
[CANDISP3 | Main Text] 
 
A. SIGNIFICANCE 
[[HM - update the signific 
w/ DC add a para on VHL parallel to the one MET  --  [[done]]  
Add a para on the interesting Qs  
Som-germline 
Tsg-onco - LOF v GOF]] 
 
The MET protein (encoded by the c-Met gene) is a tyrosine kinase that functions as a                
membrane receptor. It plays key roles in both organism development as well as tissue growth.               
Given that it may function as an oncogene, hyper-activation of MET may result in rapid               
tumorigenesis and poor patient prognosis. MET plays especially prominent roles in cancers of             
the liver, brain, kidney, stomach, and breast. Consistent with its well-characterized roles in             
growth and development, it is normally only expressed in stem cells and progenitor cells. A               
number of specific mutations in MET have been shown to be especially important in              
oncogenesis, which we propose to study in the work detailed here.  
 
[[dc2HM -- below is a paragraph on VHL -- I’d be happy to expand on this if you like]] 
[HM2DC - I reckon it should be fine esp. in comparison with the MET paragraph above] 
VHL (von Hippel–Lindau) encodes a subunit of a complex that is responsible for downregulating              
other proteins through ubiquitin ligation. In particular, one target of this complex is HIF1a, which               
promotes angiogenesis (a characteristic hallmark of solid tumors). As such, VHL is a tumor              
suppressor gene (TSG). Inherited mutations within this gene have been linked to a number of               
cancer types, including those in the kidney, pancreas, and brain. Cancer-related variants in VHL              
exhibit properties of the 'two-hit' hypothesis of oncogenesis: an individual born with a variant in               
one copy of VHL confers predisposition to cancer, as random mutations to the only healthy copy                
over the course of an individual's lifetime can result to total loss of this tumor suppressor,                
thereby promoting oncogenic initiation. 
 
[[ 
dc2HM: I think we just need to figure out the best place to insert this reference to M. Rubin’s                   
paper -- also is the below ref correct (ie, is this the paper to which MG was alluding? 
Recurrent somatic SNVs identified in other cancer types have been shown to explain racial              
disparities in patient outcomes, some of which exhibit racial disparities \cite{28515055}.’’ 
]] 
 
[[HM2DC: I inserted a reference to M. Rubin et al. in section on somatic-germline co-occurrence               
paragrah - currently under “Inter-relate (co-occurrence) somatic & germline.” The one I referred             
to is this new paper on prostate cancer [here] - STL may confirm if that’s exactly the one.]] 
 
 
 

http://cancerdiscovery.aacrjournals.org/content/early/2017/07/30/2159-8290.CD-16-0960?platform=hootsuite


 
The X-ray crystal structure of the c-Met kinase domain, resolved to a resolution of 1.8               
angstroms (PDB ID: 1R1W). 
 
 
[HM  - para on interesting Qs: som-germline interactions and TSGs vs OncoGs + co-variates] 
 
Understanding the underlying genetics of racial disparities in RCC is a crucial, broad question.              
In this context, we will address a number of related questions. As per the Knudson hypothesis                
\cite{two-hit hypothesis foundational papers}, where an accumulation of genetic mutations lead           
to the incidence of cancer, we will investigate how somatic and germline variations complement              
each other leading to the incidence of RCC. Analyzing the patterns of somatic-germline             
interactions in African American and Caucasian patients can shed the light on possible             
differences associated with the etiology of the disease. We will also will analyze the frequency,               
functional impact, and genomic burdening of loss-of-function (LoF) and gain-of-function (GoF)           
variants across samples. With a focus on MET and VLF, an oncogene and a tumor-suppressor               
gene, respectively, we will study the patterns of LoF and GoF variation in tumor suppressor and                
oncogenes in patients from different races. In addition, and to gain a more comprehensive              
insight into the reasons behind existing racial disparities, we will utilize electronic health records              
in an attempt to identify clinical and environmental factors in relationship with RCC incidence. 
 
B. INNOVATION 
 
C. APPROACH 
 
Aim 1: To perform whole genome sequencing (WGS) of African-Americans with ccRCC to             
complete a missing aspect of the cancer genome atlas (TCGA). 
C-1-a Rationale: In recent years, TCGA efforts have furthered our understanding of the             
genomic basis of various forms of kidney cancer. TCGA studies have led to the understanding               
that different cell types within the kidney may give rise to distinct forms of kidney cancer.                
Somatic alterations (driver mutations and copy number variants) are also important in            
determining a cancer’s molecular profile. In TCGA, kidney cancer cases were submitted from             
various high volume tertiary centers to the Bio-specimen Core Resource (BCR) for accessioning             
and specimen processing. However, specimens were not submitted in a coordinated fashion to             
ensure a study population of similar profile to that encountered nationally. Not surprising, there              
were a limited number of African-Americans with clear-cell kidney cancer included in TCGA             



analysis. Despite African-Americans accounting for approximately 1 in 7 cases of ccRCC, only a              
cursory analysis was performed in this population, including 14/427 (3.3%) samples that            
underwent whole exome sequencing and 1/40 (2.5%) [[hello?]] (Table 2) that underwent whole             
genome sequencing. A failure to include a larger population of African-Americans with clear cell              
RCC limits our ability to explore genomic bases for racial disparities. This contrasts with higher               
incidence of pRCC in African-Americans, the pRCC TCGA cohort was able to include a larger               
number of African-Americans. However, despite available data, there has not been a thorough             
analysis of somatic driver alterations or germline risk variants more prevalent in            
African-American kidney cancer.   
We propose to complete TCGA     
analysis of the top two subtypes      
of kidney cancer, papillary and     
clear cell, by analyzing an     
additional cohort of   
African-Americans with ccRCC.   
By performing whole genome    
sequencing on this additional    
cohort of samples, we will have      
an adequate number of cases to      
allow balanced comparisons   
between African-American and   
Caucasian clear cell and    
papillary kidney cancers.   
Furthermore, using a patient cohort with a different genetic background, sequencing might            
illustrate novel, ethnic-specific driver events as recently seen in an African American prostate             
cancer study \cite{28515055}.  
Whole genome sequencing offers several advantages over chip-based methods. It allows           
analysis of poorly-tagged or rare SNPs, INDELs and structural variants (SVs). Moreover, whole             
genome sequencing has nucleotide resolution which helps pin down the disease causing            
variants rather than big DNA blocks in linkage disequilibrium.  
C-1-b Sample acquisition, comorbidity/demographics matching, and DNA extraction: All         
patients undergoing scheduled kidney cancer surgery at Yale New Haven Hospital are offered             
enrollment into an IRB-approved Genitourinary Biospecimen repository (P.I. Shuch, HIC#          
0805003787). Within 30 minutes of removal, fresh tumor tissue is snap frozen in liquid nitrogen               
by the pathology team. Additionally whole blood is procured to serve as a genomic control. In                
the past 2 years, over 300 subjects with kidney cancer have been prospectively enrolled. All               
fresh bio-specimens are stored at -80˚C and are available for immediate analysis. For the              
purpose of completion of the TCGA dataset, we will utilize a 15 African-American subjects with               
ccRCC from 2013-2016. TCGA kidney cancer projects have captured patient age, sex, race,             
smoking history, and has limited information from a secondary analysis on obesity status.             
Self-reported racial identity may be imprecise, yet is necessary to account for patient             
demographics and the influence of RCC comorbidities. We therefore intend to prospectively            
genotype candidate individuals for WGS, to ensure they follow the same racial distribution as in               
TCGA. To determine the ideal candidates for WGS we will employ both phylogenetic and data               
mining clustering methods (See section C-4-d). 
C-1-c WGS and variant calling: Sequencing of normal and tumor samples will performed using              
Illumina’s Hiseq 2000 technology. In brief, DNA fragments from each sample will be hybridized              
using HiSeq Paired-End Cluster Kits and will be further amplified using the Illumina cBOT.              



Paired–end libraries will be generated by utilizing HiSeq (2x101) cycle and imaging will be              
performed by TruSeq kits. 

We have extensive experience in large-scale variant calling and interpretation through           
active membership in the 1000 Genomes Consortium, particularly from our participation in the             
analysis working group and the structural variant (SV) and functional interpretation (FIG)            
subgroups of the consortium, where the majority of the variant calling tools were developed,              
deployed and interpreted [23]–[25]. We have already set up a prototype pipeline for calling              
germline and somatic variants. We will use the Genome Analysis Toolkit (GATK) [26] to call               
germline SNPs and INDELS. We use parameters consistent with those used in TCGA [27]. We               
will map raw FASTQ files of each sample to the hg19 reference genome using the bwa-mem                
algorithm with default parameters to generate BAM files. These bam files will be further              
processed to sort and mark duplicates reads before calling variants. 
We will follow GATK best practices [26] to generate initial raw variant call sets using GATK                
haplotype caller. We will filter these initial call sets by running GATK variant recalibration tool.               
This filtering strategy based on a variant recalibration method uses a continuous adaptive error              
model. 

The adaptive error model takes into account variant annotations including quality score,            
mapping quality, strandedness and allele information. Using this information, it classifies variant            
calls as true positives or sequencing artifacts. We will exclude any filtered variant, which falls in                
a low mappability region of the genome. MuTect [28] and Strelka [29] will call somatic SNVs and                 
INDELs, respectively. 

Structural variations (SVs) are important contributors to human polymorphism, have          
great functional impact and are often implicated in diseases including cancer. We have             
developed a number of SV calling algorithms, including BreakSeq which compares raw reads             
with a breakpoint library (junction mapping) [30], CNVnator which measures read depth [31],             
AGE which refines local alignment [32], and PEMer which uses paired ends [33]. We have also                
developed array-based approaches [34] and a sequencing-based Bayesian model [35].          
Furthermore, we have studied the distinct features of SVs that originate from different             
mechanisms, and showed how creation processes may have potentially divergent functional           

impacts [36], [37]. We will perform      
extensive molecular characterization of    
germline and somatic SVs in these      
cancer samples. We will run CNVnator      
to identify germline and somatic copy      
number variations in each cancer     
sample. We will apply CREST [38] to       
identify germline and somatic large     
structural variations including large    
deletions, insertion, inversion, intra and     

inter-chromosomal translocations.  
Furthermore, we will run our     
BreakSeq tool to decipher the     

underlying mechanism of somatic and germline SV formation. 
Along with our new sequenced samples, we will reprocess all the TCGA data using our               

own calling pipeline, to mitigate any potential processing or batch effects. 
 

C-1-d Deliverables: In this aim, we will generate an extensive catalogue variants, for both              
African-American ccRCC patients at Yale, and TCGA kidney cancer patients. This will be done              



consistent with methodology already used in TCGA. This catalogue will include both germline             
and somatic variants, including SNPs, INDELs and large SVs. We will cover both coding and               
non-coding regions of the genome. Our catalogue of variants, will serve as an excellent basis               
for identification of genomic aberrations associated with racial disparity observed in kidney            
cancer. We plan to make our sequencing data available via dbGAP (see data dissemination              
plan). 
 
 
Aim 2: To find MET-related key mutation patterns, regions and residues associated with             
kidney cancer [[find key racially disparte snvs]] 
 
C-2-b Relevant Preliminary Results: 
 

 
C-2-b-2 We have developed tools for somatic and germline burden tests:  
[[DC & SK: stress & frustration & alfot ]\]]   [[done]] 

We have developed a number of software tools that have been designed to annotate              
and understand the effects of variants within the coding regions of the human genome. Coding               
variants are first annotated (for example, determined to be synonymous, non-synonymous,           
premature stop codons, splice-site change, etc) using our VAT software \cite{22743228}. Once            
mapped to 3D structures from the PDB, the effects of annotated variants may be studied in                
detail by measuring their associated effects in the contexts of both allosteric regulation and local               
mechanistic perturbations. 

With respect to allosteric effects, we have developed the STRESS software tool            
\cite{27066750}. STRESS employs models of large-scale protein conformational change in          
order to predict key allosteric residues on both the protein surface (by finding essential pockets)               
as well as the interior (by identifying information-flow bottlenecks). Our reported results            
demonstrate that this software selects residues that are highly conserved over both long- and              
short evolutionary timescales, and it has also been used to help rationalize otherwise             
poorly-understood (“cryptic”) disease-associated SNVs. 

With respect to localized perturbations, we have reported a separate study           
\cite{27915290} to demonstrate how localized changes in biomolecular frustration may be used            
to better understand the differential effects of variants in oncogenes and TSGs. Specifically,             
these results shed light on potential gain-of-function variants on the surfaces of oncogenes, and              
loss-of-function variants in TSGs. 

We have also developed ALoFT, a tool specifically tailored to annotate and predict the              
disease-causing potential of loss-of-function events \cite{28851873}. Short for “annotation of          
loss-of-function transcripts”, ALoFT has been used to successfully discriminate between LoF           
mutations that are deleterious in heterozygous states from those that may cause disease in the               
homozygous state. We analyzed somatic variants in more than 6500 cancer exomes, and             
demonstrated that variants predicted to be deleterious by ALoFT are enriched in canonical             
driver genes. 

We have worked on statistical methods for analysis of non-coding regulatory regions.            
LARVA (Large-scale Analysis of Recurrent Variants in noncoding Annotations) identifies          
significant mutation enrichments in noncoding elements, by comparing observed mutation          
counts with expected counts under a whole genome background mutation model [53]. LARVA             
includes corrections for biases in mutation rate owing to DNA replication timing. LARVA can be               
targeted to coding regions to prioritize genes. We used this tool in a pan-cancer analysis of                



variants in 760 cancer whole genomes, spanning a number of cancer data portals and              
published datasets. Our analyses demonstrated that LARVA can recapitulate previously          
established coding and noncoding cancer drivers, including the TERT and TP53 promoters [53].             
Furthermore, we have developed MOAT (Mutations Overburdening Annotations Tool), an          
alternative empirical mutation burden approach that evaluates mutation enrichments based          
upon permutations of the input data (submitted). Both annotation-based and variant-based           
permutation is supported. 
 
C-2-b-3 We have identified regions associated with kidney cancer through our involvement in             
the papillary TCGA team: Given that Yale has expertise in the clinical management and              
genetics of kidney cancer, we were invited to participate in TCGA kidney cancer projects. Our               
role in the TCGA KICH (chromophobe RCC) included coordination of the Cancer Cell             
manuscript [[need citation]]. Our team analyzed the whole genome sequencing data for the             
TCGA KIRP (pRCC), now published in New England Journal of Medicine [27]. In recent work,               
we leveraged our expertise of studying non-coding regions in the first whole genome analysis of               
pRCC samples \cite{5391127}. Our work finds significant genomic alterations beyond traditional           
known drivers of pRCC. We hypothesize that these alterations may have non-canonical effects             
on known tumorigenic pathways (for example, MET in type 1 pRCC). We discovered genomic              
markers in MET and NEAT1 that predict prognosis. We investigated mutational signatures and             
the mutational landscape and evolutionary trees in pRCC and identified several meaningful            
etiological factors explaining inter-patient genomic variation in pRCC. This experience provided           
further practical knowledge of working with available RCC genomic datasets. Finally, our team             
has participated in two ongoing pan-RCC manuscripts serving a central role assessing            
evaluating the cluster of cluster assignments (COCA) immunologic profile from gene and miRNA             
expression datasets. Together with other published results on RCC [54]–[58], we have            
assembled an extensive list of impactful and statistically significant regions of RCC genomes. 
 
[[SK to put a para on funseq + pcawg]] [[done]] 
C-2-b-4 We have extensive experience in analyzing whole-genome datasets from cancer           
cohorts: We are active participants in The Cancer Genome Atlas (TCGA) and Pancancer             
Analysis of Whole Genomes (PCAWG) consortium projects \cite{}. Specifically, we have played            
key roles in the TCGA investigations into prostate \cite{26544944} and kidney \cite{26536169}            
cancers. More recently, we have conducted a detailed investigation into the noncoding variants             
of kidney papillary cancer samples in TCGA \cite{28358873}. As part of the driver discovery              
subgroup in PCAWG, we have participated in a comprehensive variant prioritization exercise to             
generate a catalogue of driver elements in many cancer cohorts. Furthermore, we are currently              
leading the PCAWG group investigating the aggregated impact of mutations on cancer            
development, progression, and prognosis. As part of this effort, we ran FunSeq on each variant(               
~30 million total somatic mutations among 39 cancer subtypes) in PCAWG. We identified many              
high-impact mutations, in addition to canonical driver mutations, which can potentially influence            
cancer progression.  
 
C-2-c Research plan: 
 
C-2-a Assessing the functional impact of coding mutations in MET 
 
C-2-a-0 [[LS, PDM] Constructing the MET-ome & VHL-ome: integrating MET- And VHL-            
associated elements across annotations. 



 
High impact regions associated with MET and VHL are linked to other genomic regions through               
functional relationships that exist across networks of biomolecules. Examples of these           
connections include physical interactions among the molecular binding partners of MET and            
VHL, or the gene regulatory networks that influence MET and VHL expression. 
 
We plan to link genomic regions associated with MET and VHL across functional annotations.              
For example, we’ll link transcription factors to enhancer elements, and enhancers to their target              
genes. We’ll seek to clarify the influence of distal epigenetic regulatory markers, like methylation              
and chromatin-state, on MET and VHL expression. We’ll use protein interaction networks to             
better understand broader consequence of variation as transmitted through a molecular           
interaction network. We’ll build maps of the molecular pathways influencing MET and VHL             
function. 
 
This integration of will produce an extended MET and VHL annotation. Genetic modules will              
group potentially impactful elements that share similar or collaborative biological functions.           
These groupings will increase the statistical power in our study for resolving contributory genetic              
variation. Genetic modules also offer annotation of lesser known noncoding regions. Our results             
have biologically interpretability because genetic modules will be linked with genes. 

C-2-a-0 building a mut catalog for the METome [[STL]] 
Est. the number of mutations  
Get al muts from somatic,pcawg, exact, gnome  
Est the size  
 
1 para.  
C-2-a-2 Build a comprehensive mutation catalog for the METome and VHLome. We aim to build               
an all-inclusive, comprehensive mutation catalog with variants assembled from both our dataset            
and public available data. First we will perform a literature search, identifying previous work              
documenting association between genomic alteration and RCC. We will gather genetic changes            
that include single nucleotide variation (SNV), structural variation/copy number variation          
(SV/CNV), and mutation process signature. We will also annotate regions that are associated             
with disparity between Caucasian and African-Americans in other forms of cancer, such as             
prostate cancer [59], [60]. Prior study has shown that RCC is uniquely characterized by copy               
number variations (CNV) as an early and major driver event [54]. Because repeats are              
triggering factors for many structural variation events, we will pay particular attention to repeats              
polymorphisms around known cancer associated genes, and recurrent CNV regions in RCC.            
Repeats may put certain RCC related genes at predisposition to CNV events. Last, we also               
gather somatic RCC mutations from TCGA and PCAWG project. For background mutation            
landscape in general population, we will leverage on gnomAD and ExAC.  
ExAC and gnomAD reports 677 variants in ~31k alleles in MET and additional 1218 variants in                
250k exome-sequenced alleles. In VHL, the numbers are 448 and 225 respectively. In 35 pRCC               
whole genomes, we found 12 somatic MET mutations. In TCGA….PCWAG...WXS…. 
By functional elements linking, we expect the regions will grow exponentially with the             
association degree. We expect the mutation number will grow by one order. … and              
estimate…around germline 20,000 SNVs from public dataset and somatic 5000 (??) SNVs. 



 
[STL: I have shaky HPC connection, will update the number estimate ] 

*** C-2-c-2 Run our coding variant prioritization pipeline on all          
variants (func impact coding): [[sK, dc]] [[done]] 

The MET and VHL genes are known to play important roles in many cancer types, 
including those of the kidney. As mentioned in our significance statement, MET and VHL 
function as TSGs and oncogenes, respectively. Intense research efforts to gain mechanistic 
insights into the functioning of these genes have resulted in detailed 3D models of their 
structures. Using high-resolution crystallographic models of these two proteins, we will employ a 
number of our tools to evaluate the functional impacts of their point mutations. We will first apply 
VAT \cite{22743228} to annotate coding variants of the MET and VHL genes within our sample 
cohort. Furthermore, we will map their coding variants onto their respective crystal structures 
and then apply our STRESS \cite{27066750} tool to identify cryptic sites influenced by 
non-synonymous coding mutation. The cryptic sites identified through STRESS play important 
roles in allosteric regulation. Non-synonymous mutations at allosteric sites are likely to affect 
proper functioning. We will also apply our Frustration tool to prioritize non-synonymous 
mutations by identifying those variants that disrupt the local stability of MET and VHL proteins. 
Such detailed mechanistic annotations of the roles of individual variants on MET and VHL 
protein functionality may provide essential resources for targeted drug development. We also 
note that the differential and highly heterogeneous effects of SNVs (as elucidated through 
STRESS and frustration profiles) may also provide prognostic value. In addition, we will apply 
our ALoFT tool to identify loss-of-function (LoF) coding mutations potentially inactivating copies 
of MET and VHL genes in our study cohort.  

*** C-2-c-3 Run our variant prioritization pipeline on all variants          
(noncoding func impat): [[sK, dc]] [[done]] 

In addition to coding variants, many changes in noncoding regions may play critical roles              
in renal cell cancer initiation and progression. In order to identify high-impact mutations in              
noncoding regions for both cancer and normal samples, we will run our updated and extended               
FunSeq pipeline on the kidney cancer variant catalogue. As part of our initial analysis, we ran                
FunSeq on and carefully curated the results. We found several disruptive mutation hot spots in               
within the genome. With the addition of many more samples, we will perform comprehensive              
prioritization analyses to identify many more non-coding variants that may play key roles in              
kidney cancer. 
 

*** C-2-c-4 Run our variant prioritization pipeline on all variants          
(recurrence): 

Prioritizing variants within non-coding regions of the genome is especially challenging.           
Thus, we will apply the alternative approach of evaluating variant recurrence to identify key              
mutations in kidney cancer. We will apply our LARVA and MOAT tools on the comprehensive               



kidney cancer variant catalogue. Our prior analysis of TCGA whole-genome sequenced           
samples indicate the presence of excessive somatic mutations in the MET intronic and promoter              
regions, along with several other recurrent mutated regions that merit further investigation. We             
expect to further identify other important variants in kidney cancer with large-fold increases in              
our kidney cancer variant catalogue. 
 
C-2-c-5 Identify critical regions burdened by germline mutations: Above, we have explained our 
approach to key somatic regions associated with kidney cancer. In this section we explain our 
approach to germline variation. Statistics for germline variants are different than for somatic 
ones, and thus require a different approach to analysis. First, using SKAT [61] we will find MET 
associated regions that are significantly burdened by germline mutations in the kidney cancer 
cases versus healthy controls. As non-cancer controls, we will use both the 1000 Genomes 
Project (2504 individuals) whole genome samples, as well as the Exome Aggregation 
Consortium (ExAC, TCGA samples excluded) meta-cohort [60]. To mitigate genetic background 
as a confounding factor, we will match our patient samples with normal controls using both 
self-reported ethnicities and racial SNP markers. We will look for regions and genes that are 
burdened significantly in RCC compared to control. Given the size of these datasets, we will be 
well powered in our testing (see also cancer population sampling discussed in aims 3 and 4). 

We will mask known SNPs and flanking regions associated with high BMI [62], 
hypertension [63], cigarette smoking [64] and other known risk factors in previous association 
studies, to reduce the possibility of misattribution of these known RCC comorbidities to direct 
genetic effect. 
 

}}} 

Inter-relate (co-occurrence) somatic & germline Degeneralize -       
coocc{{ 
 
[HM, STL] C-2-c:  
 
We will comparatively investigate mutation patterns in African American and Caucasian cohorts            
in the combined Yale-TCGA RCC data. Differences in major and minor allele frequency             
distributions across patient samples is an important factor we will take into account. Somatic              
variants can complement cancer-related germline ones and lead to the development of different             
types of cancer. We consider this co-occurrence a mode of somatic-germline variant interaction,             
and we will study the interaction patterns in patients across races at the levels of coding and                 
noncoding regions associated with all human genes and known COSMIC genes. In addition,             
along the lines of other cancer studies that focus on specific genes \cite{mrubin_etal}, we will               
focus on MET and VLH. Variations in interaction patterns of somatic and germline variants              
associated with genes can also help us locate regions of interest and unravel part of the                
intricate underlying genetics that lead to RCC across races. To perform the aforementioned             
tasks, we will develop new methods and leverage an amalgam of tools and pipelines we have                
developed to prioritize variants. Alongside with genomic samples in the combined Yale-TCGA            
cohort, we will mine several genomic repositories including ExAC \cite{exac}, 1000 Genomes            
(1KG) \cite{1KG paper(s)}, and gnomAD \cite{gnomAD}. 
}} 



**** Find the impactful & recurrent mutations that are racially          
disparate {{[[HM, PDM]] 
 
Following prioritization of MET- and VHL-related variants across all TCGA-Yale samples, we will             
study differences in the population frequency, functional impact, and genomic burdening           
between variant sets to identify racially disparate genetic elements. The variety of tools we have               
developed in the lab allow us to flexibly identify impactful variants and mutational signatures in               
novel data sets. 
 
We will also analyze patterns of somatic and germline variation in samples from both African               
American and Caucasian patients. By identifying relationships between recurrent somatic and           
germline mutations, we may identify novel germline mutations that predispose to renal cancer.             
This analysis provides an opportunity to identify genetic signatures and impactful and recurrent             
mutations that partially explain racial disparities in RCC. 
 
[[PDM2HM: The above 1-2 paragraphs are a bit non-specific (e.g. no mention of methods,              
specific tools, etc.) Could be a good thing or a bad thing -- provides flexibility in later approach,                  
but reviewer may question how exactly we accomplish this. Of course, some methods are listed               
in other sections of grant app.]] 
 
Graceful cut {{ 
We will integrate our previously developed tools for variant prioritization (see section C-2-b-1)             
into a unified software pipeline in order to investigate the impacts of SNVs throughout coding               
elements of the genome. In particular, we will run our pipeline on all somatic variants that fall                 
within X-ray crystal structures within the PDB. The computational efficiency of each of these              
software tools will enable somatic variant evaluation within a matter of days or weeks. This               
workflow will also include an annotation of somatic variants in the context of conserved protein               
motifs (our proposed term for this new method is “Intensification”), and the entire integrated              
pipeline will constitute our “Interrogation” workflow. This integrated package will be made            
available on GitHub (with each component having a dedicated user-friendly web page), and the              
results of our somatic variant analysis (and in particular, the atlas of high-impact somatic SNVs)               
will be made available as downloadable data files for downstream analysis to other             
investigators. 
}} 
 
 
 
Aim 3: To correct for and study clinical and environmental co-variates using electronic             
health records of RCC patients 
 
[HM] C-3-a (ideas on Preliminary Results/Rationale/Deliverables split?) 
 
Racial disparities in cancer is likely the result of a multiple factors. Genetics might provide a                
valuable insight into kidney cancer etiology, but because of the breadth of the undertaking, we               
plan to approach the problem from other perspectives. In this context, we plan to (1) rigorously                



correct stratification and biases in samples and (2) find significant correlations between clinical             
and environmental conditions and the disease incidence. We will analyze the electronic health             
records of all patients in the TCGA-Yale cohort and identify any statistically significant             
relationships between health and living conditions on one side, and the genotypic and             
phenotypic aspects of RCC cases present in the cohort. The ultimate goal is to attain the ability                 
to predict RCC incidence based on a combination of genetic and non-genetic factors and to help                
in crafting recommendations that would help in eliminating existing racial disparities. The            
analysis pipeline will be automated to accommodated for additional genomics and electronic            
health record data to be collected during or after the study.  
 
 
C-3-c-3 Power analysis using SKAT for per region based analysis: In the above, we plan to                
use aggregated burden tests (e.g. SKAT) to look for differential burdening between populations             
and use this to rank the regions. While we are not striving for absolute statistical significance in                 
differential burdening, our sample size is provides an appreciable signal for ranking. Here, we              
discuss the power aspects of burden tests applied to our sample populations. SKAT analysis              
has been developed for rare genomic mutations, and remains robust for common variants. We              
will utilize SKAT to test for significant disparity of variants in kidney cancer between Caucasian               
and African-American populations. To estimate the sample size needed to obtain statistical            
power, we ran a SKAT package available from the R project, on several population models for                
genomic regions of 5k nts(Figure XXX). In our proposed study, we will focus on genomic               
modules linked with kidney cancer such as MET- and VHL-ome, and therefore expect a large               
number of effective mutations. Typically, the MET genomic region consists of 126,027 nt while              
VHL of 12,035 respectively. We expect these numbers to increase significantly after creating the              
modules.  
 
[[[***Last year***SEE BELOW**]]] 
 
C-3-c Compare germline mutations in coding regions between Caucasian and          
African-Americans in prioritized regions using WES Data: 
C-3-c-1 Variant level analysis: For coding region analysis, we will employ the full 556 samples               
with whole exome data from TCGA. For common variants analysis at a single locus, Fisher’s               
exact test can be used to evaluate the racial disparity between Caucasian and African-American              
subjects with RCC. Here, we prioritize common variants according to their associations with             
RCC disparity in race. For a common SNP identified in African Americans and Caucasians with               
RCC, we record minor allele frequencies and major allele frequencies in African Americans and              
Caucasians with RCC. For these counts of a focal SNP, the Fisher-exact test is used to                
determine whether the SNP tends to be associated with the African Americans with RCC. The               
p-values of tests for all common variants are used to prioritize variants for further study and                
validation. The power of the Fisher exact test can readily be estimated in this context. For                
instance, for an ordinary SNP with allele frequency 7% in the total samples, when its frequency                
in the African American subjects is 12%, the power of the test can reach 0.4 with a p-value <                   
5e-5. This indicates that these SNPs can be detected with statistical significance from 1000              
candidates, even when the most conservative Bonferroni correction is used. 
C-3-c-2 Region based analysis: Beyond investigating the association between single common            

variants and race, we will focus on the evaluating the cumulative effects of a set of rare variants                  
in genomic regions, such as genes, using both burden and non-burden test. Burden tests are               
often applied on regions where most of the variants in the same region are causal, affect                



phenotype in the same direction (e.g. LOFs disabling a tumor suppressor). We assume that in               
total there are n patients with whole exome sequencing data available. Also for a target region,                
for example, a gene, there are m variants. Let denote the population information of the                 
patient. for African-Americans and 0 otherwise. Let represent the genotype of             
patient . Then a logistic regression model can be set up to evaluate the association as in (1).                   
Suppose that   describes the mean of the population status, then: 

 (1) 
For the burden test, we could treat the coefficient for each patient as a weighted coefficient                 
like   . Then equation (1) can be rewritten to: 

 (2) 
Under the null hypothesis that there is no association of variants in this region with race, the                 
coefficient   should be zero. The test statistic for H0:   becomes: 

 (3) 
The allele frequency can be used to assign the weight for each variant. For example,              

, where is the minor allele frequency. However, in some cases, where the              
target region has many non-causal variants or the effect of such variants is heterogeneous,              
burden tests, such as equation (3), may lose statistical power. Here, a sequence kernel              
association test (SKAT) can be used. Instead of assuming a weighted coefficient effect in the               
burden test, each is treated as an independent random variable with 0 mean and variance                

. Then the null hypothesis can be changed to H0: , and the test statistic under equation                   
(1) can be written into: 

 (4) 
In (4), is the kernel matrix, and is the genotype information vector.               
is the weight matrix which can employ allele frequency or other external information, such as               
conservation score. The test statistic in (4) can be rewritten into 

 (5) 
In coding variant analysis, because we      
generally do not know which of the two cases         
each gene falls into, a unified test is the         
following: 

 (6) 
Since the best route in (6) is unknown, a best          
test statistic can be used as follows: 

 (7) 
C-3-c-3 Power analysis using SKAT for per 
region based analysis: In the above, we plan 
to use aggregated burden tests (e.g. SKAT) to 
look for differential burdening between 
populations and use this to rank the regions. 
While we are not striving for absolute statistical 
significance in differential burdening, our 



sample size is provides an appreciable signal for ranking. Here, we discuss the power aspects 
of burden tests applied to our sample 
populations. SKAT analysis has been 
developed for rare genomic mutations, and 
remains robust for common variants. We will 
utilize SKAT to identify genomic regions with 
significant disparity of variants in kidney 
cancer between Caucasian and 
African-American populations. To estimate 
the sample size needed to obtain statistical 

power, we ran a SKAT package available from the R project, on several population models 
(Figure 6). In our proposed study, we will focus on genomic modules linked with kidney cancer, 
and therefore expect a large number of effective mutations. 
C-3-d Compare germline mutations in noncoding regions between Caucasian and 
African-Americans in prioritized regions using WGS Data: 
C-3-d-1 Pooled variant test for limited target regions: For our noncoding region analysis, since              
we have limited power with 32 WGS samples in both populations, targeted analysis will be               
carried out on a smaller set of regions. From our experience with TCGA KIRP, we have already                 
prioritized MET intronic and promoter regions, along with several other recurrently mutated            
regions that merit further investigation. We will focus on these selected regions, to enable use of                
the unified statistical testing mentioned above (in section C-3-c). 
C-3-d-2 Non-parametric test for FunSeq score distribution difference: We expect that casual            
regions may not only be under differential mutational burden between races, but may also be               
disproportionately affected by high-impact mutations. Thus, for prioritized regions given above,           
we plan to calculate all FunSeq scores on both African-American and Caucasian populations.             
By subsequently ranking and pairing scores between the two population groups, we intend to              
use a Wilcoxon signed-rank test to evaluate the significance of mutational impact on each              
region. This test is a non-parametric version of the paired t-test, and is used when we cannot                 
assume that the populations follow a normal distribution. As population size increases, a             
Z-score can be calculated. 
C-3-e Compare somatic mutations between Caucasian and African-Americans in         
prioritized regions: Previously, we developed an integrative framework, LARVA, to discover           
highly recurrent regions in cancer genomes as candidate cancer drivers [53]. It is known that               
various genomic features affect background mutation rate in most cancer types, and this results              
in numerous false positives in somatic mutation recurrence analysis [65]. Hence, we have             
extended LARVA into a new system, NIMBus (a Negative Binomial Regression based            
Integrative Method for Mutation Burden Analysis), which incorporates corrections for additional           
covariates that influence somatic mutation rate in genomic regions. These covariates include            
sequence content, replication timing, expression level, histone modification marks, and          
chromatin status. Specifically, in a region with length , suppose the mutation rate is known as                
μ, then the number of mutations y within given μ should follow a Poisson distribution as                 
follows: 

 (8) 
However, we discovered in our previous analysis, that there is significant cancer type, sample,              
and regional heterogeneity in mutation count data [53]. Such mutational heterogeneity violates a             



constant mutation rate assumption and results in over-dispersion. Hence, instead of supposing            
μ is constant, we set up the following model: 

 (9) 
The marginal distribution of Y can be expressed as the type I negative binomial distribution: 

 (10) 
Where , . Let be the genomic covariates to be corrected, such as              
replication timing, GC content, and chromatin status. We can then use the following negative              
binomial regression to estimate the local mutation rate under the covariant set: 

 (11) 
Consequently, instead of estimating a genome wide mutation rate, we are now estimating a              
coefficient vector for the mean, and a constant over-dispersion value. For each region to be               
estimated, a local mutation rate can be reconstructed by equation (11), for accurate background              
rate and false positive/negative controls. 

We will start off with prioritized regions from aim 2 to minimize multiple testing issues.               
For each region we will use our procedure to identify differential somatic burdening. In              
particular, we will apply our new method on the 16 African-American and then 16 Caucasian               
WGS samples separately. Highly recurrent regions in each will be reported and compared.             
Those regions that are unique to either population will be prioritized for detailed validation. 
C-3-f Deliverables: This aim will create ranked lists of genes, non-coding regions and variants              
from Aim 2, to pass to validation in Aim 4. We will combine rankings from the categories of                  
variants described above, by comparing their corresponding p-values. To obtain results with            
greatest possible significance, we will aim for a minimum number of validations from each              
category. Also, we plan to make our racial disparity rankings of genes and non-coding regions               
publicly available from our project web server (see data dissemination plan). 
 
 
Aim 4: To validate specific regions with either germline or somatic mutations suspected             
of contributing to kidney cancer racial disparity. 
 
C-4-a Rationale: Aims II and III together represent a discovery phase, where we identify and               
prioritize genomic alterations associated with MET and VHL genomic regions for racial            
disparities associated with cancer. In Aim 4 an independent patient cohort will be used to               
validate findings from our discovery phase. The independent validation cohort includes patients            
with RCC from Yale’s Genitourinary Biospecimen Repository, in addition to availability of            
statewide sampling of patients with RCC through the Connecticut Tumor Registry. We intend to              
validate 55 regions (100bp each) for 384 individuals. This will contain both African-Americans             
and Caucasians with clear cell and papillary RCC, to allow comparisons across histologic type              
and race. 
Apart from confirming associations between genomic alterations and kidney cancer, this large            
cohort helps us to better understand how frequently discovered alterations occur. 
 



C-4-b Power analysis for the validation cohort: Here we calculate our statistical power for              
detecting both common and rare SNPs associated with racial disparity in MET and VHL              
genomic modules. 
For the common SNP arm of the power analysis, we focus on 550 common SNPs prioritized by                 
the Fisher exact test proposed in Aim 3. The Fisher exact test is adopted to detect SNPs                 
associated with racial disparity in RCC, using equal numbers (192) of African American and              
Caucasian patients with RCC. To determine test power, we survey the parameter space of a               
candidate SNP, i.e. the frequency of a SNP in all patients (f) and in African American (fa) and                  
Caucasian (fc) patients. According to multiple testing correction with the Bonferroni method,            
only SNPs with p-value < 1.0e-4 are considered to be associated with race disparity in RCC.                
Using the STATMOD R package [66] [cite STATMOD package], we find that for detection with a                
power of 0.8, a candidate SNP requires an f and fa/fc larger than 0.08 and 3.5 respectively. We                  
note that the Bonferroni correction is overly stringent, rendering this power analysis            
conservative. 
For the rare SNP arm of the power analysis, we pool adjacent rare SNPs together. Following                
testing on all pooled rare SNPs tests, if we assume prioritized regions are genes, we expect                
approximately 10 genes of 5kb length. Using the SKAT R package, we performed a power               
analysis of 100 simulated samples. Even at this low number of samples, we were able to detect                 
regions with an Odds Ratio (OR) equal to 4 (power > 0.8). 
We expect to be able to match patients in our validation cohort, given scale of the statewide                 
population sampled. Pairing of subjects allows use of paired statistical testing. A paired test has               
much greater power than a pooled Fisher exact test. Therefore, our power analysis above is               
conservative, and should serve as a lower bound. 






