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Abstract 

The Pan-cancer Analysis of Whole Genomes (PCAWG) project provides an unprecedented 

opportunity to comprehensively characterize a vast set of uniformly annotated coding and non-

coding mutations present in thousands of cancer genomes. Classical models of cancer 

progression posit that only a small number of these mutations strongly drive tumor progression 

and that the remaining ones (termed “putative passengers”) are inconsequential for 

tumorigenesis. In this study, we leveraged the comprehensive variant data from PCAWG to 

ascertain the molecular functional impact of each variant, including putative passengers. This 

allowed us to uniformly decipher their overall impact over different genomic elements. The 

functional impact distribution of PCAWG mutations shows that, in addition to high- and low-

impact mutations, there is a group of medium-impact putative passengers predicted to influence 

gene expression or activity. Moreover, we found that functional impact relates to the underlying 

mutational signature: different signatures confer divergent impact, differentially affecting distinct 

regulatory subsystems and categories of genes. Also, we find that functional impact varies based 

on subclonal architecture (i.e., early vs. late mutations) and can be related to patient survival. 

Furthermore, we adapted an additive effects model derived from complex trait studies to show 

that aggregating putative passenger variants provides significant predictability for cancer 

phenotypes beyond the characterized driver mutations. 

 

 

  

 

 

 

 

 



 

Introduction 

Previous studies have focused on characterizing variants occupying coding regions of cancer 

genomes1. However, the extensive Pan-cancer Analysis of Whole Genomes (PCAWG) dataset, 

which includes variant calls from >2500 uniformly processed whole-cancer genomes, offers an 

unparalleled opportunity to investigate the overall molecular functional impact of variants 

influencing both coding and non-coding genomic elements. Given that the majority of cancer 

variants lie in non-coding regions2, this variant dataset serves as a substantially more informative 

resource than the many existing datasets focused on exomes. Moreover, it also contains a full 

spectrum of variants, including somatic copy number alterations (SCNAs) and large structural 

variants (SVs), in addition to single-nucleotide variants (SNVs) and small insertions and 

deletions (INDELS). 

Of the 30 million SNVs in the PCAWG variant data set, several thousand (< 5/tumor3) 

can be identified as driver variants (i.e. positively selected variants that favor tumor growth), by 

recurrence-based driver detection methods. The remaining ~99% of SNVs are termed passenger 

variants (referred as putative passengers in this work), with poorly understood molecular 

consequences and fitness effects. Recent studies have proposed that, among putative passengers, 

some may weakly affect tumor cell fitness by promoting or inhibiting tumor growth. In prior 

studies, these variants have been described as “mini-drivers”4 and “deleterious passengers”5, 

respectively. 

  In this work, we explored the landscape of putative passengers in various cancer cohorts 

by leveraging extensive pan-cancer variant calls in PCAWG. More specifically, we built on and 

apply existing tools to annotate and score the predicted molecular functional impact of variants 

in the pan-cancer dataset. Furthermore, we integrated the annotation and impact score of each 

variant to quantify the overall burdening of various genomic elements in different cancer cohorts. 

We observed that disruption of genetic regulatory elements in the non-coding genome correlates 

with altered gene expression. Moreover, various mutational processes have differential impact on 

coding genes and regulatory elements, as elucidated by our signature analysis. We observed 

differential impact of putative passengers that may impact tumor progression. However, these 

putative passenger mutations may be driven purely by background processes or suggest non-

neutral effect among putative passengers. Hence, we also considered ways of assessing a 



possible non-neutral role for putative passengers on cancer progression. We found that the 

molecular functional impact burden of various genomic elements correlates with patient survival 

time and tumor clonality. We also found that putative passengers provide significant predictive 

power beyond common driver mutations to distinguish cancer phenotypes from non-cancerous 

ones, even after controlling for known mutational signatures and background mutation rate as 

possible confounders in our analysis. We determined that this effect is likely prominent among 

tumors without known drivers, or with fewer driver variants than expected.  Although the effect 

of these possible driver variants can only be detected in aggregate by our model, it motivates 

future search for these variants among putative passenger variants. 

 

Overall functional impact 

In order to characterize the landscape of putative passenger mutations in PCAWG, we first 

surveyed the predicted molecular functional impact (quantified by funseq score \cite {}) of 

somatic variants in different cancer genomes. The predicted functional impact distribution varies 

among different cancer types and for different genomic elements. A closer inspection of the pan-

cancer impact score distributions for non-coding variants demonstrated three distinct regions. 

The upper and the lower extremes of this distribution are presumably enriched with high-impact 

strong drivers and low-impact neutral passengers, respectively. In contrast, the middle range of 

this distribution corresponds to putative passengers with intermediate molecular functional 

impact (Fig 1a).   

Subsequently, we investigated whether the frequency of medium- and high-impact 

noncoding putative passengers (see supp.X for classification threshold) in a cancer cohort is 

proportionate to its total mutational burden. For a uniform mutation distribution, we expect that 

the fraction of these putative passengers would remain constant as cancer samples accumulate 

more mutations. In contrast, we observed that as a tumor acquires more SNVs, the fraction of 

medium-and high-impact putative passengers often decreases. This trend is particularly strong in 

CNS medulloblastoma (p < 4e-8), lung adenocarcinoma (p < 3e-4), and a few other cancer 

cohorts (Fig 1b). 

In addition to SNVs, large structural variations (SVs) also play important role in cancer 

progression. Thus, we quantified the putative functional impact of SVs (deletions and 

duplications). A close inspection of both SV and SNV impact scores suggest that certain cancer 



subtypes tend to harbor a large number of high-impact SVs, while others were more burdened 

with high-impact SNVs (Fig 1c). Many of these correlations have previously been observed12. 

For example, it is known that large deletions play the role of drivers in ovarian cancer, whereas 

clear cell kidney cancer is often driven by SNVs. However, we also find new associations, such 

as the predominance of high-impact large deletions compared to impactful SNVs in the bone 

leiomyoma cohort. 

 

Burdening of different genomic elements 

Furthermore, we investigated the overall mutational burden observed among different genomic 

elements in various cancer cohorts. A priori, one might assume that the overall burden of 

putative passengers in a cancer genome would be uniformly distributed across different 

functional elements and among different gene categories. In contrast, we observed that the 

predicted molecular impact burden in certain cancers is concentrated in particular regulatory 

regions and gene categories. This is easiest to understand in terms of coding loss-of-function 

variants (LoFs), where the putative molecular impact is most intuitive. We thus examined the 

fraction of deleterious LoFs affecting genes across seven categories of cancer-related functional 

annotation (Fig 2a). Driver LoF variants showed significant enrichment in six categories of 

cancer-related genes (cell cycle, immune response, cancer pathway, apoptosis, DNA repair and 

essential) relative to random expectation (p < 0.001). Conversely, non-driver LoFs displayed a 

small but significant depletion relative to random expectation in each of these categories except 

in metabolic and immune response genes, for which they showed slight enrichment compared to 

random expectation (p < 0.001) (supplement Fig. X). 

As with LoF variants, we can also quantify the overall burden of the noncoding SNVs in 

a cancer genome. However, for the majority of noncoding SNVs, predicted molecular functional 

impact is less easy to gauge. For instance, coding and noncoding variants occupying the terminal 

region of the gene or intronic regions would most likely have little functional consequence. In 

contrast, the molecular impact of transcription factor binding site (TFBS) variants is clearly 

manifested through the creation or destruction of transcription factor (TF) binding motifs (gain 

or loss of motif). In both cases (gain or loss), we observed significant differential burdening of 

TFBS among different cancer cohorts. For instance, we detected significant enrichment of high-

impact variants creating new motifs in various TFs including GATA, PRRX2 and SOX10 (Fig 



2b) across major cancer types, compared with uniform expectation. Similarly, high-impact 

variants breaking motifs were highly enriched in TFs such as IRF, POU2F2, NR3C1and STAT 

(Fig 2b) in the majority of cohorts. This selective enrichment or depletion suggests distinct 

alteration profiles associated with different components of regulatory networks in various 

cancers. 

Furthermore, for a particular TF family, one can identify the associated target genes 

affected due to the bias towards creation or disruption of specific motifs in their regulatory 

elements (promoters and enhancers). For instance, the TERT gene shows the largest alteration 

bias for ETS motif creation across a variety of cancer types (Fig 2c). Other genes (such as 

BCL6) showed a similar bias, albeit in fewer cancers. Moreover, the enrichment of SNVs in 

selective TF motifs leads to gain and break events in promoters that significantly perturb the 

overall downstream gene expression (Fig 2d). For example, ETS family transcription factor at 

the regulatory region of TERT and PIM1 gene displayed a strong motif creation bias and a 

significant change in gene expression (with p-value TERT=0.001 and p-value PIM1=0.019) 

(supplement X). 

Finally, we also analyzed the overall burden of structural variants (SVs) in various 

genomic elements and compared the pattern of somatic SV enrichment in cancer genomes with 

those from the germline (Fig 2e). As expected, we observed that somatic SVs were more 

enriched among functional regions compared to germline SVs, because the latter ones will be 

under negative selection for disrupting functional regions. Furthermore, we observed a distinct 

pattern of enrichment for SVs that split a functional element versus those that engulf it. As has 

been previously noted, there is a greater enrichment of germline SVs that engulf an entire 

functional element rather than for those that break a functional element partially13. Moreover, we 

observed the same pattern for somatic SVs. 

 

Mutational process analysis  

The differential burdening of various genomic elements may be attributed to the underlying 

stochastic but biased mutational processes. Thus, we closely inspected the underlying mutational 

signatures generating SNVs in both coding and non-coding regions of cancer genomes. First, we 

looked into the most impactful event, loss-of-function in coding regions. We would expect 

premature stop codons would show strong mutational contextual bias due to the nature of codon 



composition. Indeed, we found premature stop mutations carry specific mutational spectrum, 

which differs significantly from the overall tumor mutational spectrum. In particular, some 

mutations (e.g. T>Cs) cannot create premature stop as we expected. However, when compared 

with the pan-cancer premature stops, individual cancer shows a spectrum shift. For example, 

premature stops in RCCs shows a higher percentage of T>As compared to all cancers (18% 

versus 8%) (Fig 3). Our observation can be explained by the divergence of mutational processes 

in individual cancer types and implies mutational processes confer distinct effects in coding 

regions. 

Similarly, the disproportionate functional load on certain TFs in cancers can be related to 

the underlying mutational spectrum influencing their binding sites. Different transcription factors 

have varying nucleotide context in their binding sites (TFBS). These variations in TFBS may 

facilitate the role of different mutational processes and will be reflected in their mutational 

spectrum. For instance, the mutational spectrum of motif breaking events observed in SP1 TFBS 

suggests a major contribution from C>T and C>A mutation (Fig 3b). In contrast, motif-breaking 

events at the TFBS of HDAC2 and EWSR1 have relatively uniform mutation spectrum profiles. 

Based on the mutational context, we can further decompose all observed mutations into a linear 

combination of mutational signatures, which presumably represent the mutational processes 

(\cite{23456}). Every signature has varying influence depending on the cancer type and in a 

given cancer type, different signatures disproportionally burden the genome. Comparing the 

signature composition of low-and high-impact putative passengers in certain cancer-cohorts can 

help us to distinguish between mutational processes that generate distinct variant impact classes. 

For instance, in the Kidney-chRCC cohort, although the majority of passenger variants can be 

explained by signature 39, high-impact and low-impact passengers have a different proportion of 

signature 5 and signature 1(Fig 3c). We also scrutinized LoFs in coding regions, which carry the 

highest molecular function impact. Compared to putative passengers, signature 1 and 23 together 

contribute a relatively higher fraction to premature stop. We further generalized this analysis 

across multiple cohorts in PCAWG. Similar to Kidney-RCC cohort, we observed distinct 

signature distributions for the low-and high-impact non-coding putative passengers in Liver-

HCC, Prost-AdenoCA, Eso-AdenoCA and Ovary-AdenoCA cohorts (Fig 3d). Collectively, these 

findings suggest that various mutational processes shape and disproportionally burden cancer 

genomes. 



Subclonal architecture and cancer progression 

Cancer is an evolutionary process, often characterized by the presence of different sub-clones. 

These can be further categorized as early and late subclones based on the overall subclonal 

architecture of a cancer sample. Thus, we explored the relative population of high- and low-

impact putative passengers in different sub-clones of a tumor sample to decipher their 

progression during tumor evolution. Intuitively, one might hypothesize that high-impact 

mutations achieve greater prevalence in tumor cells if they are advantageous to the tumor, and a 

lower prevalence if deleterious. As expected, we observe this to be true among driver variants. 

However, interestingly, we observe that high-impact putative passengers in coding regions have 

greater prevalence among parental subclones (Fig 4a) – an effect driven by high-impact putative 

passenger SNVs in tumor suppressor and apoptotic genes (Fig 4a). In contrast, high-impact 

putative passenger SNVs in oncogenes appear slightly depleted. Similarly, high-impact putative 

passengers in DNA repair genes and cell cycle genes are depleted in early subclones (Fig 4a). 

We obtained similar results when we simply categorized mutations on the basis of variant allele 

frequency (VAF) (supplement Fig X).  

In non-rearranged genomic intervals, the VAF of a mutation is expected to be 

proportional to the fraction of tumor cells bearing that mutation. Previous studies have measured 

the divergence in VAFs to indirectly quantify heterogeneity in mutational burden among 

different sub-clones in a cancer. Here, we quantified this heterogeneity among low-, medium- 

and high-impact putative passengers for different cancer cohorts. We generally observe lower 

mutational heterogeneity among high-impact putative passenger SNVs. This observation is 

consistent for both coding and non-coding putative passenger variants (Fig 4b). 

Furthermore, we correlated the functional impact (measured by GERP score here) of each 

variant with their corresponding cellular prevalence measured by VAF. We find that, within 

driver genes and their regulators, variants that disrupt more conserved positions (high GERP 

score) tend to have higher VAF values (Fig 4c). This trend remains true even after excluding 

SNVs that have been individually called as driver variants. We also find that outside of driver 

genes, variants that disrupt more conserved positions tend to have lower VAF values.  

As with the clonal status of a tumor, clinical outcomes (such as patient survival) provide 

an alternative measure of tumor evolution. Therefore, we performed survival analysis to see if 

somatic molecular impact burden – here measured as the mean GERP of somatic nominal 



passenger variants per patient – predicted patient survival within individual cancer subtypes. 

Patient age at diagnosis and total number of mutations were used as covariates in the survival 

analysis. We obtained significant correlations between somatic molecular impact burden and 

patient survival in two cancer subtypes after multiple test correction. Specifically, we observed 

that somatic mutation burden predicted substantially better patient survival in lymphocytic 

leukemia (Lymph-CLL, p-value 2.3x10-4) and ovary adenocarcinoma (Ovary-AdenoCA, p-value 

2x10-3) (Fig 4d). The use of average impact rather than summed impact ensures that these results 

do not simply reflect more advanced progression (i.e. more mutations) of the cancer at the time 

of sequencing.  

 

Categorizing putative passenger variants 

The results we have found may be explained in relation to underlying mutational processes. 

However, they may also be indicative of selective effects among subset of these mutations, 

whether or not they are generated by a neutral mutational process. If indeed a subset of putative 

passengers possess fitness effects, then we can extend the canonical model of driver and 

passengers into a continuum model. Conceptually, in such extended model, somatic variants can 

be classified into multiple categories while considering their impact on tumor cell fitness: drivers 

with strong positive selective effects, putative passengers with neutral, weak positive and weak 

negative selective effects. This broad classification scheme can be further refined by considering 

ascertainment-bias and the putative molecular impact of different variants (Fig 5a). Previous 

power analyses15,16 suggest that existing cohort sizes support the identification of strong 

positively-selected driver variants, but that many weaker drivers and even some moderately 

strong driver variants would be missed.  

However, these moderately strong and weak driver variants can also provide a potential 

fitness advantage to tumor cells. With respect to the functional-impact-based classification, any 

positively or negatively selected variants will have some molecular functional impact (i.e. effect 

on gene expression or activity). The relevance of molecular functional impact is firmly 

established for driver mutations, defined as positively-selected variants promoting tumor growth. 

However, rapid accumulation of putative passengers, which undergo weak/strong negative 

selection, could adversely affect the fitness of tumor cells5. Moreover, a majority of low-impact 

and some high-functional impact putative passengers may alter tumor gene expression or activity 



in ways that are not ultimately relevant for tumor fitness; hence, these variants will undergo 

neutral evolution. 

An initial step towards identifying the presence of variants with effects on tumor fitness 

is to compare observed mutation distributions with ones generated by simulating or modeling 

neutral processes. This approach has been extensively leveraged in the context of individual 

driver discovery using element burden testing. Such an approach is potentially powerful since it 

allows the use of complex background mutational models, although the possibility of detecting 

artifacts due to the inadequacy of current models of neutral mutational processes remains, since 

unmodeled mutation process may result in confounding effects. With this caveat, we explore 

such an approach below in an attempt to quantify non-neutral aggregate effects among putative 

passengers, using a variety of recent neutral models and an additive model which combines both 

positive and negative fitness effects.  As in the case of individual driver discovery, validation of 

such effects requires follow-up experimentation. 

 

Overall effects of putative passengers and additive variance 

It is interesting to note that in a cancer genome, the presence of few drivers (with high positive 

fitness effects) and large numbers of putative passengers (with weak or neutral fitness effects) is 

analogous to prior observations in genome-wide association studies (GWAS) that implicated a 

handful of variants influencing complex traits. These modest numbers of variants explain only a 

small proportion of the genetic variance, thus contributing to the “missing heritability” problem 

in GWAS6,7. However, it has been shown that aggregating the remaining variants with weak 

effects can explain a significant part of the “missing heritability”6 and is predictive of disease 

risk8. Although, we do not currently have estimates of ‘missing heritability’ at the subclone level 

for tumorigenicity, which may depend on both genetic and epigenetic factors. However, the fact 

that many tumors lack a known driver (\cite{Nuria’s paper}) suggests that some driver mutations 

remains to be discovered. The models above suggest the importance of investigating the 

cumulative effect of putative passengers in this context. 

To address this, we adapted an additive effects model6,10, originally used in complex trait 

analysis, to quantify the relative size the aggregated effect of putative passengers in relation to 

known drivers. With a number of caveats regarding interpretation arising due to differences 

between germline and cancer evolutionary processes (see supplemental note X.b), we tested the 



ability of this model to predict cancerous from null samples as a binary phenotypic trait (Fig 5b). 

Briefly, we created a balanced dataset of observed tumor and matched neutral (null) model 

samples, using a recently proposed background model which preserves mutational signatures, 

local mutation rates, and coverage bias [ref Broad simulation]. Subsequently, using a linear 

model, for each SNV the additive effects model implicitly associates a positive or negative effect 

(coefficient), considering them to be sampled from a normal distribution (see Online Methods 

and Supplemental Note). Furthermore, in this model the individual effects of SNVs are not 

explicitly estimated; instead, their variance is evaluated as a hyper-parameter using restricted 

maximum-likelihood (REML)10, where separate variance terms can be associated with different 

groups of SNVs falling in distinct categories.  In addition to the neutral model above, we utilized 

two further local background models, including PCAWG-wide randomized datasets as well as 

our custom randomization correcting for various covariates (see supplemental method).  

We compared several versions of the additive variance model above in 8 cancer cohorts 

having a sample size greater than 100.  In the first model, we separated the mutations into two 

categories, corresponding to drivers (from the PCAWG analysis) and putative passengers (Fig. 

5ci).  Putative passengers were only included in the model if found in at least two samples from 

a cohort (which can be any combination of observed and simulated samples).  Additionally, to 

maximize the predictive potential of the driver mutations, we used a binary variable which is 1 if 

any driver mutation is present in a sample as a predictor (details in Online Methods).  This 

approach effectively isolates the effect of putative passengers in tumors without driver 

mutations. In this model, we observed an increase in the variance explained from ~49.9% using 

drivers alone to ~59.4% with putative passengers when averaged across all cohorts, with the 

putative passenger contribution significant at FDR<0.1 in all cohorts except Kidney, suggesting 

that non-neutral effects are present among the putative passenger mutations (Supp Fig. X).  We 

further tested a different version of the model in which we split mutations into coding, promoter 

and other non-coding categories, where the coding mutations are a superset of the PCAWG 

drivers (Fig. 5cii).  Here, we observed that the coding mutations accounted for by far the largest 

overall proportion of the variance (~50.7% averaged across cohorts), while promoters and other 

non-coding also contributed much lesser, but still significant amounts of extra variance (~1.9% 

and 6.9% respectively overall, with cohort-specific contributions from each category at 

FDR<0.1, Supp Fig. X).  Although the total contribution of the promoters is lowest in this model, 



we calculated the additive variance per SNV by normalizing by the number of SNVs in each 

category (Fig. 5ciii) and found that the normalized variance is substantially higher in promoters 

than other non-coding, although lower than coding.  Further, we tested the sensitivity of our 

results to the choice of null model by repeating these analyses for two other randomization 

schemes, with quantitatively similar results (Supp Fig. X). 

By including a binary predictor for known driver SNVs in the above model, we expect 

the contribution of the putative passengers to be higher among samples without known drivers 

(as well as all null samples).  To confirm that the putative passengers were indeed contributing 

to the discrimination of samples without known drivers, we further calculated the additive 

variance exclusively for such samples in PCAWG. For these samples, we observed an average of 

12.5% additive variance across cohorts (Supp Fig. X), which was higher than the 9.5% additive 

variance estimates based on putative passengers among all samples (with and without known 

drivers). This observation is consistent with a more important role for the putative passengers 

among samples without know driver, since they may have partially redundant effects in the 

samples harboring known drivers. Furthermore, we calculated the additive variance after 

excluding samples with driver SVs and CNAs alterations in addition to samples with known 

driver SNVs.  This analysis was performed only for pan-cancer meta-cohort which pools all such 

samples (Supp Fig. X).  We observed lower amount of additive variance (6.1%) for the pan-

cancer meta cohort. The lower estimate for the pan-cancer cohort may be due to tissue-specific 

effects which are lost at the meta-cohort level. Finally, we estimated the Best Linear Unbiased 

Predictor (BLUP) for each cohort, and used this to derive an estimate of the number of weak 

drivers among samples with all discovered known drivers excluded (details in Online Methods).  

Using this approach, we estimated an average of 8.4 weak drivers per cohort.  We expect that 

these estimates are limited by sample size, and thus represent lower bounds.  

 

Discussion 

Certain key alterations in the tumor genome, often identified through the detection of strong 

signals of positive selection on individual variants, have been shown to play a pivotal role in 

tumor progression.  Although a typical tumor has thousands of genomic variants, very few of 

these (~4/tumor1) are thought to drive tumor growth. The remaining variants, often termed 

passengers, represent the overwhelming majority of the variants in cancer genomes, and their 



functional consequences are poorly understood. In this work, we comprehensively characterized 

putative passengers in the PCAWG dataset. We came across multiple lines of evidence, which 

suggested the presence of putative passengers with weak fitness effects. Subsequently, we 

attempted to quantify the cumulative fitness effect of such putative passengers on tumor growth 

through our additive variance model. We note that the above approach relies on applying an 

accurate background model.  However, current null models have inaccuracies due to our 

incomplete understanding of various mutational processes in cancer. Nonetheless, our additive 

variance analysis was robust for multiple background models and suggested a potential role of 

cumulative effect of putative passengers on tumor progression. Also, our functional analyses of 

putative passengers showed that different mutational processes are associated with extensive 

differences in impact on cellular subsystems, irrespective of whether these cause, are indirectly 

associated with, or are independent of subclonal fitness differences in an evolving tumor. These 

observations further motivate follow-up experiments and additional whole-genome analyses to 

explore the role of putative passengers with weak (positive and negative) fitness effects in 

cancer. In conclusion, our work highlights that an important subset of somatic variants currently 

identified as putative passengers nonetheless shows biologically and clinically relevant 

functional roles across a range of cancers. 
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Figure 1: Overall functional impact of PCAWG variants: a) Functional impact distribution in noncoding region: three peaks 

correspond to low-, medium- and high-impact variants. b) log ratio of high-impact structural variants(SVs) and SNVs in different 

cancer cohorts.  c) Correlation between number of impactful and total SNV frequencies for different cohorts.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
 

 
Figure 2: Overall functional burdening of different genomic elements: a) Percentage of genes in different gene categories 

(apoptosis, cell cycle, cancer pathway, dna repair, metabolic and essential genes) affected by non-driver LoFs in observed and 

random model, b) Pan-cancer overview of TFs burdening: Heat map presenting differential burdening of various TFs due to 

SNVs inducing motif breaking and motif gain events in different cohorts compared to the genomic background. c)target genes 

affected due to motif gain and loss in ETS transcription factor family: genes such as TERT, RP17-731F5.2 and JSRP1 are 

affected due to gain of motif event, whereas ASXL2 and RPS27 are affected due to loss of motif event. d) q-q plot showing 

genes such as TERT, PIM1 and BCL2, which are differentially expressed due to gain of motif event in ETS TFs. e) enrichment 

of germline and somatic large deletions in coding region and transcription factor binding peaks. Large deletions can engulf or 

partially delete various genomic elements. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
 

 

 
Figure 3. Mutational signatures associated with different categories of impactful variants: a) b) Mutation spectra associated 

with motif breaking events observed in HDAC2, EWSR1 and SP1 in the kidney-RCC cohort. c) Distribution of canonical 

signatures in the kidney-chRCC cohort for premature stops (top), impactful (middle) and low-impact SNVs (bottom). d) 

Differences in underlying signatures between high-and low-impact nominal passengers in different cancer cohorts.  

 

 

 

 

 

 

 



 
 
Figure 4: Correlating functional burdening with subclonal information and patient survival: a) Subclonal ratio (early/late) 

for different categories of SNVs (coding/non-coding) based on their impact score. Subclonal ratio for high-impact SNVs 

occupying distinct gene sets. b) Mutant tumor allele heterogeneity difference comparison between high-, medium- and low-

impact SNVs for coding(left) and non-coding regions(right). c) correlation between mean VAF and GERP score of different 

categories of variants (driver SNVs, non-driver SNVs in known cancer genes & passenger variants in non-driver genes) on a pan-

cancer level. d) Survival curves in CLL (left panel) and RCC (right panel) with 95% confidence intervals, stratified by mean 

GERP score. 

 



 

 

 
 

 

Figure 5. 



Conceptual classification of somatic variants into different categories based on their functional impact and selection 

characteristics: a) Both coding and non-coding variants can be classified as drivers and passengers based on their impact and 

signal of positive selection. Among putative passengers, true passengers undergo neutral selection and tend to have low 

functional impact. Deleterious passengers (weak & strong) and mini-drivers (weak & strong) represent various categories of 

higher impact nominal passenger variants, which may undergo weak negative or positive sections. b) Additive effects model for 

nominal passengers: The combined effects of many nominal passengers are modeled using a linear model, which predicts 

whether a genotype arises from an observed cancer sample or from a null (neutral) model (notation defined in text). The model is 

fitted by optimizing the hyper-parameter 𝜎𝐴
2, and a test for significant combined effects of the nominal passengers is made by 

performing a log-likelihood ratio test against a restricted model which includes only μ and e. c) Predictive power of known 

drivers and nominal passengers using the additive effects model: Left figure compares the maximum possible variance which can 

be explained using known drivers with the performance of the model with those from driver and putative passengers. Central 

figure further breakdown this into contribution from coding, coding & promoter and everything. Right figure presents normalized 

additive variance explained by putative passengers in coding only, promoter only and other non-coding only elements of the 

genome. 
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