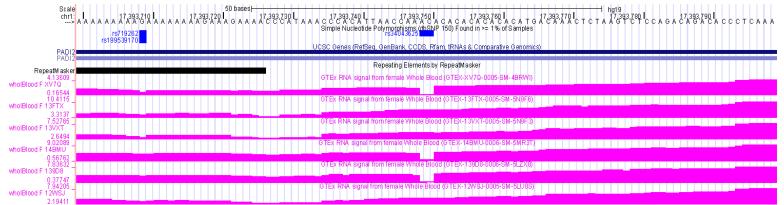
RESPONSE TO REVIEWERS COMMENTS FOR "ANALYSIS OF SENSITIVE INFORMATION LEAKAGE IN FUNCTIONAL GENOMICS SIGNAL PROFILES THROUGH GENOMIC DELETIONS"

RESPONSE LETTER

-- Ref1: Introductory comments ----


Reviewer	Built on previous work from the aspect of SNPs (published
Comment	in 2016), here the authors expand onto structural variants
	(SVs), and onto functional genomics data such as RNS-seq
	and ChIP-seq.
	The authors' analyses provided evidence that private
	indels and other SVs can be recovered from the raw reads
	from RNA-seq and ChIP-seq (histone modification)
	experiments. The deletions discovered from these raw data
	sets can be cross-linked by malicious attackers to
	potentially reveal the identity of the individual being
	sequenced. The authors proposed approaches such as
	smoothing the reads profile to remove the dips in the signal profile, which can alleviate the potential risk of
	information leakage.
Author	
Author	We sincerely thank the reviewer for the constructive comments,
Response	which we believe made our paper stronger. We respond to
	reviewer's comments below.
Excerpt From	
Revised Manuscript	

-- Ref1: I am doubtful that RNA-seq data is equally useful since the expression level of a gene can be influenced by a single nucleotide SNV (e.g. eQTL), or mutations (SNPs) in splice junction sites ----

~ NOT RAW RAW

Reviewer	I like the concept introduced by the author
Comment	"predictability of the SV genotype based on the observed
	signal profile". Figure 1C showed one nice example in
	which the absence of histone ChIP-Seq data is used to
	infer a genomic deletion event. I can imagine that histone
	modification data measured by ChIP-seq is useful in this
	regard, however I am doubtful that RNA-seq data is equally
	useful since the expression level of a gene can be
	influenced by a single nucleotide SNV (e.g. eQTL), or

		mutations (SNPs) in splice junction sites. I would like
		the authors to comment on these other confounding factors.
	Author	We thank the reviewer for the insightful comment. We understand
	Response	that the reviewer is concerned that deletions may not affect the
		gene expression as much as eQTLs and splice site mutations.
		Although we understand the reviewer's concern, we believe that
		the setup of the attack needs to be clarified: In attack scenario
		regarding RNA-seq data, we assume the attacker uses the signal
		levels to find small deletions in the signal profile. This is illustrated
		in a hypothetical example shown on the left panel of Fig 1d. The
	41	leakage is caused by the fact that these dips reveal small deletions
	$C_{1}U_{1}$	
		(i.e., shorter than 10 bps) to the attacker. When the attacker
(identifies these dips, she (assuming the attacker is female) can use
		those to link the RNA-seq signal profile to the genotype data. One
		could argue that there may not be enough small deletions in the
KTX		transcriptome, i.e., the regions of the genome where RNA-seq
\ 		signal is present. This is why we performed the linking attack and
		showed that the small deletions that leak from RNA-seq signal
		profites can be used to link individuals correctly.
		We agree that if the attacker used the gene expression levels, she
		could identify eQTLs and sQTLs but these are out of the scope of
		the current attack. In fact, our 2016 (Harmanci, Gerstein, Nature
		Methods, 2016) study focuses on exactly this scenario of linking
		eQTL genotypes to gene expression levels. The aim of our current
		study is to demonstrate the leakage from the genome-wide signal
		profiles and close this leakage as much as possible so that the
		linking cannot be done reliably.
		initiang barniot bo dono rollably.
		We have clarified the main text about RNA-seq signal profiles and
		updated the Discussion Section and added a paragraph explaining
		that there can be other sources leakage from RNA-seq signal
		profiles. We also added a figure to demonstrate how the small
		deletions affect RNA-seq signal profiles. This figure shows the
		screenshot of a UCSC genome browser signal track of GTex whole
		blood RNA-seq signal profiles. The 2 base pair deletion
		(rs34043625) in 3 GTex individuals can be seen even by eye
		easily. It is also worth noting that these tracks are publicly available
		for viewing and download. We have included the figure below for
		reference.
	Excerpt From	
	Revised Manuscript	

The screenshot of UCSC Genome Browser's GTex Signal Profile Hub at the location chr1:17,393,700-17,393,799

-- Ref1: I don't agree with the statement that "it is well known that the major portion of the genomic variation is caused by SVs". ---

Reviewer	I don't agree with the statement that "it is well known
Comment	that the major portion of the genomic variation is caused
	by SVs". Are the authors referring to the total number of
	nucleotides in the SV regions, or the impact of SVs versus
	SNPs to gene expression? Earlier work by Barbara Stranger
	and colleagues had shown that SNP cause more than 80% if
	the gene expression phenotype (Stranger Science 2007). It
	is probably true that an individual SV could have greater
	phenotypic effect than a SNV but SVs are obviously much less common.
A	
Author	We agree with the reviewer's concern. We believe we need to
Response	clarify the statement to express exactly that we are referring to the
	total number of bases that are affected by variants and not to the
	total effect size on gene expression. We also agree that this
	statement must be clarified according to the insightful comments
	of the reviewer. We have added the reference and updated the text
	to reflect the reviewer's remarks.
Excerpt From	
Revised Manuscript	
ite insee infundseript	

-- Ref1: I think the part on Hi-C doesn't really add much to the work. ---

Reviewer	I think the part on Hi-C doesn't really add much to the
Comment	work, the results are less convincing than the those of
	RNA-Seq and ChIP-seq and there are more confounding
	factors. I suggest to have it removed from the manuscript.

Author Response	The reviewer recommends removing the Hi-C analysis because it is not as convincing. Although we agree that Hi-C analysis does not conform to the rest of the RNA-seq and ChIP-Seq analysis, we still think it is valuable to demonstrate the possibility of an attack using this data. Therefore, we moved the Hi-C analysis to the Supplementary Text and we included references to this analysis in the main text.
Excerpt From	
Revised Manuscript	

-- Ref1: The RNA-seq and chromatin modification data described in this work were derived from 1000 Genome and similar consortia projects. ---

Reviewer Comment	The RNA-seq and chromatin modification data described in this work were derived from 1000 Genome and similar consortia projects, where were mostly transformed lymphoblastoid cell lines instead of primary cell or tissue cell lines. While the observations were interesting and convincing, in practice RNA-seq data is probably more common than ChIP-seq data, especially in a clinical setting.
Author	We thank the reviewer for making a strong point that supports the
Response	urgency of protecting RNA-seq data. We agree with the reviewer's
	comment. As we have explained in the Section on Anonymization
WEO NUT	of Signal Profiles, this is the reason why we are focusing on anonymization of RNA-seq signal profiles, i.e., RNA-seq is much more common data type especially in the clinical setting and it is realistically more urgent to anonymize RNA-seq signal data. We, however, still believe that the leakage analysis from ChIP-Seq data is important as ChIP-Seq is becoming more common in large scale functional genomics projects.
	We updated the Section on Anonymization of Signal Profiles to emphasize the clinical relevance of RNA-seq.
Excerpt From	
Revised Manuscript	

-- Ref2: The major concern is that they presume they can anonymize and thus fully understand the system behind the signal data. ---

Reviewer	The major concern is that they presume they can anonymize
Comment	and thus fully understand the system behind the signal
	data. They write they "present an effective anonymization
	procedure for protection of signal profiles against
	genotype prediction based attacks". The reviewer views

r	
	this as incorrect overstatement given their manuscript, as functional data have impacts across many genes and networks - many unseen or still to be discovered. In the end, they present one rather ad-hoc method for a linkage attack built on dips & also present how one can protect against that ad-hoc approach. Still, there are many, many more that could also be described and suggesting that they have developed an anonymization approach that is generalization is premature.
	For example, a basis of much of biology is that DNA level events impact not just the gene that is deleted but entire complex pathways, leaving complex signatures. The reviewer can think of dozens of ways a deletion of a gene that negatively regulates a pathway would lead to downstream upregulation of other genes (not a dip). Beyond this, one can see ways deep neural networks can be trained, and deduce using hidden network via emerging Artificial Intelligence algorithms. The problem with suggesting that one can anonymize the data presumes that new knowledge won't be gained allowing one to infer laying on complex pathway information within a linkage attack.
Author	The reviewer is making a valid point regarding our anonymization
Response	procedure. Our statement that the proposed anonymization
	method is effective for full protection of signal profiles may be
	viewed as an overstatement. As the reviewer rightfully points out, the current study does not consider the leakage from the much
	more complicated mechanisms comprising of complex genetic pathways. We need to clarify this statement as following: "We have developed an anonymization procedure, which is effective at closing a major source of genetic information leakage that is caused by the dips in the signal." As this new statement reflects, we do not claim to close all the leakage but we demonstrate to a major source.
	major source.
	We, however, believe that it would be fair when we state that the leakage from the signal dips that is presented in our study is a major source of the leakage that must urgently be closed. The leakage from the higher order effects of a variants on pathways can be studied separately.
	We have updated the Signal Profile Anonymization and Discussion Sections to stress and clarify the above points.
Excerpt From Revised Manuscript	