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Abstract

Functional genomics experiments provide a wealth of insight on genomic activities (i.e

gene expression or transcription factor binding) related to developmental stages or diseases

that are essential for personilized medicine. Although these activities are not necessarily tied

to an individual’s genotype, quantification of such activities is only possible using sequencing

data that involves individual’s genotypes. Here we focus on the quantity of sensitive informa-

tion in functional genomic experiments such as ChIP-Seq, RNA-Seq and Hi-C, as majority of

these data are considered to be safe to share due to inadequatue sequencing depth and incom-

pleteness. We derive novel information theory based measures and apply these measures to

quantify the amount of leaked information in 24 functional genomic assays from ENCODE at

varying coverages. We show that individuals are vulnerable to identification even when small

amounts of sequencing data are available to adversaries. We also show that with summation of

functional genomics experiments and imputation through linkeage disequilibrium, the leaked

number of variants can reach the total number of variants in an indivudals genome. We then

provide a theoretical framework where the amount of leaked information can be predicted from

depth and breadth of the coverage as well as the bias of experiments. Based on our findings, we

propose privacy enhancing file formats with minimal loss of utility. Presented frameworks here

can be used for quantification of private information from large functional genomics datasets

before their release and conversion of sensitive data to private formats.
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1 Introduction

With the decreasing cost of DNA sequencing technologies, the number and the size of the avail-

able genomic data have exponentially increased and become available to a wider group of audi-

ences such as hospitals, research institutions and individuals [1]. In turn, privacy of individuals has

become an important aspect of biomedical data science [2, 3] as availability of genetic informa-

tion gives rise to privacy concerns such that genetic predisposition to diseases may bias insurance

companies [?] or create unlawful discrimination by employers.

Early genomic privacy studies focused on identification of individuals in a mixture by using

phenotype-genotype association [5, 6]. These revealed that private information about an individual

such as participation to a drug-abuse study [5, 6] can be revealed. With the increase of large-scale

genomic projects such as Personal Genome Project (PGP) [7] or recreational/commercial genomic

databases, researchers showed that multiple datasets can be linked together to infer sensitive in-

formation such as pariticipant’s surnames [8] or addresses [9]. Such cross-referencing relies on

quasi-identifiers, which are pieces of information that are not unique identifiers by themselves, but

are well correlated with entities that might be unique identifiers or can be unique identifiers when

combined with other quasi-identifiers and become personally identifying information [10].

Functional genomics experiments provide a wealth of information on genomic activities re-

lated to developmental stages or diseases that are essential for personilized medicine. These are

large-scale, high-throughput assays to quantify transcription (RNA-Seq) [11], epigenetic regula-

tion (ChIP-Seq) [12] or 3D organization of genome (Hi-C) [13] in a genome-wide fashion under

different conditions (e.g. samples from patients and healthy individuals). In turn, these experi-

ments produce sequencing data that involve individual’s genotypes. Phenotypical information such

as gene expression levels or signal tracks are shown to be important quasi-identifiers that can be

used to identify individuals as they are likely correlated with genotypical information [14, 15, ?].
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Therefore, the privacy studies based on functional genomics data focused on indetification of in-

dividuals through phenotypical data that is publicly available. This is partly due to the sequencing

data of these experiments that require high genome coverage such as Hi-C or RNA-Seq often re-

quire special permission for access as raw reads contain a significant amount of sensitive genetic

information. The raw reads can be used to identify the private SNPs, small indels, and structural

variants. Nonetheless, sequeincing data of functional genomics experiments that does not require

substantial depth are sometimes considered to be safe to share without privacy concerns as the

nature of these data is biased and partial. A good example is that the genome of HeLa cell line

requires special access, while we can access the DNA reads from ChIP-Seq data [17].

On the flip side of the coin is the utility of these sequencing data. Open data helps the advance-

ment of biomedical data science not only with the easy access to the data, but also helping with

the speedy assesment of tools and methods and in turn reproducibility. Funding agencies and re-

search organizations are increasingly supporting new means of data sharing and new requirements

for making data publicly available. Embracing the both side of the coin, we ask the questions

of how much information is enough information to identify individuals and how we can protect

the sensitive information with minimum loss of utility in a publicly data sharing mode. To this

end, we derive novel information theory based measures and apply these measures to quantify the

amount of leaked information in 24 functional genomic assays from ENCODE [18] at varying cov-

erages. Furthermore, we develop new file formats that allow the public sharing of read alignments

of functional genomics experiments while protecting the sensitive information.

In this study, we use NA12878 as a case example and her 1000 genomes [20] genotypes as gold

standard genotypes. We sample reads from the sequencing data of functional genomics experi-

ments at increasing coverages and detect SNVs and indels using Genome Analysis Toolkit (GATK)

best practices recommendations [21, 22]. We propose a new metric for qantifying the amount of
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information that can be obtained from sequencing data with respect to the gold standard. We next

present a simple and practical instantiation of a linking attack with the assumption of adversaries

accesing only a portion of the seqencing data. We show that individuals are vulnerable to iden-

tifications even at small coverages of sequencing data. We further show that with summation of

functional genomics experiments and imputation through linkeage disequilibrium, the leaked num-

ber of variants can reach the total number of variants in an indivudals genome. We then provide

a theoretical framework where the amount of leaked information can be predicted from depth and

breadth of the coverage as well as the bias of the experiments. Finally, we focus on ways to pub-

licly share alignment data without comprimizing individual’s sensitive information. We propose

privacy enhancing file formats that hide variant information, are compressed and have minimum

amount of utility loss.

2 Results

2.1 Information Theory measures to quantify private information in an in-

dividual’s genome

An individual’s genome can be represented as a set of variants. Each variant is composed of the

chromosome it belongs to, location on that chromosome, the alternative allele and its correspond-

ing genotype. Let S = {s1,s2, ..,si, ..sN} be the set of variants, then each variant can be represented

as si = {vi,gi}, where vi consists of the location and alternative allele information and gi denotes

the genotype of the variant as 1 for heterozygous variant and 2 for homozygous variant. We can

then calculate the self-information of S in bits as

h(S) =−
i=N

∑
i=1

log2(p(si)). (1)

5



In eq.1 N is the total number of variants in an individual’s genome, p(si) = ni/nT , where ni is

the number of individuals with variant si and nT is the total number of individuals in the panel.

Note that h(S) is an estimate of the real information in a situation where the population that the

individual belongs to is not known and the number of inidivuals are finite. Eq.1 holds only if

variants are independent of each other, which is not the case due to the correlation between variants

in linkage disequilibrium (LD). In theory, the population that the individual belongs to can easily

be predicted by using a few variants. However, from an adversary’s perspective, this will add one

more layer of calculation, i.e computational and time cost to identification attack. Eq.1 also cannot

be equal to the information when we consider all the individuals in the world (nt → ∞)). Therefore

from hereof we will refer Eq.1 as the naive information.

To be able to understand whether naive information is a good estimate, we first calculate the

information with the consideration of LD scores taken from the European population of HapMap

project [23]. LD scores are pairwise correlations between variants, which we consider as the prior

information on the existence of a variant given other variants in the same LD block exist in a

genome. Then the information with LD consideration is calculated as

hLD(S) =−
i=N

∑
i=1

(1−mLD(si,s j))h(si) (2)

LD(si,s j) is the maximum LD correlation of variant si such that mLD(si,s j)= max
i 6= j, j∈(1,..,N)

LD(si,s j),

where mLD(si,s j) 6= mLD(s j,si).
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Figure 1: Comparison of naive information measure with information with LD consideration

and sample size correction. (a) Difference between the naive information, information with LD

consideration and extrapolated information when population size is infinite. (b) The maximum LD

score for each variant are averaged over per information and plotted against information. Highly

informative variants do not exhibit difference when information is calclated sing naive approach

vs. with LD consideration. (c) Naive information vs. information with LD consideration per

each variant in an LD block. Only low information variants show slight difference between two

approaches. (d) Naive information vs. inverse fraction of the data sampled from the 1000 genomes

population. y-intercept is extrapolated from the fitted curve and denotes the information when the

population size is infinite. Error bars are calculated using 100× bootstrapping. (e) The process

of sampling reads from functional genomics experiments for the calculation of pointwisw mutual

information between 1000 genomes gold standard variants for NA12878 in different coverages.

Figure 1a shows a negligible difference between the naive information and information with

LD consideration for NA12878 genome. To understand the lack of difference better, we calculate

the self-information of each variant in an LD block with and without LD consideration. We show

that highly informative variants do not exhibit any difference due to the low LD correlations (Fig-
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ure 1b). We further show that the number of variants that have difference between information

with and without LD consideration is small compared to highly informative variants having low

LD correlations on average.

We then estimate the information when the population size is infinite [24]. We sample fractions

individuals from the 1000 genomes phase I panel (total of 2504 individuals) and calculate the in-

formation using the sampled distribution of genotypes. We repeat this calculation for 100 times

and calculat the mean information for each sampled fraction. We found a power relationship with

two terms (y = axb +c) between the inverse sampled fraction and the information (R = 0.99). The

y-intercept (c) of the curve is the extrapolation of information when the population size goes to

infinity (1/∞ = 0, Figure 1c). We again found a negligible difference between the naive informa-

tion and the information when the population size is infinite (Figure 1a). The information is also

calculated by starting from a single individual and adding individuls one by one to the popula-

tion (SI Figure 1a). These individuals are simulated using the genotype frequencies in the 1000

genomes panel and the LD information from HapMap project (see SI methods). Both the infor-

mation calculation and the KL-divergence between different size populations show that as the size

of the population increases, the difference in the information decreases and eventually becomes

negligible (SI Figure 1a-b)

In summary, calculations above show that the naive information can be an accurate approximate

to the private information content of an individal’s genome when the individual’s population is not

known and the population size is bound by the number of individuals in 1000 genomes panel due to

the relationship of information at n → ∞ ≥ naive information ≥ information with LD (Figure 1a).

That is, an adversary with no prior knowledge on the population of the sample and limited number

of individuals in a known genotype panel can accurately approximate the private information in

the sample.
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2.2 Information Theory measures to quantify private information leakage

in a functional genomics experiment

In an effort to understand the relationship between the leaked information and the coverage

as well as for a fair comparison, k amount of reads were sampled from the 24 different functional

genomic experiments and from WGS and WES data of NA1278 (see SI Table 1). Genome Analysis

Tool Kit (GATK) is used to call SNVs and indels with the parameters and filtering suggested in

GATK best practices. The genotypes in 1000 genomes panel for NA1278 is used as the gold

standard. We use pointwise mutual information (pmi) as a measure to quantify the association

between the gold standard and the called variants. If SGS = {s∗1, ..,s
∗
i , ...,s

∗
M} is the set of variants

from the gold standard and SFGE
k = {s1, ..,si, ...,sM} is the set of variants called from the k reads of

a functional genomics experiment, then the set A = SGS⋂SFGE
k contains the variants that are called

and are in the gold standard set. If A = {a1, ..,ai, ..,aT}, then

pmi(GS;FGEk) =−
i=T

∑
i=1

log2(p(ai)) (3)

We then add k more reads to the sampled reads and repeat the calculation. This procudere

is repeated till we deplete all the reads of a functional genomics experiment. Overall process is

depicted in Figure 1e.

2.3 Private information leakage in 24 functional genomics experiment at

different coverages

The pmi values for 24 functional genomics experiments are calculated at different coverages.

These experiments involve whole genome approaches such as Hi-C, transcriptome-wide assays

such as RNA-Seq and targeted assays such ChIP-Seq of histone modifications and transcription

factor binding. In addition, the pmi is also calculated for WGS, WES, and SNP-ChIP for compar-
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ison (Figure 2).
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Figure 2: The pointwise mutual information calculated for 24 different functional genomics

assays and WGS, WES and SNP ChIP data using NA12878 1000 genomes variants as gold

standard. (a) The pmi values for WGS and three different primary Hi-C experiments plotted at

different coverages. The information contents of the gold standard (1kG in blue) and SNP ChIP

(in pink) are added for comparison. (b) The pmi values for 20 different ChIP-Seq experiments

targeting histone modifications and transcription factor binding plotted at different coverages.

(c) The pmi values for WES, total RNA-Seq, polyA RNA-Seq and single-cell RNA-SEq from two

different cells plotted at different coverages. (d) The pmi values per basepair plotted using the

lowest total coverage for all the assays.

As expected Hi-C data contains almost as much information as WGS and more information than

SNP ChIP arrays. In the beginning of the sampling process, WGS data contains more information

than Hi-C. As we sample nucleotides that are between around 1.1 and 10 billion bps, the informa-

tion content of Hi-C surpasses the WGS data (Figure 2a). We speculate that this is due to better
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genotyping quality of the genomics regions that are in spatial proximity, as Hi-C has a bias of se-

quencing more reads from those regions. As expected, we cannot infer as much information from

ChIP-Seq reads (Figure 2b). However, surprisingly many of the ChIP-Seq assays such as the ones

targeting CTCF and RNAPII contain a great amount of information at low coverages. Furthermore,

comparison between WES and different RNA-Seq experiments show that none of the RNA-Seq

experiments contain as much information as WES, which is due to the fact that RNA-Seq cap-

tures reads only from expressed genes in a given cell (Figure 2c). The unexpected observation

is that more information can be inferred from polyA RNA-Seq data at low coverages compared

to WES and total RNA-Seq. To be able to make a fair comparison between all these assays, we

calculate the pointwise mutual information per bp at the lowest coverages depicted in Figure 2a–

c (pmi(FGE;GS)/total coverage). We found that ChIP-Seq reads targeting CTCF contains even

more information per basepair than WGS data at the lowest coverage we sample (Figure 2d).

2.4 Genotyping accuracy

In light of the above findings, in which genotyping can be done using low depth, biased func-

tional genomics experiments, we asses the accuracy of genotyping by calculating the false discov-

ery rate at different coverages. This also measures how much noise that each assay captures. The

false discovery rate is defined as the ratio between the information obtained from the incorrectly

called variants (h(FGE—GS)) and the information obtained from all the called variants (h(S)),

namely

FDR(FGEk) = pmi(FGEk;GS)/h(SFGE) (4)
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Figure 3: False discovery rate of functional genomics experiments at different coverages (a)

FDR comparison for Hi-C and WGS data at different sampled coverages. (b) FDR comparison for

different ChIP-Seq experiments at different coverages. (c) FDR comparison for WES and different

RNA-Seq experiments.

Figure 3a shows that the false discovery rate for Hi-C data is lower compared to WGS data

at lower coverages. We attribute it to the deeper sequencing of the genomics regions in close

spatial proximity. Hence, sampling more reads from those regions at low coverages is more likely

compared to uniform sampling of reads from WGS. ChIP-Seq data has comparable false discovery

rate to WGS and Hi-C data, ChIP-Seq targeting CTCF having the lowest FDR (Figure 3b). We

further find that assays targeting transcriptome such as WES and RNA-Seq produce the noisest

genotypes among all the assays, only around 10% of the called variants being the correctly called

variants (Figure 3c).

2.5 Linking attack scenario

Linking attacks aim at re-identification of an individual by cross-referencing datasets (Fig-

ure 4a). For example, in an hyphotetical scenario, the attacker aims at querying an individual’s

HIV status from his/her phenotype data available through functional genomics experiments. Ma-

jority of linking attacks to this date focused on phenotypes, which the attacker finds the relation-

ship between the phenotype and genotype data and use this relationhip to link the HIV status to
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the genotype data set. However, in this study, we go one step back from the phenotype data and

directly inferred genotypes from the read files associated with the phenotype as, for example, ma-

jority of fastq and bam files of ChIP-Seq experiments are publicly available. For this, the attacker

calls variants directly from the reads of anonymized functional genomic experiments. Then he/she

compares the called noisy and incomplete genotypes to the genotype data panel and finds the entry

that have the highest pointwise mutual information. This reveals the sensitive information for the

linked indivudal to the attacker. We also consider a scenario that the attacker has access increasing

amount of reads in situations such as the attacker can query the sequencing data from a consortium

certain amount at a time or has limited computing power.
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Figure 4: Illustration of a linking attack and the accuracy of linking. (a) The publicly available

ananoymized reads from functional genomics experiments contains a set of variants and HIV sta-

tus for the sample that the functional genomics experiment was performed at increasing coverages.

The panel of genotypes contains the variants and associated genotypes for m individuals. The at-

tacker links the inferred variants and genotypes to the panel of genotypes by using the best matched

pointwise mutual information. The linking potentially reveals the HIV status for the linked indi-

vidual. (b) Comparison of gap for NA12878 at different coverages for Hi-C and Total/PolyA

RNA-Seq reads. WGS and SNP-ChIP are also added for comparison. (c) Comparison of gap for

NA12878 at different coverages for 20 different ChIP-Seq experiments. (d) Comparison of gap

for NA12878 at different coverages for single-cell RNA-Seq experiments.
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Based on the pmi values of each experiment at different coverages, we define a metric for linking

accuracy called gapi. To calculate this metric, we first rank all the pmi(SFGE
k ; individuali) where

SFGEk is the set of called genotypes from the functional genomics experiment at total coverage

k and individuali is the set of genotypes of individual i in the panel of genotypes. gapi for each

individual i at total coverage k is calculated as;

gapi =















pmi(SFGE
k

;individuali)

pmi(SFGE
k

;individual j)
, if rank(pmi(SFGE

k ; individuali)≤ 5 and rank(pmi(SFGE
k ; individual j) = 2

0, otherwise

We then define that if gapi is 0 for the individual i, whose functional genomics data is used, then

the individual cannot be identified as there are other individuals in the panel that have the matching

genotypes. If 0 < gapi ≤ 1, then the individual i might be vulnerable with auxilary data such as

gender or ethnicity, because he/she is in the top 5 macthing individuals. If 1 < gapi ≤ 2, then the

individual i is vulnerable as we can identify him/her with 1 to 2 fold difference between him/her

and the second best match. Lastly, if gapi > 2, then the individual is extremely vulnerable with

more than 2 fold difference between him/her and the second best match (Figure 4a).

We find that NA12878 is extremely vulnerable even at the lowest sampled coverages for Hi-C

and RNA-Seq data (Figure 4b). More interestingly between around 1.1 and 10 billion basepairs,

the Hi-C data exhibits higher linking accuracy than WGS data, consistent with the previous obser-

vation of pmi shown in Figure 2a. The total of coverage of ChIP-Seq data compared to Hi-C and

RNA-Seq is quite low (SI Table I). However, the linking accuracy of ChIP-Seq is as good as Hi-C

and WGS (Figure 4b), which shows extreme vulnerability of individuals with respect to release

of such small amount of data. More strikingly, attacker can link NA12878 by using the reads of

single-cell RNA-Seq data, which has small coverages with high accuracy (Figure 4d).
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2.6 Individual’s genome can be accurately approximated from publicly avail-

able data by imputation - should I not make this a seperate section?

To answer the question whether an attacker can correctly assemble an individual’s variants by

only using the reads from ChIP-Seq and RNA-Seq experiments, we impute variants by using IM-

PUTE2 [25, 26, ?] using the variants called from ChIP-Seq and RNA-Seq experiments. We then

collected all the called and imputed variants in a set. Although imputed variants do not contribute

to the information due to high correlation with the called variants (SI Figure 2), total number of

captured variants increases significantly (Figure 5a). By using shallow squencing data of ChIP-

Seq and RNA-Seq, we were able to call and impute variants almost as many as the gold standard

variants.

We then aske the question if we can infer potentially sensitive phenotypes from these variants.

Figure 5b shows a small set of example variants associated with physical traits such as eye color,

hair color or freckles. Many of these variants are in the called set of Hi-C, ChIP-Seq and RNA-Seq

data. Number of variants associted with traits further increases with imputation as expected.
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Figure 5: Individual’s genome can be approximated and sensitive phenotypes can be inferred

from publicly available data by imputation and a theoretical framework for prediction of

amount of leaked data (a) Number SNVs called from WGS data and all of the ChIP-Seq and

RNA-Seq data together with and without imputation. (b) Variants associated with physical traits

and if they present in the called variants from different functional genomics experiments before

and after imputation. (c) Features of the theoretical framework - write more. (d) Accuracy of fitted

model on training set- write more (e) Accuracy of fitted model on test set - write more
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2.7 Toy model for prediction of amount of leaked data without variant call-

ing

Explain Figure 5 c, d and e.

2.8 Unique combination of common variants contribute significantly to the

information leakage and linking accuracy

- Inspired from differential privacy, we did Figure 6a - Iteratively removed rare variants and

calculated information and linking accuaracy (Figure 6b) - We can still link the individual
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Figure 6: to discuss (a) Information of the variant before and after addition of NA12878 to the pop-

ulation. We iteratively removed variants from the set as (I) only the variants that is only NA12878

specific, (II) the variants that have an information of 11 or higher bits after removal of NA12878

from the population, (III) the variants that have an information of 6 or higher bits after removal of

NA12878 (b) Linking accuracy for every iteration of removal of NA12878 variants from the set.

(c) Information of all the variants that are called from Total RNA-Seq reads vs. the information of

the indels that are called from Total RNA-Seq reads. (d) Linking accuracy when we consider all

the variants that are called from Total RNA-Seq rads vs. the linking accuracy when we consider

only indels called from Total RNA-Seq reads.

2.9 Privacy-enhancing file formats for functional genomics experiments

- Indels can be inferred from the current MRF - Refer to Figure 6c and 6d for the possibility of

linking with using only indels of the noisiest data set we have - total rna-seq - Describe the new
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MRF (Figure 7)

(1) Perfectly mapping reads

BAM Code

        xM
x: read length

Start1

End

reference

                        MRF representation

                   Chr n: strand : Start : End : x

(2) Reads map to splice junctions

End 2
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End1 Start2

           yMzNtM
z: length of junction 

Start
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a+x+b: read length
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Figure 7: MRF: to discuss
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3 Discussion
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