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Abstract 
Functional genomics data is emerging as a valuable resource for personalized medicine. Although one 

might think that these data are safe to share, the extent to which they leak sensitive information is not 

well studied. Here, we focus on the privacy aspects of genome-wide signal profiles of functional genomics 

experiments, which represent measurement of activity at each genomic position. We show that the signal 

profiles, which are often publicly shared, can cause concerns for privacy. We first present measures of 

predictability and information leakage from the signal profiles of several sequencing based functional 

assays including RNA-seq and ChIP-Seq. We then present methods for detecting and genotyping large and 

small genomic deletions, and demonstrate that the genotyped deletions can accurately identify an 

individual from a large sample. We also present an effective anonymization procedure for protection of 

signal profiles against genotype prediction based attacks. Given that several consortia, for example GTex 

and TCGA, publicly share signal profiles for personal functional genomics data, these results point to a 

critical source of sensitive information leakage, which can be potentially protected by our anonymization 

technique.  

1. Introduction 
Individual privacy is emerging as an important aspect of biomedical data science[1]. A deluge of genetic 

data is being generated with the Cancer Moonshot Project[2], Precision Medicine Initiative[3, 4], and 

UK100K[5, 6] from hundreds of thousands, if not millions, of individuals. Moreover, there is much effort 

to make genetic data more prevalent in the clinical setting[7]. The leakage of genetic information creates 

many privacy concerns, e.g. genetic predisposition to diseases may bias insurance companies[8].  

The initial studies on genomic privacy have focused primarily on protecting the identities of participants 

in the early genetic profiling and genotype-phenotype association studies[9, 10]. These focused on 

whether an individual’s genetic information can be used to reliably predict whether they participated in a 

certain cohort of individuals in a genetic study. We refer to these scenarios as detection of a genome in a 

mixture. In this arena, the differential privacy[11] has been proposed as a theoretically optimal formalism 

that can fulfill the privacy requirements such that the probability that any individual’s participation can 

be identified made arbitrarily small. In addition, the cryptographic approaches have proven useful for 
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privacy-aware analysis of genomic datasets albeit with high requirements of computational resources[12, 

13].  

The decrease in cost of DNA sequencing technologies has substantially increased the number and size of 

available genomic data and has made genomic data much more practically available to hospitals, research 

institutes, and to individuals[14]. This increase will render new types of attacks much more practical where 

an adversary can use statistical methods to link multiple datasets to reveal sensitive information. These 

attacks are termed the linking attacks[15–17]. In a nutshell, the linking attacks are based on cross-

referencing and matching of two or more datasets that are released independently. Some of the datasets 

contain personal identifying information, e.g. names or addresses, while others contain sensitive 

information, e.g. health information. The immediate consequence of the cross-referencing is that the 

sensitive information in one dataset gets linked to the identifying information in another, which in turn 

breaches privacy of individuals whose sensitive information are revealed. The risks behind linking attacks 

have risen recently because the personal data is generated at exceedingly high pace and these data are 

independently released and maintained. For this reason, a rather challenging aspect of the linking attacks 

is that risk assessment is complicated because one dataset that is currently deemed safe to release may 

become a target for linking attacks when another dataset is released in the future, i.e., a dataset that 

seems safe to release now may become vulnerable to a linking attack next year. 

A well-known example of linking attacks is the Netflix Prize Competition[15] (Supplementary Fig 1a,b). In 

this competition, a training dataset was released by the movie rental company Netflix, which was to be 

used for training new automated movie rating algorithms. The dataset was anonymized by removing 

names. Although the dataset seemed safe to share at the time, two researchers showed that this training 

dataset can be linked to a seemingly independent database of the Internet Movie Database (IMDb). The 

linking revealed movie preferences and identities of many Netflix users. We believe that similar scenarios 

will be a major route to breaches in individual genomic privacy and these must be studied well to enable 

privacy-aware data sharing approaches.  

Several studies have addressed aspects of linking attacks in the genomic privacy context[16–19]. Still, 

there are two major aspects of genomic privacy that are not well addressed in the previous studies in the 

context of linking attacks. Firstly, the structural variants (SVs), which comprise deletion, insertion, 

translocation, and transversion of large chunks of DNA sequence, do not receive much attention in the 

debate of genomic privacy[20]. Rather most of the focus is on the single nucleotide polymorphisms (SNPs). 

This is well justified because the estimated regulatory effect of SNPs on gene expression is much larger 

than structural variants[21]. On the other hand, it is known that the major portion of the genomic 

variation, in terms of the number of nucleotides that are affected, is caused by SVs[22, 23]. Since an SV 

affects a much larger portion of the genome (in number of nucleotides) than a single nucleotide variant 

does, its effect on an affected phenotype is expected to be very obvious, if not more. For example, 

homozygous deletion of a gene will cause the total disappearance of its expression. Putting these 

together, it is necessary to include SVs in the analysis of sensitive information leakage.  

Secondly, functional genomics data is not in center of most studies. Nevertheless newer functional 

genomics datasets, like RNA-Seq[24] and ChIP-Seq[25] are very rich information sources and can lead to 

leakage of individual characterizing information. In more general genomic privacy context, one considers 

the DNA variants and simply protecting them from an adversary. Once the adversary gets the variants, 

privacy is breached and there is no more discussion. Functional genomics datasets however have a more 
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complicated, “Yin-Yang”, aspect with relation to privacy. Although there is some variant information in 

them, this is often not the main purpose of the data set. Rather the point of collecting the dataset is to 

make a general statement about the relation of the data and some biological phenotype, for example 

which genes go up in cancer and which genes go up with AIDS. 

Furthermore, sometimes the functional genomics datasets are shared with phenotypic information that 

it's potentially of private value, e.g., a particular condition or disease that a person has. This leads to an 

interesting situation where the data is being ostensibly collected and used for non-personal purposes to 

find general aspects about a condition. But the existence of small amounts of residual private information 

in the data can potentially be revealing about the individual from which they came from. Hence this leads 

to the complex aspect that we will be probing here. 

In this study, we analyze the sensitive individual characterizing information leakage from the signal 

profiles of several sequencing based functional genomics datasets. By signal profile, we refer to the signal 

generated by counting the number of reads that overlap with each nucleotide on the genome. The raw 

reads from a sequencing experiment contain the nucleotides themselves. Therefore raw reads contain a 

significant amount of sensitive genetic information. The raw reads can be used to identify the private 

SNPs, small indels, and structural variants. It is well established that the raw reads must not be released 

publicly (Supplementary Figure 6). Therefore, in this study, we assume that the raw reads are not publicly 

shared. We assume that the adversary does not have access to the raw reads and only has access to the 

signal profiles. Regarding the signal profiles, it is generally assumed that the signal profiles are mostly void 

of sensitive information.  In fact, several large consortia, for example ENCODE Project[26], Roadmap 

Epigenome Mapping Consortium[27], and GTex[28, 29], publicly share signal profiles (Supplementary 

Figure 5). Although the signal profiles do not contain any explicit sequence information, signal processing 

techniques can be utilized to detect the large and small structural variants. There are two quantities that 

determine how well structural variants can be detected from sequencing data. First is breadth of 

coverage, which measures how well the genome is covered by signal profiles. Second is depth coverage 

that measures how deep the sequencing is performed. DNA-sequencing read depth signal[30, 31] is very 

suitable for detection of structural variants because it attempts to uniformly cover the genome (high 

breadth coverage) in a deep manner (high depth coverage). On the other hand, detection of structural 

variants from functional genomics datasets is not as straightforward. The main reason for this is the 

dynamic and non-uniform nature of the signal profiles of functional genomics experiments. For example, 

RNA-seq[24] signal profiles are concentrated mainly on the exonic regions and promoters of the genome, 

respectively. In other words, RNA-seq signal profiles generally have high depth coverage but lower 

breadth coverage. On the other hand, ChIP-Seq[25] signal profiles for diffuse histone modifications 

generally have high breadth coverage but low depth coverage. In addition, these experiments are 

generally done in combination. This is important because although each experiment assays a different 

type of genome-wide activity, we show that pooling the signal profiles increases both the depth and 

breadth coverages and can bring enough power to an adversary for genotyping structural variants and 

perform successful linking attacks. 

The paper is organized as following: We first present the general scenario of linking attacks that utilize 

signal profiles. We next propose a new metric for quantifying the extent to which genotypes of small and 

large deletion variants can be estimated using functional genomics signal profiles. In combination with 

information content of the deletion variants, we use this new metric for evaluating the extent of 

characterizing information leakage from functional genomics datasets. We next present several practical 
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instantiations of linking attacks that utilizes different practical methods for deletion variant genotyping. 

Finally, we focus on protection of the signal profiles against linking attacks. We present a novel signal 

processing methodology for anonymizing a signal profile. We show that it is effective in decreasing the 

predictability of deletion variant genotypes from signal profiles. The source code for linking attacks and 

anonymization can be downloaded from http://archive.gersteinlab.org/proj/PrivaSig. 

2. Results 

2.1. Linking Attack Scenario 
Figure 1 summarizes the linking attack scenario. The attack involves cross-referencing the individuals in a 

signal profile dataset (denoted by 𝑆) against the individuals in a genotype dataset, denoted by 𝐺. The 

signal profile dataset is publicly available and it contains, for each individual, a genome-wide signal profile, 

and an anonymized identifier. The signal profile for an individual represents the measurements of 

functional activity at each genomic position for this individual. In addition, the signal profile dataset 

contains sensitive information about each individual, e.g. HIV status. We assume that this dataset is 

generated for research purposes and is publicly released. The genotype dataset, 𝐺, contains, for each 

individual, the genotypes for a panel of structural variants, denoted by 𝑝𝐺 . The genotype dataset also 

contains the identities of the individuals. Thus, 𝐺 is normally assumed to be protected. We assume that 

the adversary obtains access to 𝐺. This accession could be established by lawful or unlawful means. For 

example she (we assume the adversary is a female) might have stolen it or she might be legally allowed 

to access it but she violates the terms of data accession. The main objective of the adversary is to link 𝐺 

and 𝑆 by first predicting the structural variant genotypes from signal profiles in 𝑆, then matching the 

predicted genotypes to the genotypes in 𝐺. For any matching individuals in 𝐺 and 𝑆, the name and the 

sensitive information, i.e. HIV status, are revealed to the adversary.  

The attack has two steps. The first step is genotyping of the deletion variants, which is illustrated in Fig 

1a. The adversary has access to a genome-wide signal profile dataset (𝑆) for a sample of individuals. This 

dataset stores, for each individual, a genome-wide signal profile, for example RNA-seq, or ChIP-Seq data. 

In the first scenario, we assume that the adversary has access to a reference panel of genomic structural 

variant loci, which are denoted by 𝑝𝑆. For each individual, she utilizes the signal profile and genotypes the 

deletions in 𝑝𝑆. After the genotyping, the adversary builds a data matrix with the predicted genotypes, 

which is denoted by 𝐺̃. We refer to this scenario, where the adversary has access to a reference panel of 

structural variants, as linking based on “genotyping only”. The second scenario, also illustrated in Fig 1a, 

is very similar except that the adversary does not have access to the panel of structural variants but 

discovers the panel of structural variants from the signal profiles. She then uses the signal profiles to 

genotype the SVs in this de-novo discovered SV panel. We refer to this scenario as linking based on “joint 

discovery and genotyping”. After the genotyping, the genotyped SV matrix (𝐺̃) includes, for each 

individual, the predicted SV genotypes, and also the sensitive information about HIV status. 𝐺̃ can also be 

thought of as a noisy genotype matrix, since the genotype predictions may contain errors.  

The second step of the linking attack is cross-referencing of the individuals in the genotyped SVs (𝐺̃) and 

the individuals in the genotype dataset, 𝐺, illustrated in Fig 1b. The SV genotype dataset 𝐺 is assumed to 

contain identifying information about individual’s identities. Thus, we assume that this dataset was 

previously protected and is either leaked or stolen, e.g. variants from a glass. The adversary first compares 

her genotyped SV panel (𝑝𝑆) to the SV panel of the genotype dataset, which denoted by 𝑝𝐺 . After the 
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matching of the SVs in the two panels, she compares the genotypes of the matching SVs in two panels. 

She uses this comparison to cross-reference the individuals in two datasets and finds the individuals that 

best match to each other with respect to genotype match distance, i.e., links the individuals in two 

datasets. The results are used to link the individuals in genotype dataset to those in the signal profile 

dataset and the sensitive information, e.g., HIV status of individuals in the genotype dataset are revealed 

to the adversary (the matched columns in the final linked matrix). 

2.2. Information Content and Correct Predictability of Structural Variant Genotypes 
In order to assess the correct predictability of SV genotypes, we propose using a measure named genome-

wide predictability of SV genotypes, denoted by 𝜋𝐺𝑊, from signal profiles. The predictability measures 

how accurately an SV genotype can be estimated given the signal profile (Methods Section). The 

predictability of the genotype of a structural variant is the conditional probability of the variant genotype 

given the signal profile. By this definition, the predictability only depends on the genomic signal levels of 

an individual and how well they can be used to predict genotypes. For example, Fig 1c illustrates a large 

deletion that can be easily predictable using the histone modification signal profiles. In principle, the 

genome-wide predictability is computed for each individual independently from other individuals. 

Therefore the genome-wide predictability of a variant from signal profile is independent of the population 

frequency of the variant. 

Other than the predictability, an important measure in the linking attacks is the information content each 

SV genotype supplies. We utilize a previously proposed metric termed individual characterizing 

information (ICI) to quantify the information content of each SV[16]. For a given variant genotype, ICI 

measures how much information it supplies for pinpointing an individual in a population. This measure 

gives higher weight to the genotypes that have low population frequency and vice versa. As we discussed 

above, the genome-wide predictability is independent of the population frequency of the variants. 

Therefore the adversary can utilize genome-wide prediction approaches and predict rare variant 

genotypes to gain high ICI and characterize individuals very accurately.  

2.3. Linking Attacks using RNA-Seq Signal Profiles 
We first focus on the predictability of short deletions using RNA-seq signal profiles. Fig 1d illustrates a 

hypothetical example of how the small deletions in RNA-seq signal profiles can be detected as small and 

sudden dips in the signal. In order to show an example and represent the relevance of small deletions in 

the RNA-seq signal profiles, we included a screenshot of signal profiles around a small deletion for 6 

individuals in the GTex Project (Supp Figure 5). The 2 base pair deletion, rs34043625, can be easily 

detected for three individuals that are shown. These signal profiles are publicly available from the UCSC 

Genome Browser.  

As we mentioned earlier, the RNA-seq signal profiles generally have high depth coverage but low breadth 

coverage. The short deletions are the type of variants that can be detected most easily using signal profiles 

that have high depth and low breadth coverage. By small deletions, we refer to the deletions that are 

smaller than 10 base pairs. Regarding detection of small deletions, the basic observation is that each 

deletion is manifested as an abrupt dip in the signal profile (Fig 1d). The discovery and genotyping of a 

deletion rely on detecting these dips in the signal profiles. The genome-wide predictability (𝜋𝐺𝑊) of the 

small deletions quantifies how well the adversary can identify the dips corresponding to deletions from 

the signal profile (Methods Section). We first estimated the genome-wide predictability for the panel of 

short deletions in 1000 Genomes Project using the RNA-seq expression signal profiles from the GEUVADIS 
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project. Figures 2a,b show 𝜋𝐺𝑊 vs ICI for short deletions. There is a substantial number of deletions that 

have much higher predictability compared to a randomized dataset where the signal profile is randomized 

with respect to the location of deletions. There are also many variants with very high ICI (on the order of 

5-6 bits) with high predictability (greater than 80% predictability). This result shows clearly that signal 

profile based attack scenario is much more powerful that the other approaches like population-wide 

prediction of variant genotypes (Supplementary Fig 2) 

In order to present practicality of small deletion predictability and information content, we propose an 

instantiation of a linking attack where we utilize outlier signal levels in the signal profiles for discovery 

and genotyping of the small deletions. As mentioned before, the genotyping of deletions are based on 

detecting the abrupt dips in the signal profile. In order to detect these dips in the signal profile, the 

adversary utilizes a quantity we term self-to-neighbor signal ratio, denoted by 𝜌[𝑖,𝑗], that measures the 

extent of the dip in the signal as the fraction of signal on the interval and the signal in the neighborhood, 

𝜌[𝑖,𝑗] =
Average signal within [𝑖, 𝑗]

Average signal within neighborhood of [𝑖, 𝑗]
. 

The genomic regions with low 𝜌[𝑖,𝑗] values point to intervals tend to have dips in them. For each individual, 

the prediction method sorts the short deletions with respect to self-to-neighbor signal ratio and assigns 

homozygous genotype to a number of deletions with the smallest self-to-neighbor signal ratio (Methods 

Section). The adversary then compares these genotyped deletions to the genotype dataset and identifies 

the individual whose deletion genotypes that are closest to the predicted genotypes. Using this 

genotyping strategy, we simulated an attack to link GEUVADIS signal profile dataset to the 1000 Genomes 

genotype dataset. We used the panel of deletions from the 1000 Genomes Project. In the genotyping only 

scenario, the linking is perfectly accurate when the adversary utilizes more than 40 deletions (Fig 2c). In 

the scenario where the adversary performs joint discovery and genotyping, the linking accuracy is 

maximized (around 60%) when the attacker utilizes the top 50 deletion candidates in linking (Fig 2d). Next, 

we studied how accurate the linking is if adversary uses deletions of different lengths. Figure 2e shows 

the accuracy and number of indels with different lengths. The accuracy of linking decreases substantially 

for the indels that are longer than 5 base pairs. The decrease in accuracy is affected by both the decrease 

in the number of indels (i.e., low ICI), shown in Fig 2e, and also decreasing predictability of indels whose 

lengths are above 5 base pairs. We then asked, for each individual, what the minimum number of indels 

that are sufficient to accurately link the individual is. Figure 2f and 2g shows the distribution of minimum 

number of indels for accurately linking each individual in the GEUVADIS dataset, for genotyping only (Fig 

2f) and adversary jointly discovery and genotyping (Fig 2g) scenarios. As small as 30 indels are sufficient 

to correctly link a large fraction of the individuals. 

In the previous analysis, the sample set used for discovery of deletion panel and RNA-seq sample set are 

matching, i.e. 1000 Genomes individuals. This may introduce a bias in linking because the SV genotype 

dataset may contain rare deletions which may also be in the panel of deletions. This would make it trivial 

to link some of the individuals. To get around this bias, we studied linking attack where signal profile 

dataset is generated by the GTex Project Consortium [28, 29] and the panel of small deletions is the 

deletion set generated by the 1000 Genomes Project. This way, the SVs in the panel are identified among 

the 1000 Genomes individuals while the RNA-seq signal profiles are generated on a non-matching set of 

individuals in the GTex Project. In other words, the deletion panel is discovered in a sample set that is 

totally independent of the sample set that the adversary is linking. In this scenario, the adversary is linking 
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the signal profile dataset to the genotype dataset that is obtained from the GTex Project. With this setup, 

we first computed 𝜋𝐺𝑊 versus ICI for the deletions and observed that there is substantial enrichment of 

deletions that have high predictability with high ICI compared to randomized datasets (Fig 3a, b). As 

before, there are many deletions that are highly predictable (>80%) and are very high in ICI (>5bits). In 

addition there is a substantial increase of predictability in real data compared to the randomized dataset.  

We next instantiated the linking attack using the extremity based approach. In the instantiation, we first 

evaluated the attack based on genotyping only scenario. In this scenario, the linking accuracy is close to 

100% using a relatively small number of variants, i.e., 30 variants (Fig 3c). An interesting observation is 

that when the attacker increases the number of variants used in the attack, the linking accuracy decreases. 

This is caused by the fact that the additional variants after the 30 variants are incorrectly genotyped and 

decrease the accuracy of linking. In simple terms, the additional variants act as noise and decrease linking 

accuracy.  

Following this, one question that arises is if the adversary can assign reliability scores to the linked 

individuals. We tested whether the first distance gap (Methods Section) measure is suitable for evaluating 

the reliability of linkings. This is important because when the overall linking accuracy is low, e.g. smaller 

than 50%, unless the attacker has a systematic way of selecting correct linkings, the risk of linking attack 

is low. As a test case, we focused on the linking where the adversary uses 200 deletions where the overall 

linking accuracy is 35% (Fig 3c). Figure 3d shows the sensitivity and positive predictive value (PPV) with 

changing first distance gap metric. The adversary can link 10% of the individuals perfectly and 20% of the 

individuals are linked with around 90% accuracy, i.e., makes 1 mistake in 10 linkings. Figure 3d also shows 

the average sensitivity and average PPV over 100 random selections of the linkings. As expected, the PPV 

is always around 35% and average sensitivity is also always smaller than first distance gap based selection 

of linkings. These results show that even some parameter selections (e.g., number of variants) may show 

low accuracy, the adversary can increase accuracy by selecting the linkings using first distance gap 

measure.  

2.4. Linking Attacks using ChIP-Seq Signal Profiles 
We next focused on predictability versus ICI of large deletions, which are longer than 1000 base pairs. 

Since the deletions are large, the signal profiles that are suitable for genotyping these deletions must have 

high breadth coverage. We utilize the ChIP-Seq signal profiles for histone modifications, which generally 

manifest high breadth and low depth coverage. Several recent studies have generated individual level 

epigenomic signal profiles through ChIP-Seq experiments [32–34]. These studies aimed at revealing how 

the genetic variation interacts with the epigenomic signals, mainly the histone modifications. These 

datasets are very convenient for our study because the majority of the individuals have matching 

structural variant genotype information in the 1000 Genomes Project. It is worth noting that although we 

are focusing on the predictability of large deletion genotypes from ChIP-Seq profiles, this does not mean 

that the small deletions are not detectable in the ChIP-Seq dataset. In fact, the small deletion genotyping 

based linking attack we presented in the previous section can be applied to ChIP-Seq signal profiles as it 

is.  

We use these personalized epigenomic signal profiles for quantifying how much characterizing 

information leakage they provide. For any individual where there are multiple histone mark ChIP-Seq 

signals, we pool the signal profiles and compute several features for each large deletion. These are then 

used for quantifying information leakage (Methods Section). First, we computed 𝜋𝐺𝑊 versus ICI using the 
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panel of large deletions in 1000 Genomes Project. Figure 4a,b show 𝜋𝐺𝑊 versus ICI for the large deletions 

from the 1000 Genomes. We use the personal epigenome profiling ChIP-Seq datasets presented in studies 

by Kasowski et al and Kilpinen et al (Methods Section). Similar to the small deletion analysis, it can be seen 

that for both datasets there are many large deletions with high predictability and high ICI.  

We next focused on instantiating linking attacks using ChIP-Seq profiles. We again utilize a variant of the 

outlier based genotyping in the linking attack. The genotyping of the panel of large deletions is done as 

follows. The average ChIP-Seq signal on each deletion is computed and the variants are sorted with 

respect to their average signal in increasing order. The deletions with smallest ChIP-Seq signal are assigned 

homozygous deletion genotype. For the deletions with assigned genotypes, we identified the individual 

in the genotype dataset (from the 1000 Genomes project) whose genotypes match closest to the assigned 

genotypes. We repeated this linking attack with different number of windows and computed the accuracy 

of linking (Methods Section). Figure 4c shows the accuracy of linking attack based on genotyping only 

scenario, where the adversary is assumed to have access to the large deletion panel from 1000 Genomes. 

The linking accuracy reaches 100% with a fairly small number of deletions for both datasets. For the joint 

discovery and genotyping scenario where the adversary first discovers deletions and then genotypes 

them, the accuracy is also very high with small number of identified deletions (Fig 4d). 

An interesting question about histone modifications is which combinations of histones leak the highest 

amount of characterizing information. To answer this question, we studied the individual NA12878, for 

which there is an extensive set of histone modification ChIP-Seq data from the ENCODE Project[26]. We 

have evaluated whether different combinations of histone modifications render NA12878 vulnerable 

against a linking attack among 1000 Genomes individuals, which is illustrated in Fig 4e. In general, we have 

observed that NA12878 is vulnerable with the dataset combinations that cover the largest space in the 

genome. This can be simply explained by the fact that when histone marks cover a larger genomic region, 

higher number of deletions can be detected and genotyped. For example, H3K36me3 and H3K27me3, an 

activating and a repressive mark respectively, are mainly complementary to each other and they render 

NA12878 vulnerable. In addition, H3K9me3, a repressive mark that expands very broad genomic regions, 

renders NA12878 vulnerable in several combinations with other marks. On the other hand, H3K27ac, an 

activating histone mark that spans punctate regions do not render NA12878 vulnerable. 

 

2.5. Linking Attacks using Hi-C Matrices 
We also asked whether a relatively new data type, Hi-C interaction matrices can be used for identification 

of genomic deletions. Hi-C is a high throughput method for identifying the long range genomic interactions 

and three dimensional chromatin structure[35]. It is based on proximity ligation of the genomic regions 

that are close-by in space followed by high throughput sequencing of the ligated sequences. After 

sequencing data is processed, it is converted to a matrix where the entry (𝑖, 𝑗) represents the strength of 

interaction between 𝑖𝑡ℎ and 𝑗𝑡ℎ genomic positions. To study leakage from Hi-C matrices, we again focused 

on NA12878 individual for whom Hi-C interaction matrices are generated at different resolutions[36]. We 

first converted the matrix into a genomic signal profile. For this, we summed the interaction matrix along 

columns and obtained a signal profile along the genome (Fig 5a, Methods Section). This way, we are 

simplifying the multidimensional nature of the Hi-C contact matrix and treat it as a sequencing assay that 

spans the entire genome. It is important to emphasize that the standard analysis of Hi-C matrices do not 

involve such a signal profile generation. We are using this step to convert the Hi-C matrix into a signal 
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activity profile along the genome. Using the signal profile, we simulated an extremity based linking attack 

using the outliers in the Hi-C signal profile: For all the large deletions in the 1000 Genomes whose 

population frequency is higher than 1%, we computed the average Hi-C signal. We next sorted the 

deletions in increasing order with respect to average signal and assigned top 1000 windows with 

homozygous deletion genotype. We next compared the predicted genotypes with all the genotypes in the 

1000 Genomes project. We observed that NA12878 is vulnerable to this attack when the Hi-C contact 

matrix resolution (bin length) is 10 kilobases or smaller (Fig 5b).  

It is important to clarify that we are focusing on using the final output of Hi-C data, i.e., the Hi-C contact 

matrix, for generating a genome-wide signal profile and performing a linking attack. We are not studying 

the possibility of discovering complex structural variants using the paired-end reads of Hi-C experiment, 

which is a different problem by itself[37]. It also requires access to mapped reads, which we assume the 

attacker does not have. As we explained above, our attack scenario treats the Hi-C data as any type of 

sequencing data and uses the linear genomic signal profile to identify deletions for the purpose of linking 

datasets. We are highlighting the fact that Hi-C interaction matrices themselves leak substantial amount 

of characterizing information. 

2.6.  Anonymization of RNA-Seq Signal Profiles 
An important aspect of the genomic privacy is risk management and protection of datasets. For 

protection, anonymization of the datasets is the most effective way so that the data can be shared publicly 

in a safe manner. The personal RNA-seq datasets are currently by far the most abundant datasets 

compared to other functional genomic datasets. For example, the RNA-seq signal profiles are being 

publicly shared from the GTex project while the genotypes are not in public access. In addition, RNA-seq 

is becoming commonly used in the clinical settings. Altogether these make protection of RNA-seq data 

urgent. We therefore focus on protection of the RNA-seq datasets. The most effective way to protect 

against linking attack scenario is to ensure that the deletion genotypes cannot be inferred from the signal 

profiles. As we showed in previous sections, the small deletions are major source of leakage of genetic 

information from RNA-seq signal profiles. We propose systematically removing the dips in the signal 

profiles as a way to anonymize the signal profiles against the prediction of small deletions. Specifically, 

we propose smoothing the signal profile using median filtering locally around a given panel of deletions 

(Methods Section). We have observed that median filtering removes the dips in the signal very effectively 

while conserving the signal structure fairly well. To evaluate the effectiveness of this method, we applied 

signal profile anonymization to the RNA-seq signal profiles generated by the GEUVADIS Project 

consortium and the GTex Project Consortium. After application of the signal profile anonymization, we 

observed that the large fraction of the leakage is removed for GTex datasets (Fig 2b and 3b). We also 

observed that the extremity based linking attack proposed in the previous section is ineffective in 

characterizing individuals such that no individuals are vulnerable for GTex project and only 1% of the 

individuals are vulnerable for GEUVADIS dataset. It is worth noting that this procedure can be used 

anonymizing not only RNA-seq signal profiles but also other signal profiles against attacks that are based 

on small deletion genotyping. The anonymization is, however, not as effective for large deletions. This is 

not a major concern for RNA-seq signal profiles as we observed that large deletions are not easily 

genotyped using RNA-seq data. However, as we showed in the previous section, the linking attacks can 

be successful when they use the large deletions that are genotyped using ChIP-Seq datasets. 
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3. Discussion 
The sequencing based functional genomics assays provide very large amount of biological information. 

Within this, much of the variant genotype information is within the raw reads (Supplementary Figure 6). 

In fact an adversary that gains access to the raw reads can easily call SNPs, indels, and structural variants. 

This is why raw reads are always protected from public access. The gene expression levels have also been 

shown to leak enough genotype data that can be used in linking attacks[16, 18]. The privacy concerns 

around sharing signal profiles are not well studied yet.  

We have systematically analyzed a critical source of sensitive information leakage from the signal profile 

datasets, which were previously thought to be largely secure to share. Specifically, our results show that 

an adversary can perform fairly accurate linking attacks for characterizing individuals by prediction of 

structural variants using functional genomics signal profiles. These results reflect how the rich nature of 

functional genomics data can cause privacy concerns in an unforeseen manner. This is an interesting 

aspect of the data. Although there may be some variant information in functional genomics signal profiles, 

these data are not generated mainly for detecting variant information. The main purpose of them is to 

reveal how they change under different conditions and how they relate to phenotypes, which may be 

sensitive. The existence of residual variant information, as we showed, may enable an adversary to reveal 

sensitive information about individual.  

Although we are focusing mainly on RNA-seq and ChIP-Seq signal profiles, the linking attack scenario and 

the measures that we presented are data-driven and are generally applicable to any type of genome-wide 

signal profile. For example, although it is obvious, the linking attacks can easily be carried out on the DNA-

sequencing signal profiles. Also, signal profiles from genome-wide profiling techniques other than 

sequencing based assays, like ChIP and expression tiling arrays[38, 39] can be vulnerable to the linking 

attack scenario that we presented. Different genome-wide data representation, e.g., Hi-C interaction 

matrices, can be utilized for generation of genome-wide signal profiles and these can in turn leak sensitive 

information. We believe that many more genome-wide omics technologies will be developed in the near 

future[40]. The genome-wide signal profiles will be a vital source of information in the analysis of these 

datasets. The framework we presented here can be utilized for assessing the leakage and protection of 

these datasets. In addition, albeit the focus is on the small and large deletion variants, the analyses of 

predictability and practical linking attacks can be extended for other structural variants, for example, 

genomic insertions.  

We showed that the linking can be done by predicting a fairly small number of variants (generally less 

than 100 variants). Our results show that these data leak enough information for individual 

characterization among a large set of individuals. This can cause practical privacy issues because several 

large consortia are making signal profiles publicly available. For example GTex signal profiles are publicly 

available through the UCSC Genome Browser. Given the extent of public sharing of datasets, we believe 

that the anonymization of the RNA-seq signal profiles using the signal processing technique that we 

proposed is very useful. The technique we proposed applies a signal smoothing around all the known 

deletions and removes a significant amount of characterizing information. The anonymization procedure 

can be easily integrated into existing functional genomics data analysis pipelines. We believe that this 

anonymization technique can complement other approaches for removing genetic information from 

shared datasets. For example file formats like MRF[41] and tagAlign[26] can enable removing raw 

sequence information from reads while keeping the information about read mapping intact. It is worth 
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noting that the anonymization method that we presented does not close all the sources of leakage. The 

anonymization procedure aims to close the leakages caused by the genotyping of genomic deletion using 

the dips in the signal profile. These leakages are very accessible to and adversary and we believe that they 

must be urgent closed because they can be detected directly from the signal profiles. Given other types 

of data, there can still be other sources of genotype information leakage after the anonymization is 

applied. For example, the gene expression levels can be used to infer genotype information, which was 

demonstrated in earlier studies. In addition, the effects of variants on the activity levels of pathways are 

not well known yet.  

4. Methods 
We provide the details of the computational methodologies. We first introduce the notations. The 

genomic deletions are intervals of genomic coordinates. We refer to them simply as intervals, e.g. a 

deletion between genomic positions 𝑖 and 𝑗 by [𝑖, 𝑗]. The genotype of a genomic deletion at [𝑖, 𝑗] is 

denoted by 𝐺[𝑖,𝑗], which is a discrete random variable distributed over the 3 values {0,1,2}. These values 

correspond to the three genotypes of the deletion and they represent how many copies of the genomic 

sequence is deleted. The functional genomics read depth signal is denoted by 𝑺, which is a vector of values 

corresponding to each genomic position. The signal level at genomic position at 𝑖 is denoted by 𝑆𝑖. An 

important quantity that we utilize in formulating methods is the multi-mappability profile of the deletion 

regions. The multi-mappability is a signal profile that measures, for each position in the genome, how 

uniquely we can map reads. The multi-mappability signal is denoted by 𝑴, which is a vector of multi-

mappability signals for all the genomic positions and the signal at genomic position 𝑖 is denoted by 𝑀𝑖. 

The multi-mappability signal profile is generated as follows: The genome is cut into fragments and the 

fragments are mapped back to the genome using bowtie2[42] allowing the multi-mapping reads. We then 

generate the read depth signal of the mapped reads. In this signal profile, the uniquely mapping regions 

receive low signal while the multi-mapping regions receive high signal[43]. 

4.1. Genome-wide Predictability of Deletion Genotypes and Individual Characterizing 

Information 
The genome-wide predictability, 𝜋𝐺𝑊, of a deletion genotype refers to how well a deletion can be 

genotyped given the functional genomics signal (𝑺) of interest. We assume that the adversary employs a 

prediction methodology based on statistical modeling of the deletion genotypes with respect to read 

depth signal profile such that the adversary utilizes features from the functional genomics signal profile. 

We define here the features that are most useful for genotyping deletions (Supp Fig 3). Given a deletion 

[𝑖, 𝑗], an important feature for genotyping the deletion is the average functional genomic signal within the 

deletion: 

𝑠̅[𝑖,𝑗] =
∑ 𝑆𝑖′  
𝑗
𝑖′=𝑖

𝑗 − 𝑖 + 1
. 

Another feature is the average multi-mappability signal within the deletion:  

𝑚̅[𝑖,𝑗] =
∑ 𝑀𝑖′  
𝑗
𝑖′=𝑖

𝑗 − 𝑖 + 1
. 
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In order to measure the extent of the dip within the signal, we observed that a measure we termed self-

to-neighbor signal ratio and neighbor signal balance ratio are very useful for genotyping. Given a 

deletion [𝑖, 𝑗] , self-to-neighbor signal ratio, denoted by 𝜌[𝑖,𝑗], is computed as 

𝜌[𝑖,𝑗] =
2 × 𝑠̅[𝑖,𝑗]

𝑠̅[2𝑖−𝑗+1,𝑖−1] + 𝑠̅[𝑗+1,2𝑗−𝑖+1]
. 

This is simply twice the ratio of total signal on the deletion and the total signal in the neighborhood of 

the deletion. The neighbor signal balance ratio, is computed as 

𝜂[𝑖,𝑗] = min(
𝑠̅[𝑗+1,2𝑗−𝑖+1]

𝑠̅[2𝑖−𝑗+1,𝑖−1]
,
𝑠̅[2𝑖−𝑗+1,𝑖−1]

𝑠̅[𝑗+1,2𝑗−𝑖+1]
). 

Finally, we observed that the average signal on the neighborhood of the deletion coordinates are useful 

in genotyping deletions. This is because when the neighbor signals are more balanced around a dip, i.e., 

higher 𝜂[𝑖,𝑗], the accuracy of deletion genotyping is higher. Next, we compute the average signal in the 

neighborhood as 

𝜏[𝑖,𝑗] = 0.5 × (𝑠̅[2𝑖−𝑗+1,𝑖−1] + 𝑠̅[𝑗+1,2𝑗−𝑖+1]). 

We define 𝜋𝐺𝑊 as the conditional probability of a deletion genotype 𝑔 given the 5 features computed 

from functional genomics signal profile: 

𝜋𝐺𝑊(𝐺[𝑖,𝑗] = 𝑔, 𝑺[𝑖,𝑗]) = 𝑃𝐺𝑊

(

 
 
 
𝐺[𝑖,𝑗] = 𝑔 

|

|

 log2(𝑠̅[𝑖,𝑗]) ,

log2(𝑚̅[𝑖,𝑗]) ,

log2(𝜌[𝑖,𝑗]),

log2(𝜂[𝑖,𝑗]) ,

log2(𝜏[𝑖,𝑗]) )

 
 
 
. 

This corresponds to the conditional probability (over all the deletions within the genome) that we observe 

the genotype 𝑔 for a deletion at [𝑖, 𝑗] given the average functional genomics signal and average multi-

mappability signal over the interval [𝑖, 𝑗]. The probability is defined over the genome, i.e., we estimate the 

probability for all the deletions in the genome. For this, we compute 5 features for every deletion in the 

genome, then estimate the conditional probability using this set as the sample of deletions.  

The basic idea behind the formulation of predictability is the observation that the regions with low 

functional genomics signal, low multi-mappability (i.e., uniquely mappable), low self-to-neighbor signal 

ratio, and high average neighbor signal are more likely to be deleted, i.e., their probability is large. 

Therefore, 𝜋𝐺𝑊 is higher for deletions that are more easier to identify than the deletions with lower 𝜋𝐺𝑊. 

In order to estimate the conditional probabilities, we binned the feature values by computing the 

logarithm then rounding this value to the closest smaller integer value.  

4.2. Discovery and Genotyping of Small and Large Deletions from Signal Profiles 
The practical instantiation of the linking attacks that we study are based on genotyping the panel of small 

deletions, 𝑝𝑆, using the functional genomics data. In addition, when the deletions panel 𝑝𝑆 is not available, 

the adversary also discovers the deletions using the signal profile. For GEUVADIS and GTex datasets, we 

perform small deletion genotyping using RNA-Seq signal profiles. The basic idea behind genotyping of 

deletions is the fact that there is a sudden dip in signal profile whenever there is a deletion (Fig 1d). In 
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order to detect these dips, we observed that self-to-neighbor signal ratio is very useful for genotyping 

small deletions. For all the small deletions, self-to-neighbor signal ratio, 𝜌[𝑖,𝑗], neighbor signal balance,  

𝜂[𝑖,𝑗], and average neighbor signal are computed. We then select the deletions that satisfy following 

criteria:  

 𝑚̅[𝑖,𝑗] < 𝑚̅𝑚𝑎𝑥 (High Mappability)  

 𝜏[𝑖,𝑗] > 𝜏𝑚𝑖𝑛 (High Neighbor Signal)  

 𝜂[𝑖,𝑗] > 𝜂𝑚𝑖𝑛 (High Neighbor Signal Balance)  

For the set of small deletions that pass these criteria, we sorted the deletions with respect to increasing 

𝜌[𝑖,𝑗]. The deletions which are at the top of the sorted list correspond to the deletions which are highly 

mappable (low multi-mappability signal), have strong neighbor signal support (high average neighbor 

signal), and finally they have a strong signal dip on them (Low 𝜌[𝑖,𝑗], and high 𝜂[𝑖,𝑗]). We selected the top 

𝑛 deletions and assigned them homozygous genotypes, i.e., 𝐺[𝑖,𝑗] = 0. The basic idea is that the deletions 

with strongest signal dips are enriched in homozygous deletions. It is worth noting that this genotyping 

method only assigns homozygous genotypes. Although this might result in low genotyping accuracy (Supp 

Fig 4), these genotyping predictions have enough information for accurate linking attacks. 

We utilize pooled ChIP-Seq read depth signal profiles and Hi-C signal profiles for genotyping large 

deletions. For genotyping the large deletions, we first computed the average signal (𝑠̅[𝑖,𝑗] =
∑ 𝑺

𝑖′
 

𝑗

𝑖′=𝑖

𝑗−𝑖+1
) and 

average multi-mappability signal (𝑚̅[𝑖,𝑗] =
∑ 𝑴

𝑖′
 

𝑗

𝑖′=𝑖

𝑗−𝑖+1
) on each large deletion. We select candidate large 

deletions using average multi-mappability signal: 

 𝑚̅[𝑖,𝑗] < 𝑚̅𝑚𝑎𝑥 (High Mappability)  

 

We sorted the deletions that satisfy above criteria with respect to increasing average signal, 𝑠̅[𝑖,𝑗]. For the 

top 𝑛 deletions, we assigned homozygous genotypes, i.e., 𝐺̃[𝑖,𝑗] = 0.  

We generally observed that the parameter selection for filtering variants did not have substantial effect 

on accuracy of linking attacks as long as they are not made too stringent. In the computational 

experiments, we used 𝑚̅𝑚𝑎𝑥 = 1.5, 𝜏𝑚𝑖𝑛 = 10, 𝜂𝑚𝑖𝑛 = 0.5 as the parameter set. 

For the case when the adversary does not have access to the deletion panel, we fragment the genome 

into windows and use these windows as candidate deletions. Above procedure is utilized for selection of 

the candidate deletions, which are assigned homozygous deletion genotypes. For small deletions, we use 

5 base pair windows within the exonic regions. For large deletions, we use 1000 base pair windows over 

all genome. 

4.3. Instantiations of Genome-wide Linking Attack  
Following the genotyping of the deletions in 𝑝𝑆, we use the genotyped deletions to link the individual to 

the individuals in the SV genotype dataset. Given the genotyped deletions for the 𝑘𝑡ℎ individual in the 

signal profile dataset, we first compare these deletions to the panel of deletions in the genotype dataset, 

𝑝𝐺 . The comparison is performed by overlapping the deletions in 𝑝𝑆 and in 𝑝𝐺 . Any two deletions that 

overlapped at least 1 base pair are assumed to be common in the two panels. For the set of deletions that 
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are common in two panels, {[𝑖1, 𝑗1], [𝑖2, 𝑗2],… , [𝑖𝑛, 𝑗𝑛]}, we compute the genotype distance by matching 

the genotypes, 

𝑑𝑘−𝑙 = ∑ 𝑑(𝐺̃
[𝑖′,𝑗′]

(𝑘)
, 𝐺
[𝑖′,𝑗′]

(𝑙)
)

𝑎=[𝑖′,𝑗′]∈
{[𝑖1,𝑗1,…
[𝑖𝑛,𝑗𝑛]}

 

where 𝑑𝑘−𝑙  represents the genotype distance of 𝑘𝑡ℎ individual in the signal profile dataset to the 𝑙𝑡ℎ 

individual in the genotype dataset and 𝑑 (𝐺[𝑖′,𝑗′], 𝐺[𝑖′,𝑗′]) is the distance function: 

𝑑 (𝐺̃
[𝑖′,𝑗′]

(𝑘)
, 𝐺
[𝑖′,𝑗′]

(𝑙)
) = {

1 𝑖𝑓 𝐺̃
[𝑖′,𝑗′]

(𝑘)
≠ 𝐺

[𝑖′,𝑗′]

(𝑙)

0 𝑖𝑓 𝐺̃
[𝑖′,𝑗′]

(𝑘)
= 𝐺

[𝑖′,𝑗′]

(𝑙)
. 

We next compute the genotype distance of 𝑘𝑡ℎ individual to all the individuals in the genotype dataset; 

𝑑𝑘−𝑙 for all 𝑙 in [1, 𝐾] where 𝐾 represents the number of individuals in genotype dataset. The individual 

in the genotype dataset that has the smallest genotype distance is linked to 𝑘𝑡ℎ individual: 

linked individual′s index = argmin
𝑙′∈[1,𝐾]

(𝑑𝑘−𝑙′) 

Finally, if the linked individual in the genotype dataset matches the individual in signal profile dataset, we 

mark the individual in the signal profile as a vulnerable individual. We also compute the first distance gap, 

𝑑1,2, for each linked individual[16] to evaluate the reliability of linking. For a linked individual, first distance 

gap is computed as 

𝑑1,2 = 𝑑𝑘
(1)
− 𝑑𝑘

(2)
 

where 𝑑𝑘
(1)

 and 𝑑𝑘
(2)

 is the minimum and second minimum genotype distance among all the genotype 

distances computed between 𝑘𝑡ℎ individual and all the genotype dataset individuals. 

4.4. Computation of Sensitivity and Positive Predictive Value 
In order to compute the sensitivity and positive predictive value (PPV) of linkings when the linkings are 

selected using first distance gap measure, we use following formula: 

Sensitivity =
Number of correctly linked individuals with 𝑑1,2 > 𝑑1,2

𝑚𝑖𝑛 

Number of All Individuals
 

 

PPV =
Number of correctly linked individuals with 𝑑1,2 > 𝑑1,2

𝑚𝑖𝑛 

Number of Individuals with 𝑑1,2 > 𝑑1,2
𝑚𝑖𝑛

 

where 𝑑1,2
𝑚𝑖𝑛 represents the minimum first distance gap measure that are used to select individuals. In 

these formulae, sensitivity represents the fraction of all individuals that adversary correctly links. PPV 

represents the fraction of individuals that are correctly linked among the individuals whose linking 

satisfies minimum first distance gap threshold. 
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4.5. Anonymization of Signal Profile Datasets 
The anonymization of the signal profile datasets refers to the process of protecting the signal profile data 

against correct predictability of the genotypes for deletion variants. As we discussed earlier, the large and 

small dips in the functional genomics signal profiles are the main predictors of deletion variant genotypes. 

To remove these dips systematically, we propose using the median filtering[44] based signal processing 

to locally smooth the signal profile around the deletion. This signal processing technique has been used 

to remove shot noise in 2 dimensional imaging data and 1 dimensional audio signals[43, 45]. For each 

genomic 𝑎 in the deletion [𝑖, 𝑗], we replace the signal level using the median filtered signal level: 

𝑥̃𝑎 = median ({𝑥𝑏}, 𝑏 ∈ [𝑎 −
𝑙

2
, 𝑎 +

𝑙

2
])  

where 𝑥𝑎 refers to the signal level at the genomic position 𝑎, 𝑙 = 𝑗 − 1 + 1, 𝑥̃𝑎 refers to the smoothed 

signal level at position 𝑎, and median refers to the median of all the signal values in the genomic region 

[𝑎 −
𝑙

2
, 𝑎 +

𝑙

2
]. The median is computed by sorting all the signal levels and choosing the value in the middle 

of the sorted list of signal levels.  

5. Datasets 
The mapped reads for the RNA-seq data from gEUVADIS project are obtained from gEUVADIS project web 

site (http://geuvadis.org/). The RNA-seq mapped reads from the GTex project are obtained from dbGAP 

portal. We used only the RNA-seq datasets from whole blood tissue to create signal profiles. The structural 

variant panel and genotypes are obtained from the 1000 Genomes Project. The very low frequency SVs 

may introduce bias since they can uniquely identify and individual. In order to get around this bias, we 

removed the SVs whose minimum genotype frequency is larger than 0.01. Also, we extended the 

genotype dataset by re-sampling 1000 Genomes deletion dataset and created genotype data for 10,000 

simulated individuals. 

We have utilized randomized datasets for comparison of predictability with real data. In order to create 

randomized data, we shuffled the signal profiles circularly. This way, the association between the SV 

genotypes and signal profiles are randomized. 

Figure Legends 
Figure 1: Illustration of the attack scenario. a) The adversary starts the attack with a signal profile 

dataset(𝑆). This dataset contains, for each individual, a genome-wide signal profile and also sensitive 

information, e.g., HIV status. The names are anonymized into IDs as shown in blue shaded column. The 

adversary uses an SV panel (𝑝𝑆) in the attack. This panel can be obtained from outside (1) or the adversary 

can use the genome-wide signal profiles to discover the panel (2), as denoted by the shaded red arrows. 

She then genotypes the SVs (3) in the panel and builds the genotyped SVs dataset (𝐺̃). b) The adversary 

acquires an SV panel (𝑝𝐺) and genotype dataset (𝐺) which contains genotypes of the SVs in the panel for 

a large number of individuals. In order to link the genotyped SV dataset (𝐺̃) to the SV genotype dataset, 

the adversary compares her SV panel (𝑝𝑆) to the SV panel (𝑝𝐺). For the matching SVs, the adversary 

compares the genotypes. The individuals in 𝐺 that have good matches with respect to genotype distance 

are linked to signal profile individuals, as indicated by the matching of the colored columns. This linking 

reveals the HIV status of the individuals in genotype dataset. c) Example of a large deletion in NA12878 

individual and how it affects signal profiles. 70kb long region is deleted in NA12878 individual and the 
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decrease in signal profiles show the loss of signal along the deletion. d) The schematic representation of 

large and small deletions and how they are manifested in signal profiles. The large deletions show a large 

decrease in the signal profiles while small deletions have much smaller footprints. 

Figure 2: The accuracy of linking attack on GEUVADIS dataset. a) The scatter plot shows the ICI versus 

predictability for each deletion, denoted by a dot. The real data (blue dots) show a much higher 

predictability compared to randomized data (red dots) b) After anonymization of signal profiles, the 

predictability of real data is decreased substantially. c) The accuracy of linking with genotyping of a known 

panel. The number of variants used in the attack is shown in x-axis while accuracy is shown on y-axis. The 

variants are sorted with respect to decreasing predictability. d) The accuracy of linking when adversary 

performs joint discovery and genotyping of deletions to perform linking. e) The blue plot shows the 

accuracy of linking when indels of specific length are used in the attack. Green plot shows the distribution 

of indels lengths. f) For the genotyping only scenario, the plot shows the distribution of minimum number 

of variants that is required to identify each individual. X-axis shows the number of indels and y-axis shows 

the frequency of individuals that can be identified. g) For the scenario where adversary discovers the SV 

panel first and performs genotyping on the discovered panel, the plot shows the distribution of minimum 

number of variants that is required to identify each individual. 

Figure 3: The accuracy of linking attack on GTex dataset. The ICI leakage versus predictability for all the 

indels before (a) and after (b) signal profile anonymization. c) The linking attack accuracy with changing 

number of variants used in the attack. X-axis shows the number of variants used in the attack and y-axis 

shows the accuracy of linking. d) When the adversary uses the 200 variants in (c) and selects linking based 

on thresholding 𝑑1,2 (shown on x-axis), the plot shows on the y-axis the sensitivity (black) and positive 

predictive value (red) of linkings for real (solid) and random (dashed) datasets while 𝑑1,2 is changed.  

Figure 4: a) The scatter plot of ICI leakage versus predictability for Kasowski (a) and Kilpinen (b) datasets. 

c) The accuracy of linking attack on the two datasets for genotyping only scenario. X-axis shows the 

changing number of variants used in the attack and y-axis shows the linking accuracy. d) The accuracy of 

linking on the two datasets when the adversary performs the attack by joint discovery and genotyping of 

deletions. e) The accuracy of linking of NA12878 when adversary utilizes different combinations of histone 

modifications. The first column shows different combinations. Middle column indicates whether NA12878 

is identifiable among 1000 Genomes samples, represented by green check for yes and red cross for no.  

The third column is a schematic representation of the signal profiles for each combination. 

Figure 5: Representation of the linking attack that utilizes Hi-C interaction matrix data. a) Schematic 

representation of how genome-wide signal profile is computed from the interaction matrix. Each column 

𝑖 of the matrix is summed along the rows and the total value is recorded at the 𝑖𝑡ℎ entry of the signal 

profile. b) Table shows whether NA12878 is vulnerable when different resolutions of the interaction 

matrix is used in linking. Green check indicates that NA12878 is vulnerable while red cross indicates not 

vulnerable. 

Figure S1: Illustration of Netflix Prize competition and linking to IMDb. a) Netflix released an anonymized 

training dataset that contained the movie identifiers, ratings, dates of ratings, and anonymized user 

identifiers. This dataset contained more than 100 million ratings for 500,000 users where each user had 

rated on average 200 movies and each movie was rated on average by 5,000 users. b) The training dataset 

was linked to the Internet Movie Database (IMDb)’s database. The linking is based on matching the movie 

Formatted: Justified



 

 

rating, the date of rating and other features in the databases. For the individuals whose names can be 

found in the IMDb database, the movie ratings are made public. 

Figure S2: The scatter plot of sample-wide predictability versus ICI leakage of the SV genotypes when gene 

expressions are used to genotype SVs. Each dot represents a 1000 Genomes SV and the population-wide 

predictability represents how correctly predictable the SV genotypes are given the gene expression levels. 

The expression levels are obtained from GEUVADIS dataset. The ellipses point to the small number SVs 

that have high predictability and high ICI leakage. 

Figure S3: Feature set that are used to genotype and discover deletions. A candidate deletion is between 

𝑖 and 𝑗 indices. The attacker uses the signal profiles within the deletion region and the left and right 

neighboring regions ([2𝑖 − 𝑗 − 1, 𝑖 − 1] and [𝑗 + 1,  2𝑗 − 𝑖 + 1], respectively) to compute the features.  

𝜌[𝑖,𝑗] represents how deep the dip is in the signal profile along the deletion. 𝜂[𝑖,𝑗] represents how balanced 

the signal levels in the neighboring regions are. 𝜏[𝑖,𝑗] represents how high the signal levels are in the 

neighboring regions. 

Figure S4: Accuracy of genotype predictions that are used in instantiating the linking attacks. The x-axis 

shows the number of variants used and y-axis shows the genotype accuracy. The GEUVADIS signal profiles 

are used with known panel of 1000 Genomes small indels. 
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