications has been previously studied[16, 18]. Rather, we are only considering whether the signal profiles have any genotypic information leakage from them. We show that signal profiles do leak a large amount of genotype information for small and large genomic deletions. As discussed earlier, the raw reads from an RNA sequencing experiment contain the nucleotides themselves. It is well established that the raw reads must not be released publicly (Supplementary Figure 6) because given the raw reads, and adversary can identify a large number of private SNPs and indels. We therefore assume that the raw reads are not publicly shared and that the adversary does not have access to the raw reads. Rather, we assume that the data owners created the signal profiles and made these publicly available. The adversary gains access to these signal profiles. Regarding the signal profiles, it is generally assumed that the signal profiles are mostly void of sensitive information. Several large consortia, for example ENCODE Project[25], Roadmap Epigenome Mapping Consortium[26], and GTex[27, 28] publicly share signal profiles (Supplementary Figure 5)

Discussion:

Overall, at this point, it is useful to review all the sources of information leakage from functional genomics experiments, such as RNA-Sequencing, and point out the sources that we probed in this paper. First, there is the leakage directly from the reads. This is the most obvious leakage, and this leakage is avoided with by simply not sharing the raw reads. Next source of leakage is from the signal profile. This leakage is addressed in this paper. There is yet another source of leakage though, when one averages over the signal file, and produces quantifications in particular regions such as genes. These quantifications can be subtly connected with variants through the notion of eQTLs. This is not addressed in this paper, and there can be substantial leakage from these quantifications.

Furthermore, one can envision additional sources of leakage beyond that, in these main areas. For instance, one can imagine complex and subtle correlations between the levels of gene expression of many genes within pathways and networks. Although there has been interest in identifying these higher order QTLs, these are not yet extensively studied[28]. Complex machine learning techniques, such as deep learning, can reveal subtle correlations of gene expression at the network level with variants. Also, eQTLs traditionally have been linked to genes; ostensibly, one might imagine by averaging over various intergenic regions, some of the more highly expressed region to signal profile might also show correlations. This is another source of information not studied in this work. Finally, an additional source of information is, while we do look at calling of particular types of structural variants, such as small and large deletions, there may be very large-scale, megabase-scale deletions, which affect many genes. This is particularly the case for somatic events in cancer samples. This case is also not covered by our procedure.

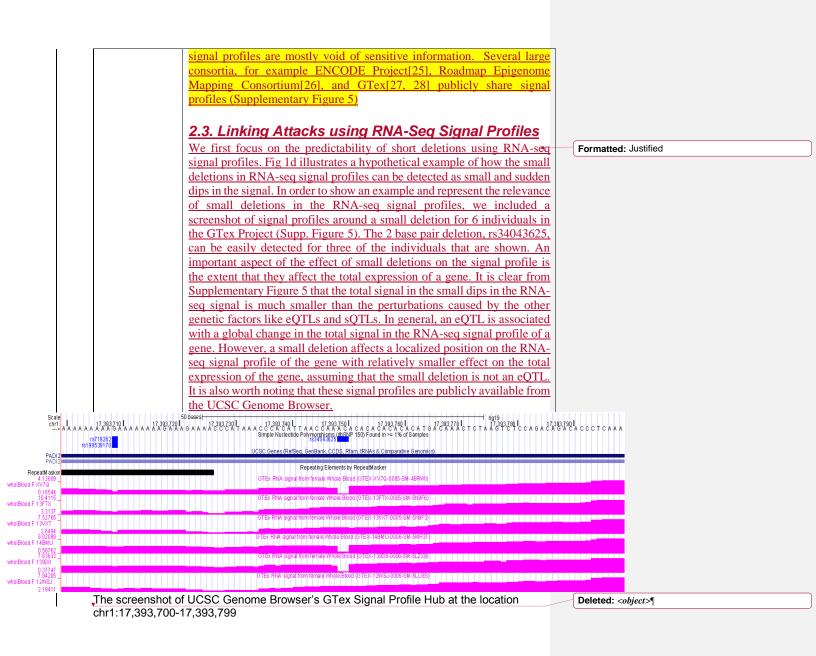

Finally, we would like to emphasize that we focused on a particular type of leakage of private information in functional genomics data, such as RNA-Seq data, such that the leakage stems from the signal profile. There are many other sources of information, however the signal file is currently at the junction between public and private information, and is where genomic information is begun to be shared publicly. Hence, we believe it is particularly important to probe the leakage from the signal profile representation of functional genomics data. It might unfortunately be the case that this type of information is not able to be shared publicly in the future, perhaps only sharing gene-level quantifications, or even worse, nothing at all. We wish to emphasize that, in this paper, we are not trying to look at all sources of leakage from functional genomics data, but just the sources of leakage right at the decision boundary of sharing and not sharing.

Formatted: Justified

Formatted: Normal

-- Ref1<u>.3</u>: I am doubtful that RNA-seq data is equally useful since the expression level of a gene can be influenced by a single nucleotide SNV (e.g. eQTL), or mutations (SNPs) in splice junction sites ---

Reviewer	I like the concept introduced by the author
Comment	"predictability of the SV genotype based on the observed
	signal profile". Figure 1C showed one nice example in which the absence of histone ChIP-Seq data is used to infer a genomic deletion event. I can imagine that histone modification data measured by ChIP-seq is useful in this regard, however I am doubtful that RNA-seq data is equally useful since the expression level of a gene can be influenced by a single nucleotide SNV (e.g. eQTL), or mutations (SNPs) in splice junction sites. I would like the authors to comment on these other confounding factors.
Author	We thank the reviewer for the insightful comment. We understand
Response	that the reviewer is concerned that deletions may not affect the
	gene expression as much as eQTLs and splice site mutations. Although we understand the reviewer's concern, we believe that
	the setup of the attack needs to be clarified: In attack scenario regarding RNA-seq data, we assume the attacker uses the signal



Deleted: This is illustrated in a hypothetical example shown on the left panel of Fig 1d. The

	center of our study, is one aggregated type. The signal profile is		
	generated by counting the number of reads that overlap with each		
	position on the genome. This profile does not immediately reveal		
	any nucleotide information and is generally assumed to be free of		
	variant information. Our study shows that this is not really the case		
	because the dips in the signal profiles can reveal small and large		
	genomic deletions. We show that an adversary can predict enough		
	of the small deletions and use these to identify individuals. The aim		
	of our current study is to demonstrate that the leakage from the		
	genome-wide signal profiles can cause privacy concerns and		
	present a way to close this leakage as much as possible so that		
	the linking cannot be done reliably.		
	There is another type of aggregated data files that are shared,		
	which are the gene expression matrices. We agree that if the		
	attacker used the gene expression levels, she could identify eQTLs		
	and sQTLs but these are out of the scope of the attack that we are		Deleted: current
	considering. In fact, our 2016 (Harmanci, Gerstein, Nature		
	Methods, 2016) study focuses on exactly this scenario of linking		
	eQTL genotypes to gene expression levels.		Deleted: The aim of our current study is to
	Gan 2 generypee to gene expression revelor.		demonstrate the leakage from the genome-wide signal
	To clarify the types of leakage that our manuscript studies, we		profiles and close this leakage as much as possible so
	made the supplementary figure 6. This figure illustrates the fact	t	hat the linking cannot be done reliably.
	that the raw reads leak the full genotypic information, the signal		
	profiles leak the genotype of deletions and gene expression levels		
	can leak genotype information through eQTLs and sQTLs. Our		
	current study deals with the signal profiles that leak deletions.		
	We have clarified the main text (Section 2.3) about RNA-seq signal	_	
	profiles and added a paragraph explaining that there can be other	(I	Deleted: updated the Discussion Section and
	sources of leakage from RNA-seq signal profiles. We also added		
	a supplementary figure (Supplementary Figure 5) to demonstrate		
	how the small deletions affect RNA-seq signal profiles. We have		Deleted: This figure shows the screenshot of a UCSC
	included a simplified version of this figure below for reference. We	Q	genome browser signal track of GTex whole blood
	also included a new Supplementary Figure (Supp. Figure 6) to		RNA-seq signal profiles. The 2 base pair deletion
	clarify the types of leakages from functional genomics data.		rs34043625) in 3 GTex individuals can be seen even by eye easily. It is also worth noting that these tracks
Excerpt From	clarity the types of leakages from functional genomics data.		are publicly available for viewing and download.
Revised Manuscript	Introduction	$ \rangle \geq$	Deleted: the
			Seleted. the
	In this study, we analyze the leakage of sensitive information from the		
	functional genomics data and how they can be used by an adversary in		
	linking attacks. There are a number of motivating key points related to		
	functional genomics data and privacy. First of all, functional genomics		
	data, such as RNA sequencing data, is unique, in that if the data comes		
	from human subjects, the raw reads have genetic variant information,		
	which may be used to identify individuals. However, the main purpose of		
		1	

RNA-Seq data is not related to the variants; main purpose is more related to understanding dysregulation of genes under different conditions, such as cancer. Consequently, there's a great desire to share and study RNA-Seq datasets, to enable helping to find cures for various diseases. Because of this, there is great incentive to make ways of sharing functional genomics data without privacy protections. Large-scale privacy protections are a great encumbrance on genomic data sharing. They do not allow researchers and data owners to share results on the web, use web and internet-based tools, and they exert a great burden on research. Consequently, many consortia, such as GTEx, aim at sharing RNA-Seq information to the maximum extent. The raw reads obviously cannot be shared, as they contain variant information. However, there's belief that the signal files and the gene-level quantifications can be shared. The signal files simply reflect the overall depth of coverage of the RNA-Seq reads at any given point. Ostensibly, they're do not contain variant information. Many of the genomics consortia have decided to openly share RNA-Seq signal information. We show that there is a high degree of private information leakage in the function genomics signal profile data. The gene-level quantifications essentially are averages over the signal profile over exons. Although the overall averaging reduces information, private information leakage. However, there is also private information leakage through the association with variants called eQTLs. It is important to note that this is tackled in the current study, but is looked at elsewhere[16, 18].

In this study, we analyze the sensitive information leakage from the signal profiles of several sequencing based functional genomics datasets. By signal profile, we refer to the genome-wide signal computed by counting the number of reads that overlap with each nucleotide on the genome. The signal profiles are just one type of aggregated data that is generated from raw reads. Another type of aggregated data is gene expression quantifications, which are averages of RNA-seq signal profiles over genes. The leakage of information from the gene expression quantifications has been previously studied[16, 18]. Rather, we are only considering whether the signal profiles have any genotypic information leakage from them. We show that signal profiles do leak a large amount of genotype information for small and large genomic deletions. As discussed earlier, the raw reads from an RNA sequencing experiment contain the nucleotides themselves. It is well established that the raw reads must not be released publicly (Supplementary Figure 6) because given the raw reads, and adversary can identify a large number of private SNPs and indels. We therefore assume that the raw reads are not publicly shared and that the adversary does not have access to the raw reads. Rather, we assume that the data owners created the signal profiles and made these publicly available. The adversary gains access to these signal profiles. Regarding the signal profiles, it is generally assumed that the

-- Ref1.4: I don't agree with the statement that "it is well known that the major portion of the genomic variation is caused by SVs". ---

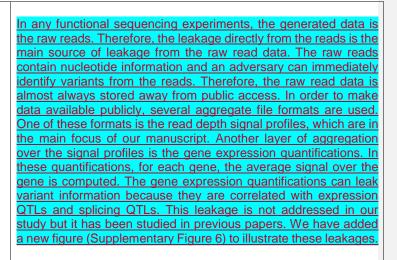
Reviewer Comment	I don't agree with the statement that "it is well known that the major portion of the genomic variation is caused by SVS". Are the authors referring to the total number of nucleotides in the SV regions, or the impact of SVs versus SNPs to gene expression? Earlier work by Barbara Stranger and colleagues had shown that SNP cause more than 80% if the gene expression phenotype (Stranger Science 2007). It is probably true that an individual SV could have greater phenotypic effect than a SNV but SVs are obviously much less common.				
Author	We agree with the reviewer's concern. We believe we need to				
Response	clarify the statement to express exactly that we are referring to the				
	total number of bases that are affected by variants and not to the				
	total effect size on gene expression. We also agree that this				
	statement must be clarified according to the insightful comments				
	of the reviewer. We have added the reference and updated the text to clarify it and reflect the reviewer's remarks.				
Excerpt From	Introduction				
Revised Manuscript	In this work, we are studying whether an adversary can use small and				
	large genomic deletions for performing linking attacks. We study whether				
	the adversary can use signal profiles of functional genomics signals to				
	detect and genotype genomic deletions and use them to pinpoint individuals in a large genotype dataset. Most of the previous studies on				
	genomic privacy focus on the single nucleotide polymorphisms (SNPs).				
	This is well justified because the estimated regulatory effect of SNPs on				
	gene expression is much larger than the structural variants[22]. On the				
	other hand, it is known that the major portion of the genomic variation,				
	in terms of the number of nucleotides that are affected, is caused by				
	SVs[23, 24] as shown by 1000 Genomes Project. Since an SV affects a				
	much larger portion of the genome (in number of nucleotides) than a				
	single nucleotide variant does, its effect on a phenotype is expected to be				
	very obvious, if not more than a SNP. For example, homozygous deletion				
L	of a gene will cause the total disappearance of its expression.				

Formatted: Justified

-- Ref1<u>.5</u>: I think the part on Hi-C doesn't really add much to the work. ---

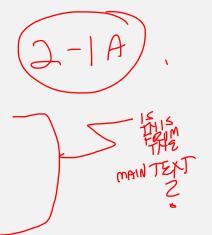
Reviewer Comment	I think the part on Hi-C doesn't really add much to the work, the results are less convincing than the those of RNA-Seq and ChIP-seq and there are more confounding
	factors. I suggest to have it removed from the manuscript.
Author	The reviewer recommends removing the Hi-C analysis because it
Response	is not as convincing. Although we agree that Hi-C analysis does

	not conform to the rest of the RNA-seq and ChIP-Seq analysis, we still think it is valuable to demonstrate the possibility of an attack using this data. Therefore, we moved the Hi-C analysis to the
	Supplementary Text and we included references to this analysis in
	the main text.
Excerpt From Revised Manuscript	[[I am not sure if we should do what I am saying above]]


-- Ref1<u>.6</u>: The RNA-seq and chromatin modification data described in this work were derived from 1000 Genome and similar consortia projects. –--

seq and chromatin modification data described in the were derived from 1000 Genome and similar a projects, where were mostly transformed astoid cell lines instead of primary cell or cell lines. While the observations were interesting princing, in practice RNA-seq data is probably more than ChIP-seq data, especially in a clinical		
a projects, where were mostly transformed astoid cell lines instead of primary cell or cell lines. While the observations were interesting rincing, in practice RNA-seq data is probably more chan ChIP-seq data, especially in a clinical		
astoid cell lines instead of primary cell or cell lines. While the observations were interesting rincing, in practice RNA-seq data is probably more chan ChIP-seq data, especially in a clinical		
cell lines. While the observations were interesting rincing, in practice RNA-seq data is probably more than ChIP-seq data, especially in a clinical		
han ChIP-seq data, especially in a clinical		
1 , 1 1		
k the reviewer for making a strong point that supports the		
of protecting RNA-seq data. We agree with the reviewer's		
t. We are, however, confused by reviewer's comment that		
A-seq and chromatin data were derived from 1000		
s and similar consortia projects. We would like to point out		
IVADIS consortia. GEUVADIS RNA-seq data is generated		
phoblastoid cell lines of 462 individuals whose genotypes		
ewer also makes an important point that the RNA-seq data		
more common than ChIP-Seq data. This argument		
ipt (Section 2.6), this is exactly the reason why we are		Deleted: on Anonymization of Signal Profiles,
ated the Section 2.6 (Anonymization of Signal Profiles) to		Deleted: on
		Deleted: emphasize the clinical relevance of RNA-s
	of protecting RNA-seq data. We agree with the reviewer's at. We are, however, confused by reviewer's comment that A-seq and chromatin data were derived from 1000 as and similar consortia projects. We would like to point out a 1000 Genomes project currently does not have any al genomics data. The RNA-seq datasets are from GTex JVADIS consortia. GEUVADIS RNA-seq data is generated phoblastoid cell lines of 462 individuals whose genotypes able in 1000 Genomes Project. The GTex contains a much verse set of data with many tissue cell lines. In our study, s on the data from cell lines generated from whole blood of ints of the GTex project. ewer also makes an important point that the RNA-seq data is more common than ChIP-Seq data. This argument is our study very well: As we have explained in the ript (Section 2.6), this is exactly the reason why we are on anonymization of RNA-seq signal profiles, i.e., RNA- nuch more common data type especially in the clinical and it is realistically more urgent to anonymize RNA-seq ata. We, however, still believe that the leakage analysis IP-Seq data is important as ChIP-Seq is becoming more in large scale functional genomics projects.	of protecting RNA-seq data. We agree with the reviewer's at. We are, however, confused by reviewer's comment that A-seq and chromatin data were derived from 1000 as and similar consortia projects. We would like to point out a 1000 Genomes project currently does not have any al genomics data. The RNA-seq datasets are from GTex JVADIS consortia. GEUVADIS RNA-seq data is generated uphoblastoid cell lines of 462 individuals whose genotypes able in 1000 Genomes Project. The GTex contains a much verse set of data with many tissue cell lines. In our study, s on the data from cell lines generated from whole blood of ints of the GTex project. ewer also makes an important point that the RNA-seq data is our study very well: As we have explained in the ript (Section 2.6), this is exactly the reason why we are on anonymization of RNA-seq signal profiles, i.e., RNA- nuch more common data type especially in the clinical and it is realistically more urgent to anonymize RNA-seq ata. We, however, still believe that the leakage analysis IP-Seq data is important as ChIP-Seq is becoming more in large scale functional genomics projects.

Excerpt From Revised Manuscript	2.6. Anonymization of RNA-Seq Signal Profiles
	The personal RNA-seq datasets are currently by far the most abundant datasets compared to other functional genomic datasets. For example, the RNA-seq signal profiles are being publicly shared from the GTex project while the genotypes are not in public access. In addition, RNA-seq is becoming commonly used in the clinical settings and new RNA-seq based assays are being developed to probe gene expression, for example single cell RNA-sequencing. Altogether these make protection of RNA-seq data urgent. We therefore focus on protection of the RNA-seq datasets.

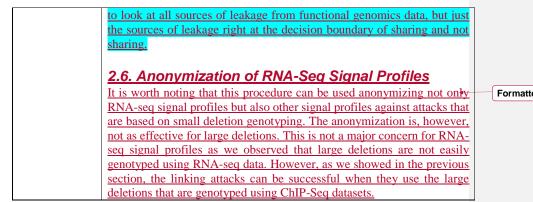

-- Ref2<u>.1</u>: The major concern is that they presume they can anonymize and thus fully understand the system behind the signal data. ---

Reviewer Comment	The major concern is that they presume they can anonymize and thus fully understand the system behind the signal data. They write they "present an effective anonymization procedure for protection of signal profiles against genotype prediction based attacks". The reviewer views this as incorrect overstatement given their manuscript, as functional data have impacts across many genes and networks - many unseen or still to be discovered. In the end, they present one rather ad-hoc method for a linkage attack built on dips & also present how one can protect against that ad-hoc approach. Still, there are many, many more that could also be described and suggesting that they have developed an anonymization approach that is generalization is premature.			
	For example, a basis of much of biology is that DNA level events impact not just the gene that is deleted but entire complex pathways, leaving complex signatures. The reviewer can think of dozens of ways a deletion of a gene that negatively regulates a pathway would lead to downstream upregulation of other genes (not a dip). Beyond this, one can see ways deep neural networks can be trained, and deduce using hidden network via emerging Artificial Intelligence algorithms. The problem with suggesting that one can anonymize the data presumes that new knowledge won't be gained allowing one to infer laying on complex pathway information within a linkage attack.			
Author	The reviewer is making a valid point regarding our anonymization			
Response	procedure. Our statement that the proposed anonymization			
	method is effective for full protection of signal profiles may be			
	viewed as an overstatement.			
	At this point, we believe it is important to systematically clarify the sources of leakage and which leakage our study analyzes:			

As the reviewer points out, one can envision additional sources of leakage beyond these aggregated formats. For instance, there can be complex and subtle correlations between variant genotypes and the aggregate expression levels genes within pathways and networks. These are not currently explicitly studied, but they could be detected through complex pattern-matching and machine learning techniques, such as deep learning. Even more so, although eQTLs have traditionally been linked to genes, there may be eQTLs whose variant genotypes are correlated with the expression of intergenic and intronic elements. Finally, another additional source of leakage is, while we do look at calling of particular types of structural variants, such as small and large deletions, there may be very large, megabase-scale deletions, which affect many genes. This is particularly relevant for the case of somatic events in cancer. These are other sources of leakage that we did not address here.

So, to emphasize, we focused on a particular type of leakage of private information in RNA-Seq data, related to the signal profile. There are many other sources of information, however the signal file is currently the juncture between public and private information, and is begun to be shared publicly. Hence, we think it's particularly important to measure the leakage at this level. It might unfortunately be the case that this type of information is not able to be shared publicly in the future, and one will have to move up the stack, perhaps only sharing gene-level quantifications, or even worse, nothing at all. We wish to emphasize that we are not, in this paper, trying to look at all sources of RNA-Seq variant information.

	but just the source of leakage for the data formats that are believed to be safe to share.	
	As the reviewer rightfully points out, the current study does not consider the leakage from the much more complicated mechanisms comprising of complex genetic pathways. We <u>have</u> <u>clarified</u> this statement as following: "We have developed an anonymization procedure, which is effective at closing a major source of genetic information leakage that is caused by the dips in the signal." As this new statement reflects, we do not claim to close all the leakage but we demonstrate to a major source.	Deleted: nee
	We, however, believe that it would be fair when we state that the leakage from the signal dips that is presented in our study is a major source of the leakage that must urgently be closed. The leakage from the higher order effects of a variants on pathways can be studied separately.	
	We have updated the Signal Profile Anonymization and Discussion Sections to stress and clarify the above points. <u>We also added</u> <u>Supplementary Figure 6 to illustrate the types of leakage from</u> <u>different data formats used in functional genomics and clarify the</u>	
	leakage we are tackling in this paper.	
Excerpt From Revised Manuscript	DISCUSSION	
	The sequencing based functional genomics assays provide very large	
	amount of biological information. Within this, much of the variant	
	genotype information is within the raw reads (Supplementary Figure 6).	
	In fact an adversary that gains access to the raw reads can easily call	
	SNPs, indels, and structural variants. This is why raw reads are always protected from public access. The gene expression levels have also been	
	shown to leak enough genotype data that can be used in linking	
	attacks[16, 18]. The privacy concerns around sharing signal profiles are	
	not well studied yet.	
	<u></u>	
	It is worth noting that the anonymization method that we presented does	
	not close all the sources of leakage. The anonymization procedure aims	
	to close the leakages caused by the genotyping of genomic deletion using	
	the dips in the signal profile. These leakages are very accessible to and	
	adversary and we believe that they must be urgent closed because they can be detected directly from the signal profiles. Given other types of	
	data, there can still be other sources of genotype information leakage after	
	the anonymization is applied. For example, the gene expression levels can	
	be used to infer genotype information, which was demonstrated in earlier	
	studies[16, 18]. In addition, the effects of variants on the activity levels	
	of pathways are not well known yet. The complex machine learning	


ed to clarify

frameworks, such as deep learning methods, have great potential to reveal the correlations between variants and activity levels of pathways. The leakage from the pathway level activity can be analyzed by using deep learning based approaches.

Overall, at this point, it is useful to review all the sources of information leakage from functional genomics experiments, such as RNA-Sequencing, and point out the sources that we probed in this paper. First, there is the leakage directly from the reads. This is the most obvious leakage, and this leakage is avoided with by simply not sharing the raw reads. Next source of leakage is from the signal profile. This leakage is addressed in this paper. There is yet another source of leakage though, when one averages over the signal file, and produces quantifications in particular regions such as genes. These quantifications can be subtly connected with variants through the notion of eQTLs. This is not addressed in this paper, and there can be substantial leakage from these quantifications.

Furthermore, one can envision additional sources of leakage beyond that, in these main areas. For instance, one can imagine complex and subtle correlations between the levels of gene expression of many genes within pathways and networks. Although there has been interest in identifying these higher order QTLs, these are not yet extensively studied[28]. Complex machine learning techniques, such as deep learning, can reveal subtle correlations of gene expression at the network level with variants. Also, eQTLs traditionally have been linked to genes; ostensibly, one might imagine by averaging over various intergenic regions, some of the more highly expressed intergenic regions might also show correlations with variants. This is another source of information not studied in this work. Finally, an additional source of information is, while we do look at calling of particular types of structural variants, such as small and large deletions, there may be very large-scale, megabase-scale deletions, which affect many genes. This is particularly the case for somatic events in cancer samples. This case is also not covered by our procedure.

Finally, we would like to emphasize that we focused on a particular type of leakage of private information in functional genomics data, such as RNA-Seq data, such that the leakage stems from the signal profile. There are many other sources of information, however the signal file is currently at the junction between public and private information, and is where genomic information is begun to be shared publicly. Hence, we believe it is particularly important to probe the leakage from the signal profile representation of functional genomics data. It might unfortunately be the case that this type of information is not able to be shared publicly in the future, perhaps only sharing gene-level quantifications, or even worse, nothing at all. We wish to emphasize that, in this paper, we are not trying

Formatted: Justified

