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Abstract 

The Pan-cancer Analysis of Whole Genomes (PCAWG) project provides an unprecedented 

opportunity to comprehensively characterize a vast set of uniformly annotated coding and non-

coding mutations present in thousands of cancer genomes. Classical models of cancer 

progression posit that only a small number of these mutations strongly drive tumor progression 

and that the remaining ones (termed “putative passengers”) are inconsequential for 

tumorigenesis. In this study, we leveraged the comprehensive variant data from PCAWG to 

ascertain the molecular functional impact of each variant, including putative passengers. This 

allowed us to decipher their overall impact uniformly over different genomic elements. The 

functional impact distribution of PCAWG mutations shows that, in addition to high and low 

impact mutations, there is a group of medium-impact putative passengers predicted to influence 

gene expression or activity. Moreover, we found that functional impact relates to the underlying 

mutational signature: different signatures confer contrasting impact, differentially affecting 

distinct regulatory subsystems and categories of genes. Also, we find that functional impact 

varies based on subclonal architecture (i.e. early vs. late mutations) and can be related to patient 

survival. Furthermore, we adapted an additive effects model derived from complex trait studies 

to show that aggregating nominal passenger variants provide significant predictability for cancer 

phenotypes beyond the characterized driver mutations. We further used the additive effects 

model to provide a conservative estimate on the number of mutations with weak positive and 

negative fitness effects in different cancer cohorts. 
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Introduction 

Previous studies have focused on characterizing variants occupying coding regions of cancer 

genomes1. However, the extensive Pan-cancer Analysis of Whole Genomes (PCAWG) dataset, 

which includes variant calls from >2500 uniformly processed whole cancer genomes, offers an 

unparalleled opportunity to investigate the overall molecular functional impact of variants 

influencing coding and different non-coding genomic elements. Given that the majority of cancer 

variants lie in non-coding regions2, this variant dataset serves as a substantially more informative 

resource than the many existing datasets focused on exomes. Moreover, it also contains a full 

spectrum of variants, including somatic copy number alterations (SCNAs) and large structural 

variants (SVs), in addition to single-nucleotide variants (SNVs) and small insertion & deletions 

(INDELS). 

Of the 30 million SNVs in the PCAWG variant data set, a few thousand (< 5/tumor3) can 

be identified as driver variants, i.e. positively selected variants that favor tumor growth,  by 

recurrence based driver detection methods. The remaining ~99% of SNVs are termed passenger 

variants (referred as putative passengers in this work), with poorly understood molecular 

consequences and fitness effects. Recent studies have proposed that, among putative passengers, 

some may weakly affect tumor cell fitness by promoting or inhibiting tumor growth. In prior 

studies, these variants have been described as “mini-drivers”4 and “deleterious passengers”5, 

respectively. 

 It is interesting to note that in a cancer genome, the presence of few drivers (with high 

positive fitness effects) and large numbers of putative passengers (with weak or neutral fitness 

effects) is analogous to prior observations in genome-wide association studies (GWAS) that 

implicated a handful of variants influencing complex traits. These modest numbers of variants 

explain only a small proportion of the genetic variance, thus contributing to the “missing 

heritability” problem in GWAS6,7. However, it has been shown that aggregating remaining 

variants with weak effects can explain a significant part of any “missing heritability”6 and is 

predictive of disease risk8. A recently proposed “omnigenic model” takes this logic a step 

further, arguing that the majority of complex traits are influenced by thousands of variants with 

individually small effects9. Although these models for complex disease are intriguing, they are 

also controversial, and further studies are required to test them. Nonetheless, these models 

highlight the importance of investigating the cumulative effect of putative passengers to 
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understand their potential role in cancer. Furthermore, we can adapt this model to estimate 

frequencies of rare drivers, which might be misannotated as passengers using recurrence-based 

approaches due to limitation of current sample sizes.  

 

Overall functional impact 

If these putative passenger mutations do indeed exert a combined effect on tumor cell fitness, 

one would expect that this effect is mediated through their molecular functional impact. 

Therefore, we surveyed the predicted functional impact distribution of somatic variants in 

different cancer genomes. The predicted functional impact distribution varies among different 

cancer types and for different genomic elements. A closer inspection of the pan-cancer impact 

score distributions for non-coding variants demonstrated three distinct peaks. The upper and the 

lower extremes of this distribution are presumably enriched with high-impact strong drivers and 

low impact neutral passengers, respectively. In contrast, the middle peak in the intermediate 

molecular functional impact regime corresponds to variants which may or may not have non-

neutral effects. These medium impact variants potentially include undiscovered drivers (strong & 

weak positive effects) and deleterious passengers (strong & weak negative effects) (Fig 1c).   

Subsequently, we investigated whether the frequency of medium-high impact putative 

passengers in a cancer cohort is proportionate to its total mutational burden.  For a uniform 

mutation distribution, we expect that the fraction of these putative passengers would remain 

constant as cancer samples accumulate more mutations. In contrast, we observed that as a cancer 

acquires more SNVs, the fraction of medium and high impact putative passengers often 

decreases. This trend is particularly strong in CNS medulloblastoma (p < 4e-8, 

Bonferroni's correction), lung adenocarcinoma (p < 3e-4, Bonferroni’s correction), and a few 

other cancer cohorts (Fig 1d). 

In addition to SNVs, large structural variations (SVs) also play important role in cancer 

progression. Thus, we quantified the putative functional impact of SVs (deletions and 

duplications). A close inspection of both SV and SNV impact scores suggest that certain cancer 

subtypes tend to harbor large number of high impact SVs, while others were more burdened with 

high impact SNVs (Fig 1e).  Many of these correlations have previously been observed12. For 

example, it is known that large deletions play role of drivers in ovarian cancer, whereas clear cell 

kidney cancer is often driven by SNVs. However, we also find new associations, such as the 
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predominance of high impact large deletions compared to impactful SNVs in the bone 

leiomyoma cohort. 

 

Burdening of different genomic elements 

Simplistically, one might assume that the overall burden of putative passengers in a cancer 

genome will be uniformly distributed across different functional elements and among different 

gene categories. In contrast, we observe that the predicted molecular impact burden in certain 

cancers is concentrated in particular regulatory regions and gene categories. This is easiest to 

understand in terms of coding loss-of-function (LoF) variants, where the putative molecular 

impact is most intuitive. Consequently, we examined the fraction of deleterious LoFs affecting 

genes across six categories of cancer-related functional annotation (Fig 2a). As expected, driver 

LoF variants showed significant enrichment in four categories (cell cycle, cancer pathway, 

apoptosis & DNA repair) of cancer-related genes compared to a random (shuffled-variant) 

control (p < 0.001). Conversely, non-driver LoFs displayed depletion compared to random 

expectation, in each of these categories (p < 0.001). However, non-driver LoFs in metabolic and 

essential genes were slightly enriched compared to the random expectation.  

Similar to LoF variants, we can also quantify the overall burden of the noncoding SNVs 

in a cancer genome. However, for the majority of noncoding SNVs, predicted molecular 

functional impact is less easy to gauge. For instance, coding and noncoding variants occupying 

the terminal region of the gene or intronic regions will most likely have little functional 

consequence. In contrast, molecular impact of transcription factor binding site (TFBS) variants is 

clearly manifested through the creation or destruction of transcription factor (TF) binding motifs 

(gain or loss of motif). In both cases (gain or loss), we observed significant differential 

burdening of TFBS among different cancer cohorts. For instance, we detected significant 

enrichment of high impact variants creating new motifs in various TFs including GATA, PRRX2 

and SOX10 (Fig 2b) across major cancer types, compared with uniform expectation. Similarly, 

high impact variants breaking motifs, were highly enriched in TFs such as IRF, POU2F2, 

NR3C1and STAT (Fig 2b) in the majority of cohorts. This selective enrichment or depletion 

suggests distinct alteration profiles associated with different components of regulatory networks 

in various cancers. 
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Furthermore, for a particular TF family, one can identify their target genes affected due to 

the bias towards creation or disruption of specific motifs in their regulatory elements (promoters 

and enhancers). For instance, the TERT gene shows the largest alteration bias for ETS motif 

creation across a variety of cancer types (Fig 2c). Other genes (such as BCL6) showed a similar 

bias, albeit in fewer cancers. Moreover, enrichment of SNVs in selective TF motifs leads to gain 

and break events in promoters that significantly perturb the overall downstream gene expression 

(Fig 2d). For example, ETS family transcription factor at the regulatory region of TERT and 

PIM1 gene displayed a strong motif creation bias and a significant change in gene expression 

(with p-value TERT=0.001 and p-value PIM1=0.019) (supplement X). 

Finally, we also analyzed the overall burden of structural variants (SVs) in various 

genomic elements and compared the pattern of somatic SV enrichment in cancer genomes with 

those from germline (Fig 2e). As expected, we observed that as somatic SVs were more enriched 

among functional regions compared to germline SVs, because the latter ones will be under 

negative selection for disrupting functional regions. Furthermore, we observed a distinct pattern 

of enrichment for SVs that split a functional element versus those that engulf it. As has been 

previously noted, there is greater enrichment of germline SVs that engulf an entire functional 

element rather than for those break a functional element partially13. Moreover, we observed the 

same pattern for somatic SVs, which is contrary to what one would expect from a purely random 

background model. 

 

Signature Analysis  

The differential burdening of various genomic elements can be attributed to either the underlying 

random but biased mutational processes or selection on variants occupying these elements. Thus, 

we closely inspected the underlying mutational signatures generating SNVs in coding and non-

coding regions of cancer genomes. For instance, one would expect that mutational processes 

creating stop codons will highly correlate with the number of LoF variants observed in a cancer 

sample. Indeed, we were able to identify a high correlation between the mutation spectrum and 

the number of LoFs within some cancer types. However, these correlations are highly 

heterogeneous among different cancer cohorts and the number of LoF mutations might be often 

driven by other factors. For example, Lung–SCC and Esophageal adenocarcinoma cohorts 

exhibit a high correlation between their mutation pattern and the number of LoFs per tumor 
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sample (r=0.55 and 0.46 respectively) (see supplement table X). Other cancer cohorts such as 

colorectal adenocarcinoma and non-Hodgkin lymphomas were able to withhold the majority of 

their LoFs with the ratio of observed vs expected close to 1(Fig 3a).  

Similarly, the disproportionate functional load on certain TFs in cancers can be related to 

an underlying mutational spectrum influencing their binding sites. This can be partially 

explained by the different nucleotide context among TF biding sites (TFBS). For instance, the 

mutational spectrum of motif breaking events observed in SP1 TFBS suggests major contribution 

from C>T and C>A mutation (Fig 3b). In contrast, motif-breaking events at the TFBS of 

HDAC2 and EWSR1 have relatively uniform mutation spectrum profiles. Based on the 

mutational context, we can further decompose all observed mutations into a linear combination 

of mutational signatures, which presumably represent the mutational processes (\cite{}). Every 

signature has varying influence on different cancer types and in a given cancer type, different 

signatures disproportionally burden the genome. Comparing the signature composition of low 

and high impact putative passengers in certain cancer-cohorts can help us to distinguish between 

mutational processes that generate distinct variant impact classes. For instance, in the Kidney-

RCC cohort, although the majority of passenger variants can be explained by signature 39, high 

impact and low impact passengers have different proportion of signature 5 and signature 1(Fig 

3c). We further generalized this analysis across multiple cohorts in PCAWG. Similar to Kideny-

RCC cohort, we observed distinct signature distributions for the low and high impact non-coding 

putative passengers in Liver-HCC, Prost-AdenoCA, Eso-AdenoCA and Ovary-AdenoCA 

cohorts (Fig 3c). Collectively, these findings suggest that various mutational processes shape and 

disproportionally burden cancer genomes. 

 

Subclonal architecture and cancer progression 

Cancer is an evolutionary process, often characterized by the presence of different sub-clones. 

These can be further categorized as early and late subclones based on the overall subclonal 

architecture of a cancer sample. Thus, we explored the relative population of high and low 

impact putative passengers in different sub-clones of a tumor sample to decipher their 

progression during tumor evolution. Intuitively, one might hypothesize that high impact 

mutations achieve greater prevalence in tumor cells if they are advantageous to the tumor, and a 

lower prevalence if deleterious. As expected, we observe this to be true among driver variants. 
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However, interestingly, we observe that high impact putative passengers in coding regions have 

greater prevalence among parental subclones (Fig 4a) – an effect driven by high impact putative 

passenger SNVs in tumor suppressor and apoptotic genes (Fig 4a). In contrast, high impact 

putative passenger SNVs in oncogenes appear slightly depleted. Similarly, high impact putative 

passengers in DNA repair genes and cell cycle genes are depleted in early subclones (Fig 4a). 

We obtained similar results when we simply categorized mutations based on variant allele 

frequency (VAF) (supplement Fig X). Note that these subclones and VAF based analyses are not 

reliant on any particular randomized model and so will be robust to potential inaccuracies in the 

null model. 

In non-rearranged genomic intervals, the VAF of a mutation is expected to be 

proportional to the fraction of tumor cells bearing that mutation. Previous studies have measured 

the divergence in VAFs to indirectly quantify heterogeneity in mutational burden among 

different sub-clones in a cancer. Here, we quantified this heterogeneity among low, medium and 

high impact putative passengers for different cancer cohorts. Overall, we observe lower 

mutational heterogeneity among high impact putative passenger SNVs. This observation is 

consistent for both coding and non-coding putative passenger variants (Fig 4b). 

Conceptually, variants that increase tumor cell fitness should lead to greater proliferation 

of the tumor cells containing them and should therefore tend to be present at increased VAF, 

when averaged across many samples. Similarly, variants that decrease tumor cell fitness should 

tend to be present at decreased VAF. In general, we expect that disruption of more conserved 

nucleotides (with high GERP score14) would be more likely to interfere with cellular processes 

and reduce cellular fitness. An exception is in cancer driver genes, where disruption of conserved 

nucleotides could be oncogenic, increasing cellular proliferative potential (Fig 4c). We find that 

within driver genes and their regulators, variants that disrupt more conserved positons tend to 

have higher VAFs. This trend remains true even after excluding SNVs that have been 

individually called as driver variants, suggesting the existence of weak driver variants within 

driver genes. We also find that outside of driver genes, variants that disrupt more conserved 

positions tend to have lower VAFs.  

Similar to the clonal status of a tumor, clinical outcomes such as survivability provides an 

alternative measure for tumor evolution. Therefore, we performed survival analysis to see if 

somatic molecular impact burden – here measured as the mean GERP of somatic nominal 
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passenger variants per patient – predicted patient survival within individual cancer subtypes. 

Patient age at diagnosis and total number of mutations were used as covariates in the survival 

analysis. We obtained significant correlations between overall molecular impact burden and 

survivability in two cancer subtypes after multiple test correction. Specifically, we observed that 

somatic mutation burden predicted substantially better patient survival in lymphocytic leukemia 

(Lymph-CLL, p-value 0.00023) and ovary adenocarcinoma (Ovary-AdenoCA, p-value 0.0020) 

(Fig 4d). The use of average impact rather than summed impact ensures that these results do not 

simply reflect more advanced progression (i.e. more mutations) of the cancer at the time of 

sequencing.  

 

Overall effects of nominal passengers and additive variance 

In addition to comprehensive characterization of putative passengers in PCAWG, we also 

estimated the overall effects of putative passengers on tumorigenesis. To address this, we first 

adapted an additive effects model6,10, originally used in complex trait analysis, to quantify the 

relative size of these aggregated effects in relation to known drivers. With a number of caveats 

regarding interpretation arising due to differences between germline and cancer evolutionary 

processes (see supplemental note X.b), we tested the ability of this model to predict cancerous 

from null samples as a binary phenotypic trait (Fig 1a). Briefly, we created a balanced dataset of 

observed tumor and matched neutral (null) model samples, where the latter preserve the 

mutational signatures and local mutation rates of the observed samples (see supplemental note 

Xa). Subsequently, we apply different thresholds on predicted molecular functional impact levels 

(using Funseq impact scores11; see supplemental note) to identify different sets of 

variants.  Using a linear model, for each SNV the additive effects model associates a positive or 

negative effect (coefficient), considering them to be sampled from a normal distribution.  The 

model has the form !" = $ + &'"('' + )", where !" is the phenotype (0/1) of sample *, &'" is the 

normalized SNV dosage of SNV + in sample * (z-score), )" is the residual effect for sample *, and 

$ is the mean phenotype.  The ('’s are normally distributed with variance ,-./0, where ,-. is the 

additive variance and 0 is the number of SNVs, and the )"’s are normally distributed with 

variance ,1.. The variance of ! is denoted ,2. (the ‘phenotypic’ variance), where ,2. = ,-. + ,1..  

The hyper-parameters ,-. and ,1. are optimized using restricted maximum-likelihood (REML)10, 

and the predictive power of the model can be summarized by σ4./,2.. 
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We applied this model in 8 cancer cohorts having sample size greater than 100. Across 

cancers, we found that the nominal passengers predicted a large fraction of the variance (64.5% 

median), a significant fraction of which remained even when coding variants were excluded 

(57.9%) (see Fig 1b; FDR<0.1 for all tests using a gene-level variant of the additive model 

except non-coding variants in CNS, Ovary and Prostate cancers, and FDR<0.001 for all tests 

using the basic (SNV-level) model, see supplemental table X).  We compared this with a model 

including all known drivers, which predict ~52.5% of the variance. The ability of the nominal 

passengers to achieve higher predictive accuracy in many tumor types implies that these variants 

must contain additional information to the known drivers.  However, there may be mutual 

information shared between the known drivers and nominal passengers, for instance due to 

epistatic effects.  Furthermore, we observed that across tumor types, the predicted variance per 

nominal passenger increases with impact score for both coding and non-coding variants, with the 

increase being stronger for coding variants (Fig. 1c).  However, the fact that the largest amount 

of variance is explained at the lowest impact threshold suggests that weak drivers and deleterious 

passengers at all impact levels might have functional consequence (supplement table X). 

Moreover, their effect sizes may become detectable individually with the increased power of 

larger datasets. 

 

Categorizing nominal passenger variants 

Through our analysis of the molecular functional impact of nominal passenger variants, we 

observed multiple manifestations that are suggestive of putative passenger’s impact on tumor 

cell fitness. Conceptually, variants can be classified into three categories based on their impact 

on tumor cell fitness: drivers with positive selective effects, nominal passengers with neutral 

selective effects, and deleterious passengers with negative selective effects. This broad 

classification can be further refined by considering ascertainment-bias and the putative molecular 

impact of different variants (Fig 5a). Previous power analyses15,16 suggest that existing cohort 

sizes support the identification of strong positively-selected driver variants, but that many 

weaker drivers, and even some moderately strong driver variants would be missed. However, 

these moderately strong and weak driver variants can also provide potential fitness advantage to 

tumor cells.  As for the functional-impact-based-classification: any positively or negatively 

selected variants will have some functional impact (i.e. effect on gene expression or activity). 
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The relevance of molecular functional impact is firmly established for driver mutations - 

positively-selected variants promoting tumor growth. However, rapid accumulation of weak and 

strong deleterious passengers, which undergo negative selection, could adversely affect the 

fitness of tumor cells5. Moreover, a majority of low impact and some high functional impact 

variants may alter tumor gene expression or activity in ways that are not ultimately relevant for 

tumor fitness; hence, these variants will undergo neutral evolution. 

 

Estimating number of weak drivers and deleterious passenger variants 

In the context of the conceptual categorization of variants in cancer, we used the additive effects 

model to estimate the frequency of weak drivers and deleterious passengers in various cancer 

cohorts through their combined ability to predict cancerous from matched neutral samples. As 

observed, these variants tend to have small effect sizes and current datasets are underpowered to 

detect them individually. However, we can estimate a lower bound on the number of the nominal 

passengers with non-neutral effects.  This can be estimated to be the size of the smallest subset of 

SNVs needed to reach the same predictive accuracy (measured using ,-.) as when using all 

nominal passengers collectively (See Supplemental Note).  

Further, having estimated ,-., we find the maximum a-posteriori estimate for the effect of 

each individual SNV, and use the effect signs from this estimate to then predict the number of 

weak drivers and deleterious passengers per tumor across the smallest subset (i.e. using positive 

effect for weak and negative effect for deleterious passengers). Next, A conservative estimate of 

the number of deleterious passengers removed can be made by comparing this prediction to the 

mean number estimated in the neutral samples. In general, we observe that the number of 

deleterious passengers removed is predicted to exceed the number of weak drivers across most 

tumors. The pan-cancer average of weak drivers per tumor falls in the range of 11.6(lower 

bound) to 16.1 (upper bound). Similarly, pan-cancer average of removed deleterious passenger 

per patient is in the limits of 23.6 (lower bound) to 57.9 (upper bound) (Fig 5b). These numbers 

are significantly higher than pan-cancer average of ~ 4.6 strong driver mutations.   

We corroborate the quantification of deleterious passenger variants with two other 

methods: impact depletion-based and VAF deficit approaches. To estimate the number of 

removed noncoding deleterious passengers per tumor, we compared the observed number of 

high-impact noncoding mutations with the number expected under a neutral model. We observed 
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a slight (2%) depletion in high-impact mutations in the observed mutation set versus the null, 

corresponding to a median of 48 high-impact noncoding mutations removed per tumor. This is 

consistent with earlier prediction of the removed deleterious passenger frequency based on the 

additive effects model. Additionally, the observed depletion of high-impact mutations was most 

pronounced at the promoters of essential genes in genomic regions impacted by loss-of-

heterozygosity (32%). Orthogonally, we used VAF deficits to estimate on average 8.6 retained 

deleterious passenger mutations per tumor. These are again conservative estimate, as we assume 

that latent drivers and deleterious passengers exert a VAF effect equal in magnitude to 

discovered drivers, when in fact, their true effect is likely smaller. 

 

Discussion 

Previous studies6 related to the missing heritability problem in GWAS, indicate that the 

cumulative effect of SNPs can explain the majority of missing associations. Similarly, here we 

investigate whether the cumulative molecular impact of many weak somatic SNVs can have a 

meaningful role in cancer progression. Intuitively, tumor cells must maintain function of some 

minimal set of essential genes in order to achieve homeostasis. It is plausible that the aggregate 

effect of functionally impactful nominal passenger variants influencing these essential genes 

would be deleterious to tumor cells5. Similarly, any variant that optimizes cell-division at the 

expense of organism-supporting functions is expected to have a small positive effect on tumor 

fitness that may be challenging to detect. In this work, we comprehensively characterized 

putative passengers in the PCAWG dataset. 

First, we evaluated the molecular functional impact of each variant in the PCAWG 

including putative passengers. We observed that functional impact distribution has a multi-

modal characteristic with significant number of nominal passengers with intermediate functional 

impact. Furthermore, contrary to simple expectation, we observe lower amount of impactful 

putative passengers with an increase in total mutation burden. Additionally, we also observed 

strong correlation between differential functional burden and patient survival in certain cancer 

cohorts. These trends can be explained by mutational signature and their differences in putative 

passengers with varying impact level. 

Second, we observe that various functional elements in a cancer genome are differentially 

burdened with distinct functional impact. To some extent, this can be associated with the 
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operation of various signatures, which in itself is interesting. However, in certain contexts this 

can be potentially related to presence of weak negative selection. For instance, depletion of 

nominal passenger LoFs in key gene categories including dna repair and cell cycle compared to a 

random expectation can be interpreted as presence of negative selection pressure. Interestingly, 

we do not observe such signal of weak negative selection among non-essential genes. This is 

consistent with prior studies suggesting role of negative selection in different cancers5. 

Third, we also detect a differential functional burdening between early and late subclones 

in a cancer. More specifically, we observed an overall enrichment and depletion of nominal 

passenger variants among TSGs and oncogenes, respectively. A speculative interpretation of this 

finding can be that a subset of putative passengers in tumor suppressor genes may have 

potentially weak driver activity, while those in oncogenes impair oncogenic activity to the 

detriment to tumor fitness. However, we note that difference in signatures between and early and 

late subclones can also contribute to these observed differences. Finally, using an additive effects 

model, we show that aggregating nominal passengers in a cancer genome can provide significant 

predictive ability to distinguish cancer phenotype from non-cancerous ones. Moreover, this 

model can be also utilized to obtain a conservative estimate of the number of putative passengers 

with weak positive and negative effect in various cancer cohorts.  

We note that discussion of these selective effects is meaningful only in the context of a 

proper background (null) model. For instance, one can identify a role of positive or negative 

selection based on differences between an observed attribute and the corresponding random 

expectation derived from a null model. However, this assumes that we apply an accurate 

randomized model to perform the comparison. In this work, we utilize a local background model 

that has been applied in other efforts in PCAWG, including driver discovery. However, our 

understanding of the underlying mutational processes and genome structure of a tumor sample is 

limited, which can be a hindrance in achieving the accurate null model. Nonetheless, we our 

additive variance analysis suggest potential role of weak positive and negative selection among 

putative passengers. These observations further motivate follow up experiments and additional 

whole genome analyses to explore the role of weak putative passengers with weak (positive and 

negative) fitness effects in cancer. In conclusion, our work highlights that an important subset of 

somatic variants originally identified as putative passengers nonetheless show biologically and 

clinically relevant functional roles across a range of cancers. 
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Figure 1: Additive effect and overall functional impact of PCAWG variants: Additive effects model for nominal passengers: 
The combined effects of many nominal passengers are modeled using a linear model, which predicts whether a genotype arises 
from an observed cancer sample or from a null (neutral) model (notation defined in text). The model is fitted by optimizing the 
hyper-parameter ,-., and a test for significant combined effects of the nominal passengers is made by performing a log-likelihood 
ratio test against a restricted model which includes only µ and e. b) Predictive power of known drivers and nominal passengers 
using the additive effects model: Figure compares the maximum possible variance which can be explained using known drivers 
with the performance of the model from using either non-coding passengers or all nominal passengers.  c) Functional impact 
distribution in noncoding region: three peaks correspond to low, medium and high impact variants. d) Correlation between 
number of impactful and total SNV frequencies for different cohorts. e) log ratio of high impact structural variants(SVs) and 
SNVs in different cancer cohorts.  



 
 

 
 
 
Figure 2: Overall functional burdening of different genomic elements: a) Percentage of genes in different gene categories 
(apoptosis, cell cycle, cancer pathway, dna repair, metabolic and essential genes) affected by non-driver LoFs in observed and 
random model, b) Pan-cancer overview of TFs burdening: Heat map presenting differential burdening of various TFs due to 
SNVs inducing motif breaking and motif gain events in different cohorts compared to the genomic background. c)target genes 
affected due to motif gain and loss in ETS transcription factor family: genes such as TERT, RP17-731F5.2 and JSRP1 are 
affected due to gain of motif event, whereas ASXL2 and RPS27 are affected due to loss of motif event. d) q-q plot showing 
genes such as TERT, PIM1 and BCL2, which are differentially expressed due to gain of motif event in ETS TFs. e) enrichment 
of germline and somatic large deletions in coding region and transcription factor binding peaks. Large deletions can engulf or 
partially delete various genomic elements. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
Figure 3. Mutational signatures associated with different categories of impactful variants: a) Differences in mutation 
spectrum leading to stop-coding triplets as a fraction of the total number of mutations per sample between three cancer cohorts: 
Colorectal Adenocarcinoma, Esophageal Adenocarcinoma and Skin Melanoma. In addition, we also present the ratio between 
observed/expected LoFs mutations per sample for these cohorts. b) Mutation spectra associated with motif breaking events 
observed in HDAC2, EWSR1 and SP1 in the kidney-RCC cohort. c) Differences in underlying signatures between high and low 
impact nominal passengers in different cancer cohorts. d) Distribution of canonical signatures in the kidney-RCC cohort for 
impactful (bottom) and low-impact SNVs (top).  
 
 
 



 
 
Figure 4: Correlating functional burdening with subclonal information and patient survival:  a) Subclonal ratio (early/late) 
for different categories of SNVs (coding/non-coding) based on their impact score. Subclonal ratio for high impact SNVs 
occupying distinct gene sets. b) Mutant tumor allele heterogeneity difference comparison between high, medium and low impact 
SNVs for coding(left) and non-coding regions(right). c) correlation between mean VAF and GERP score of different categories 
of variants (driver SNVs, non-driver SNVs in known cancer genes & passenger variants in non-driver genes) on a pan-cancer 
level. d) Survival curves in CLL (left panel) and RCC (right panel) with 95% confidence intervals, stratified by mean GERP 
score. 



 
 
 

 
 
 
Figure 5. Conceptual classification of somatic variants into different categories based on their functional impact and 
selection characteristics: a) Both coding and non-coding variants can be classified as drivers and passengers based on their 
impact and signal of positive selection. Among nominated passengers, true passengers undergo neutral selection and tend to have 
low functional impact. Deleterious passengers (weak & strong) and mini-drivers (weak & strong) represent various categories of 
higher impact nominal passenger variants, which may undergo weak negative or positive sections. b) Conservative estimate 
(lower bound) of the number of removed deleterious passengers and weak drivers per sample in pan-cancer and individual cancer 
cohorts. Note that we only estimated these frequency for selected cohorts with sample size > 100. 
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To estimate the overall effects of nominal passengers on tumorigenesis 
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, we first adapted an additive effects model6,10, originally used in complex trait analysis, to 

quantify the relative size of these aggregated effects in relation to known drivers. With a number 

of caveats regarding interpretation arising due to differences between germline and cancer 

evolutionary processes (see supplemental note X.b), we tested the ability of this model to predict 

cancerous from null samples as a binary phenotypic trait (Fig 1a). Briefly, we created a balanced 

dataset of observed tumor and matched neutral (null) model samples, where the latter preserve 

the mutational signatures and local mutation rates of the observed samples (see supplemental 

note Xa). Subsequently, we apply different thresholds on predicted molecular functional impact 

levels (using Funseq impact scores11; see supplemental note) to identify different sets of 

variants.  Using a linear model, for each SNV the additive effects model associates a positive or 

negative effect (coefficient), considering them to be sampled from a normal distribution.  The 

model has the form !" = $ + &'"('' + )", where !" is the phenotype (0/1) of sample *, &'" is the 

normalized SNV dosage of SNV + in sample * (z-score), )" is the residual effect for sample *, and 

$ is the mean phenotype.  The ('’s are normally distributed with variance ,-./0, where ,-. is the 

additive variance and 0 is the number of SNVs, and the )"’s are normally distributed with 

variance ,1.. The variance of ! is denoted ,2. (the ‘phenotypic’ variance), where ,2. = ,-. + ,1..  

The hyper-parameters ,-. and ,1. are optimized using restricted maximum-likelihood (REML)10, 

and the predictive power of the model can be summarized by σ4./,2.. 

We applied this model in 8 cancer cohorts having sample size greater than 100. Across cancers, 

we found that the nominal passengers predicted a large fraction of the variance (64.5% median), 

a significant fraction of which remained even when coding variants were excluded (57.9%) (see 

Fig 1b; FDR<0.1 for all tests using a gene-level variant of the additive model except non-coding 

variants in CNS, Ovary and Prostate cancers, and FDR<0.001 for all tests using the basic (SNV-

level) model, see supplemental table X).  We compared this with a model including all known 

drivers, which predict ~52.5% of the variance. The ability of the nominal passengers to achieve 

higher predictive accuracy in many tumor types implies that these variants must contain 

additional information to the known drivers.  However, there may be mutual information shared 

between the known drivers and  
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  Furthermore, we observed that across tumor types, the predicted variance per nominal 

passenger increases with impact score for both coding and non-coding variants, with the increase 

being stronger for coding variants (Fig. 1c).  However, the fact that the largest amount of 

variance is explained at the lowest impact threshold suggests that weak drivers and deleterious 

passengers at all impact levels might have functional consequence (supplement table X). 

Moreover, their effect sizes may become detectable individually with the increased power of 

larger datasets. 
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what we term impactful nominal passengers. This intermediate functional 
 

 


