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s Funseq and Funseq2: Priorizing the vari-
. ants and evaluate the deleterious effect is
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Conserv

binding affinity
Luciferase Assay (or alike assays) is the
experimental way to evaluate expression

Network modulations

Mutation
Target
deleterious
effect
Cell specifity

Deleterious SNVs tend to affect the expres-
sion of its target gene by changing the TF



Reported Assay

its higfkthoughput version: MPRA (multiplex



Lenti MPRA
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LentiMPRA compares differences with /without genomic context
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Nature Biotech: MPRA to test enhancer regions

MPRA in Nature Biotech paper. The regions tested in the paper based on
ChromHMM segmentations

Region #2580 (chr16:69,564,569-69,564,863) Region #11085 (chr12:103,218,269-103,218,563)
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Manolis Nature Biotech 2016 The core regions of active element is about 150bp



New viewpoint about MPRA /Luciferase Assay
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What we want to model

Plasmid Vector in luciferase assay

Allele2 ATGCGGCTT



What we want to model

Plasmid Vector in luciferase assay

vs ATGCAGCTT
ATGCGGCTT

EXprajjele1 )
Exprajjeje2

logSkew=/log (

Constrains: active element and ref allele has expr regulatory effect: more reads count
for vector with ref allele active element than (Cell paper: either of alllele has expr regu-

latory effect)

Target variable Y =Significant regulatory change(expression) for
Ref/Alt allele (logSkew).



Dataset

Dataset ever tried:

» Ryan cell paper expression-modulating variants(emVar) VS all non-emVar

All dataset depend on Ryan Cell paper, currently only SNVs(27005) are
considered. It also require the reference sequence has potential expression
modulation activity, which required more reads count for either ref/alt allele
than that from a control vector;

The all SNVs contains unknown state (NA) variants and after filtering, only
4.5k SNVs left with significance estimation.

The SNV without overlapping with any tested histone and tf peaks were
removed and 3k+ variants left



Part 1: Dataset exploration

Evolutionary Scores across Datasets
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Evolution features: GERP, Phastcons and Phylop. Inter dataset difference is
larger than intra pos and negative dataset.



Part 1. Dataset exploration

emVar
nonEmVar
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More motif binding event enriched in emVar.
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Part 1. Dataset exploration

The motif break score in emVar group is larger than non-emVar group



Part 2: predict LogSkew using regression methods
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logSkew(Ref/Al . g .
gSten(Rel/A) Tissue specific binary feature
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Regression problem

(target variable: LogFCreforalt o oaFC et

null

alt

Allelel ATGCGGCTT
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Predictors:DeepBind Profile (DP)

DeepBind profile score(DP) from Deepbind, which learns binding preferences

from SELEX, ChIP—Seq.
515 features in total was used to learn.

1. High-throughput
experiments
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ChIP/CLIP

2. Massively parallel deep learning

Automatic model training New Prediction
T ’r'm?:; network
m;‘.c-wlf
..
DeepBind
models

Large-scale
data sets GPU server
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Linear regression, Y : LogFC™teralt . DP ¢ o 1y

Train using ref allele information, then test on alt allele
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Pearson.cor=0.62(train), 0.51(test)
Spearman.Cor=0.55, 0.42
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Lasso regression Y : LogFC;i,{ ~ DP,of — DPy,;
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Feature selection

©

mEDO0O0o0

Lasso_cv
Stabilty0.0003
Stabilty0.0005
Stability0.0007
Stability0.0010
Stabilty0.0012

mEEEOOO0

Corr

Linear Reg
RandomForest
rFElimination
Ridge_1.0
NormMutualinfo

Top 20 factors in all the feature selection frameworks, sorted by the average

value.
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» ChlIP-Seq TF binding features are cell-specific. that will limite the application in other
cell lines.

0_cv
Stability0.0003
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Corr
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Ridge_1.0
NormMutualinfo
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Top 20 factors in all the feature selection frameworks, sorted by the average value.

» In vitro binding potential (SELEX) features don’t include cell line information

MSE Lasso 1se  SVR RandomForest
ChlPseq + SELEX  0.106 0.105 0.102
SELEX 0.111 0.108  0.107



However, we need outlier sensitive regressor:

1.5
|

density

05
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the target variable: log2 based fold change between mut and ref allele. In the cell paper, The
lowest —log2skew— in emVar is 0.11. (or |skew| = 1.08 will be significant
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Adaboost

Adaboost are more outlier sensitive, ensemble a series of week regressors.

The overfitting problem of tree-based algorithm caused: too many features and
depth of tree, we tried forward selection using SVR: ELK1 ,CREB3, IRF5,
NKX6-1, SRF, H3k27me3, FEV, NHLH1, TEAD1
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Comparison with other tools

No direct way to compare, train a 10-fold cross-validation SVR and
RandomForest model using output from different tools
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Part 3 Classification
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State-of-the-art using the same dataset (CAGI 4)
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State-of-the-art using the same dataset (CAGI 4)

(Lalljfgtulﬁlprﬁsnstion) LogSkew Spearman corr. ‘ emVar auPRC | emVar auROC
4 (EnsembleExpr) 0.449760 0.452561 0.655261
5-1 0.333893 0.409730 0.626850
Published state-of-the-art Not Applicable 0.389 0.589

52 0.342004 0.369083 0.577220

7 0.007343 0.431639 0.562854

6-1 0.217845 0.345064 0.561953

6-2 0.190123 0.354726 0.561776

1-3 NaN* 0.311243 0.556499

1-1 NaN* 0.305258 0.550820

1-2 0.030243 0.295886 0.550048

2-3 -0.015476 0.303051 0.545206

1-5 0.056143 0.284863 0.541216

1-4 0.079049 0.293321 0.530856
0.030049 0.284356 0.511181

1-6 0.105376 0.286584 0.510103

2-2 -0.007377 0.249473 0.479746

2-1 -0.024347 0.234723 0.477301

2-5 -0.023092 0.233144 0.472651

2-6 -0.023092 0.233144 0.472651

2-4 -0.023092 0.233144 0.472651

*: every variant was assigned the same score, leading to incalculable Spearman correlations
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A novel k-mer set memory (KSM) motif representation improves
regulatory variant prediction

Yuchun Guo', Kevin Tian', Haoyang Zeng', Xiaoyun Guo', David K. Gifford ™

"Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

* Corresponding author, gifford@mit.edu

Additional Footnotes:

Present address for Kevin Tian: Department of Computer Science, Stanford University, Stanford,
CA 94305

A 4 B —— KSM_DeepBind 0.483
——KSM 0.479 —KSM 0.479
08 ———Homer PWM  0.434 DeepBind 0.432
: —— MEME PWM —— DeepSEA 0.396
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AUROC = 0.668, AUPRC=0.479
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Features

[v]~ [eEReT] + [wriHist] - [ToRST] + [TCAGET] + [ moui |

Significant

logSkew(Alt/Ref) Tissue specific binary feature
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LASSO and Logistic Regression directly using features
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The AUC for classification is 0.5-0.6
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Definition of Positive and Negative dataset (PN learning)

FDR distribution of Log skewness for Ref/Alt
Positive dataset: FDR <= 0.05; and Negative dataset: FDR > 0.1

2.0
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Transductive SVM

INPUT: P,U,K = size of bootstrap samples, T = number of
bootstraps
OUTPUT: a score s : U — R
Initialize Vx € U, n(x) — 0, f(x) — 0
fort=1toTdo
Draw a bootstrap sample ¥; of size K in .
Train a classifier f; to discriminate P against Y.
For any x € U \ U;, update:

f®) = F(x) +fi(x),
n(x) < n(x) + 1.

end for
Return s(x) = f(x)/n(x) for x e U

AUC: 0.6158824
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Alllel  ATGCAGCTT

Allele2  ATGCGGCTT
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Control Test

logFCref -- { Null }—ﬂﬂ Reporter Gene | - - - - { Active Element }_ﬁp Reporter Gene |- - -

Alllel  ATGCAGCTT

Mut

logFCmyut

- "{w-s-m}—nh e

Allele2  ATGCGGCTT

- '*| Null

In a 2x2 categorical analysis:
logSkew = log(odds) ~ Norm(log(odds), var(log(odds)))

log (odds) = logFCrut — logFCrer = log(22 /)

var(log(odd)) = m

log FC is directly calculated from experiment count; log Skew rely on
logFC
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Both the log Skew and Var(log Odds) associate with the positive and
negative dataset

The original paper use DESeq?2 to correct experiment count and get Log FC
and then use Wald test to define emVar and non-emVar. The definition of
positive and negative set is dispersion-awared
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The diagram of our model
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Stepl Step2




TF binding TF expression

ar(log Odds)=cell
og Odds pecific bias + plat-

orm bias
Stepl Step2

~_

Target:
ignificant odds

The diagram of our model



Step 1: The log FC classification

Directly from logFC, not log Odds (log Skew)
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Define positive and negative using Log2FC for wild type and mutant ele-
ment. Then train model to do classification.

The motif binding profile can easily identify the elements with high
expression regulation effect with very high AUC and AUPR (10 fold
cv).
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logSkew correlate with predicted log Odds

The predicted log Odds is defined as: log2odds = log?2( p’;ﬁm) — log2( Lt

1- 1—prer

cor:0.5581
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Step2: Cell specific Bias (CSB)

We define a binding effectaware cell specific bias feature (CSB):

Platform specific

Squared Error between HepG2 and NA12878
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Step2: Cell specific Bias (CSB)

We define a binding effectaware cell specific bias feature (CSB):

Platform specific
~ +
effect
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Step2: Cell specific Bias (CSB)

We define a binding effectaware cell specific bias feature (CSB):

Platform specific
effect
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Step2: Cell specific Bias (CSB)

We define a binding effectaware cell specific bias feature (CSB):

Platform specific
~ +
effect

N~ w oo e
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Step2: Cell specific Bias (CSB)

We define a binding effectaware cell specific bias feature (CSB):

Platform specific
~ +
effect

TF binding + TF expression
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Learning Cell specific bias using TF binding and expression features

Both regression and classification were tried, but we use classification by
taking out the two extreme quantile of response to define positive and negative
dataset.

TF deepbind profile features TF cell specific ranking
509 500 493 475 443 377 293 167 92 46 23 8 1 366 365 362 354 337 317 278 217 143 76 38 2

0.80
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S000090099348888097 T

AUC
0.70
AUC
0.60

0.65

0.60
0.55

0.55

4 2 -9 8 7

5 5 5
log(Lambda) log(Lambda)

TF binding motif still be the best predictor, TF expression ranking is better
then random.
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Last Step: Lasso using predicted log Odds and CSB
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AUCROC: 0.685, AUPRC=0.479 better than the-state-of-the-art (AUROC =

0.668, AUPRC=0.479)
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Part 4: Experiment validation
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The prediction of Log FC has high accuracy but log2 Odds is not well predicted.
Morevoer, the luciferase assay results h3aSve very high noise and dispersion.



Conclusion

» Transcription factor binding is the most important feature in both
regression and classification models

» The experimental precedure of reporter gene assay indicates the genomic
context including chromatin status might not play indispensible role in the
regulatory results, but cell specific TF binding and expression still have
contributions.

» Just use TF binding can preciesely predict LogFC.

> The target variable for classification (significant change between mut_ref,
need statistics analysis and cutoff) is not directly reflected from the
experiment but some statitical analysis that may further introduce bias.

» Another dataset issue is the training set is not representable for the
popluation set.
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If still have time, then go to ENGINE
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Biological of enhancer gene linkage 38
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Biological of enhancer gene linkage 38

(A) Biochemical compatibility (B) Spatial architecture

(D) Chromatin environment

TRENDS in Call Biology
Classic problem: enhancer-promoter interaction. Biological

compatiblity(sequence feature and motif); spatial compatibility (3d
interaction); local environment (epigenomic marks)



Enhancer identification

STARR-Seq: enhancers can function independently of their relative

positions.
2. .
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STARR-seq enrichment [log,]

Enhancer can be very close to a gene(target)/in a gene, and also can be far
from a target gene(distal enhancer), how to know their target?
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3D genome techniques

Enhancers, esp. distal enhancers, may need 3d chromosome structure to
activate its target gene.
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State of the art a1

IM-PET: Consider information from 3D gnome interactions, DIST (distance)
constrain is a triky feature, boosting AUC from 0.7+ to 0.9+.

Feature Calculation Enhancer Prediction

Genome RNA-Seq] [ Histone (Hist. Mod. data only)
Segs Motifs Mod
GM CD4*
gl S = 12878] [M1ESC "'

COEV DIST TP ©
nan
CcD4*
i b4 A
Trained + @ —@-®B#- (1%FDR) »
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State of the art

LDA:a mixed membership method, didn't use information from 3d genome

interaction, and reply on predifined enhancer region.
Enhancer activity
(H3K4me1/H3K27me3)
Enhancer activity Gene activity

enh 1 modules modules Gene expression
(RNA-seq)

Variable Enhancers
Variable Genes

Cell types

Cell types
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State of the art a

Sequence-based PromoterEnhancer Interaction with Deep learning(SPEID)
Role Layer
[ comouton |

Long Short-Term Memory (LSTM) (Output Dim: 100)

Classify: | Dense (925 neurons) |

[

Prediction

Figure 1: Diagram of our deep learning model SPEID.

Sequence information alone can do prediction very well



State of the art

PETModule: a motif module based approach for enhancer target gene

prediction
Agiven enhancer —@- - o
e M / \ \
BN
A — &
g e — SN R e
Cohancers e O At | — 90— e | T G-
withmodl instancerm; -
— e O —— = —— b e
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term,term,
-, termy

Distance is the most important.
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State of the art

Enhancer promoter interactions are encoded by complex genomic signatures on

looping chromatin

Data sets
Annotation
CAGE
Training pairs
ChlIP-seq
Hi
DN q Held-out pairs
Enhancers FAIRE-seq Enhancers
Expressed genes Methylation Expressed genes

| Input
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Input
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Feature
generator

||

Feature
generator

Predictions

Enhancer Gene

chr. 1: 150-200 ENSGO001
chr.2: 400-900 ENSG002

Score

0.93
0.48

Yes
No

Score >0.5?  Prediction

Interaction
No interaction:
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State of the art

Data source in summary:

name Source code  Enh-pair train prediction year
IM-PET yes No, but desc yes 2014
PETModule  yes No Yes(in 4d genome) 2016
PreSTIGE No No yes 2014
TargetFinder  Yes Yes Yes 2016
SPEID yes Raw, same as TF  weight 2016
JEME Yes K562 Yes 2017
LDA?? Yes No Yes ”
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Dynamics

gained activated deactivated
DNA
== regulatory element
B gene promoter
> - - RR—
H3K27 acetlyation

Expression and function of genes correlate with dynamic loop type and distal
chromatin state
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Motivations and structures

1. Data source cross validation and comparison for positive and negative
dataset.

Papers use HiC, or ChlA-PET, or Fantome, or kind of combined to define
positive dataset, which will affect the negative set definition. How to utilize
and combine these dataset to get a reliable (related to positive dataset) and
complete(close to complete, related to negative dataset)
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Motivations and structures

2. Connection between 3D interaction and enhancer target regulation.
Some interactions related to enhancer target regulation, the others not, what is
the connection between 3d interaction and distal enhancer target regulation?
We will focus on the comparison and explore the differences between structural
and regulation interaction, and stable and dynamics.
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Motivations and structures

3. MultiClass learning and comparison with the-State-of-the-art.

The traditional way is to define negative dataset from all position
non-interacting pairs and it is limited: 1) the interaction is not randomly
happened but dynamics, from the practical, it is not just tell the positive
dataset from negative dataset from the genomic context; 2) machine learning
can only learn the largest deviation between positive and negative dataset,
which is bias if we will not known the machanism, and how many parts or
elements get involved. So here need a multiple class learning, not only include
a positive and negative dataset

43



Motivations and structures

4. Reinforcement learning to study the possible enhancer target dynamics.
Even we have a multiclass learning, there is have a question left, how this
happened and how the dynamics happened? Loop extrusion? We setup a deep
reinformce learning algorithms to study the potential mechanism underling
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Motivations and structures

5. Downstream analysis.

Given the above, we want to further investigate more in the downstream
analysis including network analysis, cellcycle or differential, supper enhancer ,
variants or other related analysis
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Part 1

Papers use HiC, or ChIA-PET, or Fantome (correlation), or kind of combined
to define positive dataset, which will affect the negative set definition. How to
utilize and combine these dataset to get a reliable (related to positive dataset)
and complete(close to complete, related to negative dataset?

44



Summary of Hic, ChIA-PET and Fantom

Overlap of Enhancer promoter pair using different datasets

Fit—HiC Fantom

1095

ChIA-PET The number of Gm12878
active enhancer and promoter pairs overlapped with Hic, Fantom and ChIA
PET. 45



The high quality of EP pair tend to enriched in the intersection of Hic and
ChIAPET dataset

1.0

Fit-HiC
Fithic ChIAPET Comm

0.6
|

0.4

0.2
|

0.0
L
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The genes tend to have relative higher correlation in fantom specific EP pair if
they shared a same enhancer with the genes in the intersection set of EP pairs
with Hic

pv=0.00113008294789171

1.0

0.8
|

0.4
|

0.2

T T
random overlap

This indicate the potential problem of fantom dataset is the coexpression of
genes will affect enhancer promoter target definition



How the loop number close to a enhancer promoter pair affect the expression
level of target genes?
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expression rank in 730 TCGA normal tissue dataset expression rank in 730 TCGA normal tissue dataset
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Gene expression activation negatively correlate with EP loop count.
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Task2

2. Connection between 3D interaction and enhancer target regulation.
Some interactions related to enhancer target regulation, the others not, what is
the connection between 3d interaction and distal enhancer target regulation?
We will focus on the comparison and explore the differences between structural
and regulation interaction, and stable and dynamics. (SKL, paritially)

Questions: Why loops have small fraction of EP pair (EP loop), mostly
are non EP loop?

» Because arbitrary cutoff, such as anchor size(Hi-C resolution), or Loop
gvalue cutoff?

» Different pattern of EP loops or nonEP loops? functional difference?
(Functional vs structural)

» Dynamics and stable for EP loops and nonEP loops?

» From Hierachical structure, relationship of EP and nonEPloops.

keywords: Anchor, EP loop, nonEP loop, HOT region, Distance to Anchor
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Summarieqs

13677747 fitHic loops,
4618971 HOT overlap

220001 (1.6%) with EP pair |

of%

4
211213 with HOT overlap

13457666 (98.4%) not with
EP pair

3%%

Y

4407758 (32% of) HOT
overlap loops

14635 EP loop and 183516 No EP loop with one hot region for each anchor
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Loop distance vs EP to loop anchor distance

Compare all the HOT overlap loops, loopsize(inner size) and qvalue (related to
contact frequency):
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loopsize

—log10(qvalue)
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500000

0

EP nonEP EP nonEP

For HOT overlapped loops, EP loops tend to have larger loopsize and
lower qvalue(more dynamic) 52



Loop size versus EP pair

For all the loops with qvalue less than 0.1, extend both sides with 250k, find
the closest EP pair, and the distance to anchor is the average of E or P center
to anchor center.

qvalue: 0.1 11887108
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Cutoff bias: closest distance distribution of EP pair

5Kb with EP No EP in 5Kb ext 250K

Enhancers Promoters
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FitHic loop without EP pairs within Sk%4 bins



Cutoff bias: closest distance distribution of EP pair

5Kb with EP No EP in 5Kb ext 250K
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FitHic loop without EP pairs within Sk%4 bins. [2 5k50k]



Cutoff bias: closest distance distribution of EP pair
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Cutoff bias: closest distance distribution of EP pair
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FitHic loop with EP pairs within 5kb bins, vs loops without EP pairs
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TF peak overlap

Take loop with one HOT for both side:

EP loop ratio
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