

Figure 1

Category	Feature	Source	Scoring Scheme
Universal	RBP score	eCLIP	Weighted-entropy
	Binding hotspots	eCLIP	Weighted-entropy
	RBP-gene Association	shRNA RNA-seq	Entropy
	Motif	Bind-n-Seq/DREME	Entropy
	Structure sensitivity	RNAfold	Entropy
	Conservation	Gerp	Entropy
User-specific	RBP regulatory potential	Survival	Entropy
		Expression	
	Key genes	Prior knowledge	Entropy
	recurrence	Mutation profiles	Entropy

Table 1. Features used by RADAR

Figure 6

Somatic Mutations in Breast Cancer

RNA Bind-N-Seq (RBNS)

- In vitro *high-throughput* assay to identify RBP binding motifs
- specificity of RNA binding proteins. Molecular cell, 54(5), 887-900.

Lambert, N., Robertson, A., Jangi, M., McGeary, S., Sharp, P. A., & Burge, C. B. (2014). RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding

RBNS identified binding specificities of 78 RBPs (ranging from 5 to 9-mer)

PLoS Comput Biol. 2006 Apr; 2(4): e33.

Published online 2006 Apr 21. Prepublished online 2006 Mar 6.

doi: <u>10.1371/journal.pcbi.0020033</u>

Identification and Classification of Conserved RNA Secondary Structures in the Human Genome

Jakob Skou Pedersen,^{1,*} Gill Bejerano,¹ Adam Siepel,^{1,*} Kate Rosenbloom,¹ Kerstin Lindblad-Toh,² Eric S Lander,² Jim Kent,¹ Webb Miller,³ and David Haussler^{1,4}

Richard Durbin, Editor

<u>Author information ► Article notes ► Copyright and License information ►</u>

This article has been <u>cited by</u> other articles in PMC.

Abstract

Overview of LL's Part

- Investigate RNA folding characteristics of DREME motifs
- Probability of folding into different secondary structures
- Minimum free energy of original vs. mutant motifs

RNA secondary structure

- Calculated with CapR
 - https://github.com/fukunagatsu/CapR
- Motif sequence, plus 50 bp from upstream and downstream
- One probability matrix calculated, for each sequence, for these structures
 - Bulge
 - Exterior RNA
 - Hairpin
 - Internal RNA
 - Multibranch
 - Stem loop

>chr1,17421,17627,BUD13,0.00048828125,-

Bulge 0 1.99455e-08 0.000464545 1.38286e-05 1.46406e-05 1.55022e-05 2.05606e-05 1.17339e-05 0.000101196 1.01708e-05 1.64382e-05 5.04094e-05 7.70172e-05 0.000106235 0.000439573 0.000711344 0.000736285 0.0015478 0.00167642 0.000551169 0.000367372 0.000140471 4.96609e-05 1.16999e-05 5.44293e-06 0.000633936 0.000813112 0.00062656 0.000674941 0.00101248 0.00133008 1.65508e-05 0.000528675 2.33213e-05 0.000871995 0.0012408 0.000984605 0.000910845 0.000142631 0.00158356 0.000121642 7.86675e-05 9.54341e-05 0.000271989 0.00102157 0.0834383 0.0888513 0.0921426 0.115774 8.94323e-05 1.00571e-05 0.088468 0.0835028 0.000350463 0.000544377 0.000469329 0.000330232 9.56236e-05 0.463245 0.000113737 0.00331707 2 0.00330224 0.0029775 0.0161246 0.00066284 0.0273265 ...

Minimum free energy

- RNAfold calculates minimum free energy (MFE) of RNA sequences
 - https://www.tbi.univie.ac.at/RNA/RNAfold.1.html
- Motif sequence, plus 20 bp from upstream and downstream
- Create mutant sequences from the original
 - Each bp has three mutant possibilities

• Create each of these mutant possibilities with each bp

 Run RNAfold on all mutants 	Mutants: >chr10,180989,181037,DDX3X,0.000152587890625,+,1,G,A
Original: >chr10,180989,181037,DDX3X,0.000152587890625,+ GAGGGGCCGGUGGGGCCGAGCGGCCGCCCCGCGCGCA UCGCCAUGUGA	AAGGGGCCGGUGGGGCCGAGCGGCCGCCCCGCGCGCAUCGCCAUGUGA >chr10,180989,181037,DDX3X,0.000152587890625,+,1,G,C CAGGGGCCGGUGGGGCCGAGCGGCCGCCCCGCGCGCAUCGCCAUGUGA >chr10,180989,181037,DDX3X,0.000152587890625,+,1,G,T TAGGGGCCGGUGGGGCCGAGCGGCCGCCCCGCGCAUCGCCAUGUGA

Minimum free energy

Original:

Mutants: