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Abstract 

The Pan-cancer Analysis of Whole Genomes (PCAWG) project provides an unprecedented 

opportunity to comprehensively characterize a vast set of uniformly annotated coding and non-

coding mutations present in thousands of cancer genomes. Classical models of cancer 

progression posit that only a small number of these mutations strongly drive tumor progression 

and that the remaining ones (termed “putative passengers”) are inconsequential for 

tumorigenesis. In this study, we leveraged the comprehensive variant data from PCAWG to 

ascertain the molecular functional impact of each variant, including putative passengers. This 

allowed us to uniformly decipher their overall impact over different genomic elements. The 

functional impact distribution of PCAWG mutations shows that, in addition to high- and low-

impact mutations, there is a group of medium-impact putative passengers predicted to influence 

gene expression or activity. Moreover, we found that functional impact relates to the underlying 

mutational signature: different signatures confer contrasting impact, differentially affecting 

distinct regulatory subsystems and categories of genes. Also, we find that functional impact 

varies based on subclonal architecture (i.e., early vs. late mutations) and can be related to patient 

survival. Furthermore, we adapted an additive effects model derived from complex trait studies 

to show that aggregating putative passenger variants provides significant predictability for 

cancer phenotypes beyond the characterized driver mutations. 

 

 

  

 

 

 

 

 

 

 



Introduction 

Previous studies have focused on characterizing variants occupying coding regions of cancer 

genomes1. However, the extensive Pan-cancer Analysis of Whole Genomes (PCAWG) dataset, 

which includes variant calls from >2500 uniformly processed whole-cancer genomes, offers an 

unparalleled opportunity to investigate the overall molecular functional impact of variants 

influencing both coding and non-coding genomic elements. Given that the majority of cancer 

variants lie in non-coding regions2, this variant dataset serves as a substantially more informative 

resource than the many existing datasets focused on exomes. Moreover, it also contains a full 

spectrum of variants, including somatic copy number alterations (SCNAs) and large structural 

variants (SVs), in addition to single-nucleotide variants (SNVs) and small insertion & deletions 

(INDELS). 

Of the 30 million SNVs in the PCAWG variant data set, several thousand (< 5/tumor3) 

can be identified as driver variants (i.e. positively selected variants that favor tumor growth), by 

recurrence-based driver detection methods. The remaining ~99% of SNVs are termed passenger 

variants (referred as putative passengers in this work), with poorly understood molecular 

consequences and fitness effects. Recent studies have proposed that, among putative passengers, 

some may weakly affect tumor cell fitness by promoting or inhibiting tumor growth. In prior 

studies, these variants have been described as “mini-drivers”4 and “deleterious passengers”5, 

respectively. 

  In this work, we explore the landscape of putative passengers in various cancer cohorts 

by leveraging extensive pan-cancer variant calls in PCAWG. More specifically, we build on and 

apply existing tools to annotate and score the predicted molecular functional impact of variants 

in the pan-cancer dataset. Furthermore, we integrated the annotation and impact score of each 

variant to quantify the overall burdening of various genomic elements in different cancer cohorts. 

We observed that disruption of genetic regulatory elements in the non-coding genome correlates 

with altered gene expression. Moreover, various mutational processes have different impact on 

regulatory elements, as elucidated by our signature analysis. Furthermore, we also show that the 

molecular functional impact burden of various genomic elements correlates with patient survival 

time and tumor clonality. Finally, we show that aggregating putative passengers provides 

significant predictive power beyond common driver mutations to distinguish cancer phenotypes 

from non-cancerous ones. 



Overall functional impact 

In order to characterize the landscape of putative passenger mutations in PCAWG, we first 

surveyed the predicted molecular functional impact (quantified by funseq score \cite {}) 

distribution of somatic variants in different cancer genomes. The predicted functional impact 

distribution varies among different cancer types and for different genomic elements. A closer 

inspection of the pan-cancer impact score distributions for non-coding variants demonstrated 

three distinct regions. The upper and the lower extremes of this distribution are presumably 

enriched with high-impact strong drivers and low-impact neutral passengers, respectively. In 

contrast, the middle peak corresponds to putative passengers with intermediate molecular 

functional impact (Fig 1a).   

Subsequently, we investigated whether the frequency of medium- and high-impact 

putative passengers (see supp.X for classification threshold) in a cancer cohort is proportionate 

to its total mutational burden. For a uniform mutation distribution, we expect that the fraction of 

these putative passengers would remain constant as cancer samples accumulate more mutations. 

In contrast, we observed that as a tumor acquires more SNVs, the fraction of medium-and high-

impact putative passengers often decreases. This trend is particularly strong in CNS 

medulloblastoma (p < 4e-8), lung adenocarcinoma (p < 3e-4), and a few other cancer cohorts 

(Fig 1b). 

In addition to SNVs, large structural variations (SVs) also play important role in cancer 

progression. Thus, we quantified the putative functional impact of SVs (deletions and 

duplications). A close inspection of both SV and SNV impact scores suggest that certain cancer 

subtypes tend to harbor large number of high-impact SVs, while others were more burdened with 

high-impact SNVs (Fig 1c). Many of these correlations have previously been observed12. For 

example, it is known that large deletions play role of drivers in ovarian cancer, whereas clear cell 

kidney cancer is often driven by SNVs. However, we also find new associations, such as the 

predominance of high-impact large deletions compared to impactful SNVs in the bone 

leiomyoma cohort. 

 

Burdening of different genomic elements 

Furthermore, we investigated the overall mutational burden observed among different genomic 

elements in various cancer cohorts. A priori, one might assume that the overall burden of 



putative passengers in a cancer genome would be uniformly distributed across different 

functional elements and among different gene categories. In contrast, we observed that the 

predicted molecular impact burden in certain cancers is concentrated in particular regulatory 

regions and gene categories. This is easiest to understand in terms of coding loss-of-function 

variants (LoFs), where the putative molecular impact is most intuitive. We thus examined the 

fraction of deleterious LoFs affecting genes across six categories of cancer-related functional 

annotation (Fig 2a). As expected, driver LoF variants showed significant enrichment in four 

categories of cancer-related genes (cell cycle, cancer pathway, apoptosis and DNA repair) 

relative to a random (shuffled-variant) control (p < 0.001). Conversely, non-driver LoFs 

displayed depletion relative to random expectation, in each of these categories (p < 0.001). 

However, non-driver LoFs in metabolic and essential genes were slightly enriched compared to 

the random expectation.  

As with LoF variants, we can also quantify the overall burden of the noncoding SNVs in 

a cancer genome. However, for the majority of noncoding SNVs, predicted molecular functional 

impact is less easy to gauge. For instance, coding and noncoding variants occupying the terminal 

region of the gene or intronic regions would most likely have little functional consequence. In 

contrast, the molecular impact of transcription factor binding site (TFBS) variants is clearly 

manifested through the creation or destruction of transcription factor (TF) binding motifs (gain 

or loss of motif). In both cases (gain or loss), we observed significant differential burdening of 

TFBS among different cancer cohorts. For instance, we detected significant enrichment of high-

impact variants creating new motifs in various TFs including GATA, PRRX2 and SOX10 (Fig 

2b) across major cancer types, compared with uniform expectation. Similarly, high-impact 

variants breaking motifs, were highly enriched in TFs such as IRF, POU2F2, NR3C1and STAT 

(Fig 2b) in the majority of cohorts. This selective enrichment or depletion suggests distinct 

alteration profiles associated with different components of regulatory networks in various 

cancers. 

Furthermore, for a particular TF family, one can identify the associated target genes 

affected due to the bias towards creation or disruption of specific motifs in their regulatory 

elements (promoters and enhancers). For instance, the TERT gene shows the largest alteration 

bias for ETS motif creation across a variety of cancer types (Fig 2c). Other genes (such as 

BCL6) showed a similar bias, albeit in fewer cancers. Moreover, the enrichment of SNVs in 



selective TF motifs leads to gain and break events in promoters that significantly perturb the 

overall downstream gene expression (Fig 2d). For example, ETS family transcription factor at 

the regulatory region of TERT and PIM1 gene displayed a strong motif creation bias and a 

significant change in gene expression (with p-value TERT=0.001 and p-value PIM1=0.019) 

(supplement X). 

Finally, we also analyzed the overall burden of structural variants (SVs) in various 

genomic elements and compared the pattern of somatic SV enrichment in cancer genomes with 

those from the germline (Fig 2e). As expected, we observed that somatic SVs were more 

enriched among functional regions compared to germline SVs, because the latter ones will be 

under negative selection for disrupting functional regions. Furthermore, we observed a distinct 

pattern of enrichment for SVs that split a functional element versus those that engulf it. As has 

been previously noted, there is greater enrichment of germline SVs that engulf an entire 

functional element rather than for those break a functional element partially13. Moreover, we 

observed the same pattern for somatic SVs. 

 

Signature analysis  

The differential burdening of various genomic elements can be attributed to either the underlying 

random but biased mutational processes or selection on variants occupying these elements. Thus, 

we closely inspected the underlying mutational signatures generating SNVs in coding and non-

coding regions of cancer genomes. For instance, one would expect that mutational processes 

creating stop codons would highly correlate with the number of LoF variants observed in a 

cancer sample. Indeed, we were able to identify a high correlation between the 

mutation spectrum and the number of LoFs within some cancer types. However, these 

correlations are highly heterogeneous among different cancer cohorts, and the number of LoF 

mutations might be often driven by other factors. For example, Lung–SCC and Esophageal 

adenocarcinoma cohorts exhibit a high correlation between their mutation pattern and the 

number of LoFs per tumor sample (r=0.55 and 0.46 respectively) (see supplement table X). 

Other cancer cohorts such as colorectal adenocarcinoma and non-Hodgkin lymphomas were able 

to withhold the majority of their LoFs with the ratio of observed vs expected close to 1(Fig 3a).  

Similarly, the disproportionate functional load on certain TFs in cancers can be related to 

an underlying mutational spectrum influencing their binding sites. This can be partially 



explained by the different nucleotide context among TF biding sites (TFBS). For instance, the 

mutational spectrum of motif breaking events observed in SP1 TFBS suggests major contribution 

from C>T and C>A mutation (Fig 3b). In contrast, motif-breaking events at the TFBS of 

HDAC2 and EWSR1 have relatively uniform mutation spectrum profiles. Based on the 

mutational context, we can further decompose all observed mutations into a linear combination 

of mutational signatures, which presumably represent the mutational processes (\cite{}). Every 

signature has varying influence depending on the cancer type and in a given cancer type, 

different signatures disproportionally burden the genome. Comparing the signature composition 

of low-and high-impact putative passengers in certain cancer-cohorts can help us to distinguish 

between mutational processes that generate distinct variant impact classes. For instance, in the 

Kidney-chRCC cohort, although the majority of passenger variants can be explained by signature 

39, high-impact and low-impact passengers have different proportion of signature 5 and 

signature 1(Fig 3c). We further generalized this analysis across multiple cohorts in PCAWG. 

Similar to Kidney-RCC cohort, we observed distinct signature distributions for the low-and high-

impact non-coding putative passengers in Liver-HCC, Prost-AdenoCA, Eso-AdenoCA and 

Ovary-AdenoCA cohorts (Fig 3c). Collectively, these findings suggest that various mutational 

processes shape and disproportionally burden cancer genomes. 

 

Subclonal architecture and cancer progression 

Cancer is an evolutionary process, often characterized by the presence of different sub-clones. 

These can be further categorized as early and late subclones based on the overall subclonal 

architecture of a cancer sample. Thus, we explored the relative population of high-and low-

impact putative passengers in different sub-clones of a tumor sample to decipher their 

progression during tumor evolution. Intuitively, one might hypothesize that high-impact 

mutations achieve greater prevalence in tumor cells if they are advantageous to the tumor, and a 

lower prevalence if deleterious. As expected, we observe this to be true among driver variants. 

However, interestingly, we observe that high-impact putative passengers in coding regions have 

greater prevalence among parental subclones (Fig 4a) – an effect driven by high-impact putative 

passenger SNVs in tumor suppressor and apoptotic genes (Fig 4a). In contrast, high-impact 

putative passenger SNVs in oncogenes appear slightly depleted. Similarly, high-impact putative 

passengers in DNA repair genes and cell cycle genes are depleted in early subclones (Fig 4a). 



We obtained similar results when we simply categorized mutations on the basis of variant allele 

frequency (VAF) (supplement Fig X).  

In non-rearranged genomic intervals, the VAF of a mutation is expected to be 

proportional to the fraction of tumor cells bearing that mutation. Previous studies have measured 

the divergence in VAFs to indirectly quantify heterogeneity in mutational burden among 

different sub-clones in a cancer. Here, we quantified this heterogeneity among low-, medium- 

and high-impact putative passengers for different cancer cohorts. We generally observe lower 

mutational heterogeneity among high-impact putative passenger SNVs. This observation is 

consistent for both coding and non-coding putative passenger variants (Fig 4b). 

Furthermore, we correlated the functional impact (measured through GERP score here) of 

each variant with their corresponding cellular prevalence measure through VAF. We find that, 

within driver genes and their regulators, variants that disrupt more conserved positions (high 

GERP score) tend to have higher VAF values. This trend remains true even after excluding 

SNVs that have been individually called as driver variants. We also find that outside of driver 

genes, variants that disrupt more conserved positions tend to have lower VAF values.  

As with the clonal status of a tumor, clinical outcomes (such as patient survival) provide 

an alternative measure for tumor evolution. Therefore, we performed survival analysis to see if 

somatic molecular impact burden – here measured as the mean GERP of somatic nominal 

passenger variants per patient – predicted patient survival within individual cancer subtypes. 

Patient age at diagnosis and total number of mutations were used as covariates in the survival 

analysis. We obtained significant correlations between somatic molecular impact burden and 

patient survival in two cancer subtypes after multiple test correction. Specifically, we observed 

that somatic mutation burden predicted substantially better patient survival in lymphocytic 

leukemia (Lymph-CLL, p-value 2.3x10-4) and ovary adenocarcinoma (Ovary-AdenoCA, p-value 

2x10-3) (Fig 4d). The use of average impact rather than summed impact ensures that these results 

do not simply reflect more advanced progression (i.e. more mutations) of the cancer at the time 

of sequencing.  

 

Categorizing putative passenger variants 

Our comprehensive characterizations of putative passenger mutations highlight some of their 

key attributes. These can be further explained through the underlying mutational processes or 



might be indicative of weak selective effects among subset of these mutations. For instance, the 

multi-modal functional impact distribution suggests that a subset of mutations among putative 

passengers might confer potentially weak fitness effect to tumors. Similarly, strong correlation 

between differential functional impact burden and patient survival, can be also inferred as 

presence of weak selection in certain cancer cohorts. Furthermore, differential burdening of 

distinct genomic elements in cancer can be associated with the operation of various signatures, 

which in itself is interesting. However, in certain contexts this can be potentially related to 

presence of weak fitness effects. For instance, depletion of putative passenger LoFs in key gene 

categories including DNA repair and cell cycle can be potentially interpreted as presence of 

weak negative selection in different cancers5. 

Additionally, overall enrichment and depletion of high impact putative passengers among 

TSGs and oncogenes can be indicative of weak selective effects as well. Similarly, positive and 

negative correlation between conservation score of putative passengers and their corresponding 

VAF, potentially suggests the presence of weak positive and negative fitness effect among subset 

of these mutations. However, we note that differences in signatures between and early and late 

subclones can also contribute to these observed differences. 

If indeed a subset of putative passengers possess weak fitness effect, then we can extend 

the canonical model of driver and passengers into a continuum model. Conceptually, in such 

extended model, somatic variants can be classified into multiple categories while considering 

their impact on tumor cell fitness: drivers with strong positive selective effects, putative 

passengers with neutral, weak positive and weak negative selective effects. This broad 

classification scheme can be further refined by considering ascertainment-bias and the putative 

molecular impact of different variants (Fig 5a). Previous power analyses15,16 suggest that 

existing cohort sizes support the identification of strong positively-selected driver variants, but 

that many weaker drivers and even some moderately strong driver variants would be missed.  

However, these moderately strong and weak driver variants can also provide a potential 

fitness advantage to tumor cells. With respect to the functional-impact-based classification, any 

positively or negatively selected variants will have some functional impact (i.e. effect on gene 

expression or activity). The relevance of molecular functional impact is firmly established for 

driver mutations, defined as positively-selected variants promoting tumor growth. However, 

rapid accumulation of putative passengers, which undergo weak/strong negative selection, could 



adversely affect the fitness of tumor cells5. Moreover, a majority of low-impact and some high-

functional impact putative passengers may alter tumor gene expression or activity in ways that 

are not ultimately relevant for tumor fitness; hence, these variants will undergo neutral evolution. 

A general approach for identifying the presence of variants with effects on tumor fitness is to 

compare observed mutation distributions with ones generated by simulating neutral processes.  

Such an approach is potentially powerful since it allows the use of complex background 

mutational models, although the possibility of detecting artefacts due to the inadequacy of 

current models of neutral mutational processes remains a possible caveat.  We explore this 

approach below using a variety of recent neutral models in the context of an additive model of 

fitness effects. 

 

Overall effects of putative passengers and additive variance 

It is interesting to note that in a cancer genome, the presence of few drivers (with high positive 

fitness effects) and large numbers of putative passengers (with weak or neutral fitness effects) is 

analogous to prior observations in genome-wide association studies (GWAS) that implicated a 

handful of variants influencing complex traits. These modest numbers of variants explain only a 

small proportion of the genetic variance, thus contributing to the “missing heritability” problem 

in GWAS6,7. However, it has been shown that aggregating the remaining variants with weak 

effects can explain a significant part of the “missing heritability”6 and is predictive of disease 

risk8. A recently proposed “omnigenic model” takes this logic a step further, arguing that the 

majority of complex traits are influenced by thousands of variants with individually small 

effects9. Despite their limitations, these models highlight the importance of investigating the 

cumulative effect of putative passengers on cancer progression. 

To address this, we adapted an additive effects model6,10, originally used in complex trait 

analysis, to quantify the relative size of these aggregated effects in relation to known drivers. 

With a number of caveats regarding interpretation arising due to differences between germline 

and cancer evolutionary processes (see supplemental note X.b), we tested the ability of this 

model to predict cancerous from null samples as a binary phenotypic trait (Fig 6a). Briefly, we 

created a balanced dataset of observed tumor and matched neutral (null) model samples, using a 

recently proposed background model which preserves mutational signatures, local mutation 

rates, and coverage bias [ref Broad simulation]. Subsequently, using a linear model, for each 



SNV the additive effects model implicitly associates a positive or negative effect (coefficient), 

considering them to be sampled from a normal distribution (see Online Methods and 

Supplemental Note). Furthermore, in this model the individual effects of SNVs are not explicitly 

estimated; instead their variance is evaluated as a hyper-parameter using restricted maximum-

likelihood (REML)10, where separate variance terms can be associated with different groups of 

SNVs falling in distinct categories.  In addition to the neutral model above, we utilized two 

further local background models including PCAWG-wide randomized dataset as well as our 

custom randomization correcting for various covariates.  

We compared several versions of the additive variance model above in 8 cancer cohorts 

having sample size greater than 100.  In the first model, we separated the mutations into two 

categories, corresponding to drivers (from the PCAWG analysis) and putative passengers (Fig. 

6bi).  Putative passengers were only included in the model if found in at least two samples from 

a cohort (which can be any combination of observed and simulated samples).  Additionally, to 

maximize the predictive potential of the driver mutations, we used a binary variable which is 1 if 

any driver mutation is present in a sample as a predictor (details in Online Methods).  In this 

model, we observed an increase in the variance explained from ~49.9% using drivers alone to 

~59.4% with putative passengers when averaged across all cohorts, with the putative passenger 

contribution significant at FDR<0.1 in all cohorts except Kidney, suggesting that non-neutral 

effects are present among the putative passenger mutations (Supp Fig. X).  We further tested a 

different version of the model in which we split mutations into coding, promoter and other non-

coding categories, where the coding mutations are a superset of the PCAWG drivers (Fig. 6bii).  

Here, we observed that the coding mutations accounted for the largest overall proportion of the 

variance (~50.7% averaged across cohorts), while promoters and other non-coding also 

contributed significant amounts of extra variance (~1.9% and 6.9% respectively overall, with 

cohort-specific contributions from each category at FDR<0.1, Supp Fig. X).  Although the total 

contribution of the promoters is lowest in this model, we calculated the additive variance per 

SNV by normalizing by the number of SNVs in each category (Fig. 6biii) and found that the 

normalized variance is substantially higher in promoters than other non-coding, although lower 

than coding.  Further, we tested the sensitivity of our results to the choice of null model by 

repeating these analyses for two other randomization schemes, with quantitatively similar results 

(Supp Fig. X). 



Discussion 

To a first approximation, all clinically significant consequences of genomic variants in cancer are 

mediated through their molecular functional impact, such as changes in gene expression or gene 

activity. Certain key alterations in tumor genome, often identified through the detection of strong 

signals of positive selection on individual variants, have been shown to play pivotal role in tumor 

progression.  Although a typical tumor has thousands of genomic variants, very few of these 

(~4/tumor1) are thought to drive tumor growth. The remaining variants, often termed passengers, 

represent the overwhelming majority of the variants in cancer genomes, and their functional 

consequences are poorly understood. In this work, we comprehensively characterized putative 

passengers in the PCAWG dataset. As described earlier, we came across multiple line of 

evidences, which suggested presence of putative passengers with weak fitness effects.  

Subsequently, we attempted to quantify the cumulative fitness effect of such putative passengers 

on tumor growth through our additive variance model. We note that the above approach relies on 

applying an accurate background model.  However, current null models have inaccuracies due to 

our incomplete understanding of various mutational processes in cancer. Nonetheless, our 

additive variance analysis was robust for multiple background models and suggested a potential 

role of weak positive and negative selection among putative passengers. Also, our functional 

analyses of putative passengers showed that different mutational processes are associated with 

extensive differences in impact on cellular subsystems, irrespective of whether these are caused 

by, cause, or have negligible impact on subclonal fitness differences in an evolving tumor. These 

observations further motivate follow-up experiments and additional whole-genome analyses to 

explore the role of putative passengers with weak (positive and negative) fitness effects in 

cancer. In conclusion, our work highlights that an important subset of somatic variants originally 

identified as putative passengers nonetheless show biologically and clinically relevant functional 

roles across a range of cancers. 
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Figure 1: Additive effect and overall functional impact of PCAWG variants: Additive effects model for nominal passengers: 
The combined effects of many nominal passengers are modeled using a linear model, which predicts whether a genotype arises 
from an observed cancer sample or from a null (neutral) model (notation defined in text). The model is fitted by optimizing the 
hyper-parameter 𝜎"#, and a test for significant combined effects of the nominal passengers is made by performing a log-
likelihood ratio test against a restricted model which includes only µ and e. b) Predictive power of known drivers and nominal 
passengers using the additive effects model: Figure compares the maximum possible variance which can be explained using 
known drivers with the performance of the model from using either non-coding passengers or all nominal passengers. c) 
Functional impact distribution in noncoding region: three peaks correspond to low-, medium- and high-impact variants. d) 
Correlation between number of impactful and total SNV frequencies for different cohorts. e) log ratio of high-impact structural 
variants(SVs) and SNVs in different cancer cohorts.  



 
 

 
 
 
Figure 2: Overall functional burdening of different genomic elements: a) Percentage of genes in different gene categories 
(apoptosis, cell cycle, cancer pathway, dna repair, metabolic and essential genes) affected by non-driver LoFs in observed and 
random model, b) Pan-cancer overview of TFs burdening: Heat map presenting differential burdening of various TFs due to 
SNVs inducing motif breaking and motif gain events in different cohorts compared to the genomic background. c)target genes 
affected due to motif gain and loss in ETS transcription factor family: genes such as TERT, RP17-731F5.2 and JSRP1 are 
affected due to gain of motif event, whereas ASXL2 and RPS27 are affected due to loss of motif event. d) q-q plot showing 
genes such as TERT, PIM1 and BCL2, which are differentially expressed due to gain of motif event in ETS TFs. e) enrichment 
of germline and somatic large deletions in coding region and transcription factor binding peaks. Large deletions can engulf or 
partially delete various genomic elements. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
Figure 3. Mutational signatures associated with different categories of impactful variants: a) Differences in mutation 
spectrum leading to stop-coding triplets as a fraction of the total number of mutations per sample between three cancer cohorts: 
Colorectal Adenocarcinoma, Esophageal Adenocarcinoma and Skin Melanoma. In addition, we also present the ratio between 
observed/expected LoFs mutations per sample for these cohorts. b) Mutation spectra associated with motif breaking events 
observed in HDAC2, EWSR1 and SP1 in the kidney-RCC cohort. c) Differences in underlying signatures between high-and low-
impact nominal passengers in different cancer cohorts. d) Distribution of canonical signatures in the kidney-RCC cohort for 
impactful (bottom) and low-impact SNVs (top).  
 
 
 



 
 
Figure 4: Correlating functional burdening with subclonal information and patient survival: a) Subclonal ratio (early/late) 
for different categories of SNVs (coding/non-coding) based on their impact score. Subclonal ratio for high-impact SNVs 
occupying distinct gene sets. b) Mutant tumor allele heterogeneity difference comparison between high-, medium- and low-
impact SNVs for coding(left) and non-coding regions(right). c) correlation between mean VAF and GERP score of different 
categories of variants (driver SNVs, non-driver SNVs in known cancer genes & passenger variants in non-driver genes) on a pan-
cancer level. d) Survival curves in CLL (left panel) and RCC (right panel) with 95% confidence intervals, stratified by mean 
GERP score. 



 
 
 

 
 
 
Figure 5. Conceptual classification of somatic variants into different categories based on their functional impact and 
selection characteristics: a) Both coding and non-coding variants can be classified as drivers and passengers based on their 
impact and signal of positive selection. Among nominated passengers, true passengers undergo neutral selection and tend to have 
low functional impact. Deleterious passengers (weak & strong) and mini-drivers (weak & strong) represent various categories of 
higher impact nominal passenger variants, which may undergo weak negative or positive sections. b) Conservative estimate 
(lower bound) of the number of removed deleterious passengers and weak drivers per sample in pan-cancer and individual cancer 
cohorts. Note that we only estimated these frequency for selected cohorts with sample size > 100. 
 


