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Funseq and Funseq2: Priorizing the vari-
ants and evaluate the deleterious e↵ect is
challenging; Cannot be experimentally evalu-
ated.
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expression modulation

Deleterious SNVs tend to a↵ect the expres-
sion of its target gene by changing the TF
binding a�nity
Luciferase Assay (or alike assays) is the
experimental way to evaluate expression
modulations
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Reported Assay
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Click!
Luciferase Assay, GFP assay and its hightthoughput version: MPRA (multiplex
parallel reporter assay)



Lenti MPRA
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LentiMPRA compares di↵erences with/without genomic context
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Inoue et al Genome Res



Nature Biotech: MPRA to test enhancer regions
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MPRA in Nature Biotech paper. The regions tested in the paper based on
ChromHMM segmentations

Manolis Nature Biotech 2016 The core regions of active element is about 150bp



New viewpoint about MPRA/Luciferase Assay
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Weak cell-specific e↵ect and Weak chromatin stat e↵ect;



What we want to model

Active Element Reporter Gene

Plasmid Vector in luciferase assay

Allele1 ATGCAGCTT

Active Element Reporter Gene

Allele2 ATGCGGCTT
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What we want to model

Active Element Reporter Gene

Plasmid Vector in luciferase assay

ATGCAGCTT

ATGCGGCTT
vs logSkew=log(

Expr

allele1
Expr

allele2
)

Constrains: active element and ref allele has expr regulatory e↵ect: more reads count

for vector with ref allele active element than (Cell paper: either of alllele has expr regu-

latory e↵ect)

Target variable Y =Significant regulatory change(expression) for
Ref/Alt allele (logSkew).
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Dataset
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Dataset ever tried:

I Ryan cell paper expression-modulating variants(emVar) VS all non-emVar

All dataset depend on Ryan Cell paper, currently only SNVs(27005) are
considered. It also require the reference sequence has potential expression
modulation activity, which required more reads count for either ref/alt allele
than that from a control vector;

The all SNVs contains unknown state (NA) variants and after filtering, only
4.5k SNVs left with significance estimation.

The SNV without overlapping with any tested histone and tf peaks were
removed and 3k+ variants left



Part 1: Dataset exploration
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Evolution features: GERP, Phastcons and Phylop. Inter dataset di↵erence is
larger than intra pos and negative dataset.



Part 1: Dataset exploration

9

More motif binding event enriched in emVar.



Part 1: Dataset exploration

9

The motif break score in emVar group is larger than non-emVar group



Part 2: predict LogSkew using regression methods

Y

logSkew(Ref/Alt)

⇠ GERP + TF+Hist + DHS + CAGE + Motif

Tissue specific binary feature
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Regression problem

Null/empty vector Reporter Gene

(target variable: LogFC

ref or alt
null

, orLogFC ref

alt

)

Active Element Reporter Gene

Allele1 ATGCGGCTT
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Predictors:DeepBind Profile (DP)
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DeepBind profile score(DP) from Deepbind, which learns binding preferences
from SELEX, ChIP�Seq.
515 features in total was used to learn.



Linear regression, Y : LogFC ref or alt
null

⇠ DPref or alt

13

Train using ref allele information, then test on alt allele
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Lasso regression Y : LogFC ref
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Feature selection
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TP63.SELEX.DBD
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12878
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RARG.SELEX.DBD
M
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ZNF410.SELEX.DBD
SRF.SELEX.FL

ZNF740.SELEX.FL
RPC155.ChIP−seq.HeLa

PAX7.SELEX.FL
ELK1.ChIP−seq.GM
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FOSL2.ChIP−seq.HepG2

PITX1.SELEX.DBD

Lasso_cv
Stability0.0003
Stability0.0005
Stability0.0007
Stability0.0010
Stability0.0012

Corr
Linear Reg
RandomForest
rFElimination
Ridge_1.0
NormMutualInfo

Top 20 factors in all the feature selection frameworks, sorted by the average
value.
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I ChIP-Seq TF binding features are cell-specific. that will limite the application in other
cell lines.
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Lasso_cv
Stability0.0003
Stability0.0005
Stability0.0007
Stability0.0010
Stability0.0012

Corr
Linear Reg
RandomForest
rFElimination
Ridge_1.0
NormMutualInfo

Top 20 factors in all the feature selection frameworks, sorted by the average value.

I In vitro binding potential (SELEX) features don’t include cell line information

MSE Lasso 1se SVR RandomForest
ChIPseq + SELEX 0.106 0.105 0.102
SELEX 0.111 0.108 0.107
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However, we need outlier sensitive regressor:
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the target variable: log2 based fold change between mut and ref allele. In the cell paper, The
lowest —log2skew— in emVar is 0.11. (or |skew | = 1.08 will be significant



Adaboost
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Adaboost are more outlier sensitive, ensemble a series of week regressors.
The overfitting problem of tree-based algorithm caused: too many features and
depth of tree, we tried forward selection using SVR: ELK1 ,CREB3, IRF5,
NKX6-1, SRF, H3k27me3, FEV, NHLH1, TEAD1

●
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Comparison with other tools
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No direct way to compare, train a 10-fold cross-validation SVR and
RandomForest model using output from di↵erent tools

False positive rate
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eQTL−like(0.52)
GWAS−like(0.49)
HGMD−like(0.58)

smaller is better



Part 3 Classification
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State-of-the-art using the same dataset (CAGI 4)
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State-of-the-art using the same dataset (CAGI 4)
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AUROC = 0.668, AUPRC=0.479



Features

Y

Significant

logSkew(Alt/Ref)

⇠ GERP + TF+Hist + DHS + CAGE + Motif

Tissue specific binary feature
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FDR distribution
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LASSO and Logistic Regression directly using features
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Definition of Positive and Negative dataset (PN learning)
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FDR distribution of Log skewness for Ref/Alt
Positive dataset: FDR <= 0.05; and Negative dataset: FDR > 0.1
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Transductive SVM
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AUC: 0.6158824
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Ref

logFC

ref

Mut

logFC

mut

Control Test

n3

n1

n4

n2

In a 2x2 categorical analysis:
logSkew = log(odds) ⇡ Norm(log(odds), var(log(odds)))

log(odds) = logFC

mut

� logFC

ref

= log( n2
n1/

n4
n3 )

var(log(odd)) =
q

1
n1 + 1

n2 + 1
n3 + 1

n4

log FC is directly calculated from experiment count; log Skew rely on
logFC

27



Both the log Skew and Var(log Odds) associate with the positive and
negative dataset

28

The original paper use DESeq2 to correct experiment count and get Log FC
and then use Wald test to define emVar and non-emVar. The definition of
positive and negative set is dispersion-awared
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Target:
significant odds

The diagram of our model
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log Odds
Var(log Odds)=cell
specific bias + plat-
form bias

Step1 Step2

Target:
significant odds

The diagram of our model
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TF binding TF expression

log Odds
Var(log Odds)=cell
specific bias + plat-
form bias

Step1 Step2
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significant odds

The diagram of our model
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Step 1: The log FC classification

Directly from logFC, not log Odds (log Skew)
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Define positive and negative using Log2FC for wild type and mutant ele-
ment. Then train model to do classification.
The motif binding profile can easily identify the elements with high
expression regulation e↵ect with very high AUC and AUPR (10 fold
cv).
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logSkew correlate with predicted log Odds

31

The predicted log Odds is defined as: log2odds = log2( p
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Step2: Cell specific Bias (CSB)

We define a binding e↵ectaware cell specific bias feature (CSB):

Var(log Odds)
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Step2: Cell specific Bias (CSB)

We define a binding e↵ectaware cell specific bias feature (CSB):

Var(log Odds)
Cell specific

e↵ect

Platform specific

e↵ect
⇡ +

1 2 3 4 5 6 7
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Learning Cell specific bias using TF binding and expression features

33

Both regression and classification were tried, but we use classification by
taking out the two extreme quantile of response to define positive and negative
dataset.
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Last Step: Lasso using predicted log Odds and CSB
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Part 4: Experiment validation
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The prediction of Log FC has high accuracy but log2 Odds is not well predicted.
Morevoer, the luciferase assay results have very high noise and dispersion.



Conclusion

36

I Transcription factor binding is the most important feature in both
regression and classification models

I The experimental precedure of reporter gene assay indicates the genomic
context including chromatin status might not play indispensible role in the
regulatory results, but cell specific TF binding and expression still have
contributions.

I Just use TF binding can preciesely predict LogFC.

I The target variable for classification (significant change between mut ref,
need statistics analysis and cuto↵) is not directly reflected from the
experiment but some statitical analysis that may further introduce bias.

I Another dataset issue is the training set is not representable for the
popluation set.



If still have time, then go to ENGINE
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Biological of enhancer gene linkage 38



Biological of enhancer gene linkage

Classic problem: enhancer-promoter interaction. Biological
compatiblity(sequence feature and motif); spatial compatibility (3d
interaction); local environment (epigenomic marks)

38



Enhancer identification 39

STARR-Seq: enhancers can function independently of their relative
positions.

Enhancer can be very close to a gene(target)/in a gene, and also can be far
from a target gene(distal enhancer), how to know their target?



3D genome techniques

Enhancers, esp. distal enhancers, may need 3d chromosome structure to
activate its target gene.
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State of the art

IM-PET: Consider information from 3D gnome interactions, DIST(distance)
constrain is a triky feature, boosting AUC from 0.7+ to 0.9+.
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State of the art

LDA:a mixed membership method, didn’t use information from 3d genome
interaction, and reply on predifined enhancer region.
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State of the art

Sequence-based PromoterEnhancer Interaction with Deep learning(SPEID)

Sequence information alone can do prediction very well
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State of the art

PETModule: a motif module based approach for enhancer target gene
prediction

Distance is the most important.
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State of the art

Enhancer promoter interactions are encoded by complex genomic signatures on
looping chromatin

Loop regions is the most important, partially equvalent to distance.

41



State of the art

Data source in summary:

name Source code Enh-pair train prediction year

IM-PET yes No, but desc yes 2014

PETModule yes No Yes(in 4d genome) 2016

PreSTIGE No No yes 2014

TargetFinder Yes Yes Yes 2016

SPEID yes Raw, same as TF weight 2016

JEME Yes K562 Yes 2017

LDA?? Yes No Yes ??

41



Dynamics

42

Expression and function of genes correlate with dynamic loop type and distal
chromatin state



Motivations and structures

43

1. Data source cross validation and comparison for positive and negative
dataset.
Papers use HiC, or ChIA-PET, or Fantome, or kind of combined to define
positive dataset, which will a↵ect the negative set definition. How to utilize
and combine these dataset to get a reliable (related to positive dataset) and
complete(close to complete, related to negative dataset)



Motivations and structures

43

2. Connection between 3D interaction and enhancer target regulation.
Some interactions related to enhancer target regulation, the others not, what is
the connection between 3d interaction and distal enhancer target regulation?
We will focus on the comparison and explore the di↵erences between structural
and regulation interaction, and stable and dynamics.



Motivations and structures

43

3. MultiClass learning and comparison with the-State-of-the-art.
The traditional way is to define negative dataset from all position
non-interacting pairs and it is limited: 1) the interaction is not randomly
happened but dynamics, from the practical, it is not just tell the positive
dataset from negative dataset from the genomic context; 2) machine learning
can only learn the largest deviation between positive and negative dataset,
which is bias if we will not known the machanism, and how many parts or
elements get involved. So here need a multiple class learning, not only include
a positive and negative dataset



Motivations and structures

43

4. Reinforcement learning to study the possible enhancer target dynamics.
Even we have a multiclass learning, there is have a question left, how this
happened and how the dynamics happened? Loop extrusion? We setup a deep
reinformce learning algorithms to study the potential mechanism underling



Motivations and structures

43

5. Downstream analysis.
Given the above, we want to further investigate more in the downstream
analysis including network analysis, cellcycle or di↵erential, supper enhancer ,
variants or other related analysis



Part 1

44

Papers use HiC, or ChIA-PET, or Fantome (correlation), or kind of combined
to define positive dataset, which will a↵ect the negative set definition. How to
utilize and combine these dataset to get a reliable (related to positive dataset)
and complete(close to complete, related to negative dataset?



Summary of Hic, ChIA-PET and Fantom
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Overlap of Enhancer promoter pair using di↵erent datasets

The number of Gm12878
active enhancer and promoter pairs overlapped with Hic, Fantom and ChIA
PET.
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The high quality of EP pair tend to enriched in the intersection of Hic and
ChIAPET dataset
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The genes tend to have relative higher correlation in fantom specific EP pair if
they shared a same enhancer with the genes in the intersection set of EP pairs
with Hic
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This indicate the potential problem of fantom dataset is the coexpression of
genes will a↵ect enhancer promoter target definition
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How the loop number close to a enhancer promoter pair a↵ect the expression
level of target genes?
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All cnt<10 >200
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Gene expression activation negatively correlate with EP loop count.



Task2

50

2. Connection between 3D interaction and enhancer target regulation.
Some interactions related to enhancer target regulation, the others not, what is
the connection between 3d interaction and distal enhancer target regulation?
We will focus on the comparison and explore the di↵erences between structural
and regulation interaction, and stable and dynamics. (SKL, paritially)

Questions: Why loops have small fraction of EP pair (EP loop), mostly
are non EP loop?

I Because arbitrary cuto↵, such as anchor size(Hi-C resolution), or Loop
qvalue cuto↵?

I Di↵erent pattern of EP loops or nonEP loops? functional di↵erence?
(Functional vs structural)

I Dynamics and stable for EP loops and nonEP loops?

I From Hierachical structure, relationship of EP and nonEPloops.

keywords: Anchor, EP loop, nonEP loop, HOT region, Distance to Anchor



Summarieqs

13677747 fitHic loops,
4618971 HOT overlap

220091 (1.6%) with EP pair

211213 with HOT overlap

14635 EP loop and 183516 No EP loop with one hot region for each anchor

13457666 (98.4%) not with
EP pair

4407758 (32% of) HOT
overlap loops

96% 32%
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Loop distance vs EP to loop anchor distance

52

Compare all the HOT overlap loops, loopsize(inner size) and qvalue (related to
contact frequency):
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For HOT overlapped loops, EP loops tend to have larger loopsize and
lower qvalue(more dynamic)



Loop size versus EP pair

53

For all the loops with qvalue less than 0.1, extend both sides with 250k, find
the closest EP pair, and the distance to anchor is the average of E or P center
to anchor center.
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As loop size increases, the number of EP loops in decraseses. At the very
begining, the nonEP loop decrasing then increasing.



Cuto↵ bias: closest distance distribution of EP pair

5Kb with EP No EP in 5Kb ext 250K
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Cuto↵ bias: closest distance distribution of EP pair

5Kb with EP No EP in 5Kb ext 250K
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Cuto↵ bias: closest distance distribution of EP pair

5Kb with EP No EP in 5Kb ext 250K
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Cuto↵ bias: closest distance distribution of EP pair

5Kb with EP No EP in 5Kb ext 250K
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TF peak overlap
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Take loop with one HOT for both side:
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