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So far in the Gerstein Lab…

• ENCODEC


• Privaseq3


• EN-TEx 
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Image L: http://calorierestrictiondietplan.com/customizing-a-cr-way-lifestyle-for-your-genome/ 
Image R: https://www.genome.gov/27561246/privacy-in-genomics/ 

Personal Genomics 

From Personal Genomics to Genome Privacy

Genome of an Individual 

Sequencing, analysis, interpretation 
Soon will become part of medical 
practice 
NCI: prevent, diagnose, and treat 
disease through personalized medicine

Privacy risk 

Identity tracing 
Link between unknown genome to a panel 
of individual through quasi-identifiers 

Attribute Disclosure Attacks 
Known DNA sample to private data such 
as HIV status or drug abuse 

Completion Techniques 
Impute sensitive information from partial 
genomic data (e.g. bipolar disorder risk)
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Genome Privacy traditionally focuses on DNA variants

Detecting whether an individual with known 
genotypes in a complex DNA mixture 

Homer et. al, 2008

Distance between genotype and dataset


Im et. al, 2012

Regression coefficients of GWAS summary 
statistics can reveal person’s participation

Identification attacks by cross-referencing independent datasets 

Sweeney at al, 2013

Cross-reference PGP profile with public voter list data


Gymrek et al, 2013

Cross-reference Y-STRs with recreational genetic genealogy database 

Homer et. al, 2008

Sweeney et. al, 2013 Gymrek et. al, 2013
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Functional genomics era increases the number of quasi-
identifiers

RNA-Seq is of particular interest 

Big consortia like ENCODE, TCGA, GTEx provide a wealth of functional genomics data, which 
particularly belong to individuals 

Schadt et. al, 2012


SNP genotypes can be predicted from RNA-Seq expression data using known eQTLs

Harmanci and Gerstein, 2016


eQTLs and extreme expression levels can be used to do linking attacks


Schadt et. al, 2012 Harmanci and Gerstein, 2016

ChIP-Seq and Hi-C signal tracks can also leak genotype information 

Harmanci and Gerstein, 2017
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Functional genomics era attacks focus on phenotype-
genotype relationship

BUT, nobody is talking about the “elephant in the room”


All the functional genomics data comes with a great deal of sequencing data


How much information, for example, RNA-Seq reads or ChIP-Seq reads contain?


Is that information enough to identify individuals?


Is it safe to share the fastq/bam files from these experiments?


HeLa genome is locked, but we have access to its ChIP-Seq reads!

Image: http://berkeleysciencereview.com/article/good-bad-hela/ 
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Private	informa-on	leakage	in	
func-onal	genomics	data	

Quantification and Linking
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Datasets

Individual: NA12878

Gold Standard: 1000 Genome genotypes

Control: WGS, # of reads= 757,704,193, 
read length = 250 bp

Experiment #	of	Reads Read	Length

Hi-C	exp	1	PE1 219,616,072 101

Hi-C	exp	1	PE2 220,087,882 101

Hi-C	exp	2	PE1 448,843,710 101

Hi-C	exp	2	PE2 451,088,484 101

Hi-C	exp	3	PE1 536,684,803 101

Hi-C	exp	3	PE2 536,101,709 101

RNA-Seq 227,501,266 202

Experiment #	of	Reads Read	Length

H3K4me1 42,763,056 36

HDGF 41,626,373 101

RELB 25,652,682 101

CTCF-Snyder 25,463,397 36

H3K4me3 20,221,959 36

JUND 18,701,295 36

H3K79me2 16,073,184 36

H3K36me3 15,239,685 51

H2AFZ 14,724,790 36

H3K9me3 14,049,420 36

CTCF-Broad 11,026,086 51

rnap2 10,428,778 36

H3K27ac 10,410,928 51

H3K4me2 9,815,194 51

H4K20me1 9,757,368 51

H3K27me3 8,454,639 51

H3K9ac 7,981,456 51

CTCF-Iyer 7,614,943 35

rnap2 7,516,461 36

PBX3 6,119,046 36

ChIP-Seq
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Approach
ACATGACGCACTGCGCTGTGACATGACGCCCAGCGCGGTGTCATGACGCACTGCGCTGTG
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Approach
ACATGACGCACTGCGCTGTGACATGACGCCCAGCGCGGTGTCATGACGCACTGCGCTGTG

n
Genotyping 

(GATK pipeline) 
Information quantification

Linking

1kG panel
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Approach
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Approach

Genotyping 
(GATK pipeline) 

Information quantification
Linking

1kG panel

ACATGACGCACTGCGCTGTGACATGACGCCCAGCGCGGTGTCATGACGCACTGCGCTGTG

n
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5n = total number of reads in the experiment
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Approach

Genotyping 
(GATK pipeline) 

Information quantification
Linking

1kG panel
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For WGS/Hi-C/ChIP-Seq Analysis

For RNA-Seq
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What is “information”?
Let SGS(NA12878)  be the set of SNVs determined by 1k genome (gold standard)

Let SFGE be the noisy set of SNVs called using the reads from any functional 
genomic experiment 

SGS(NA12878)SFGE

h(SFGE) h(SGS)

pointwise mutual 
information (pmi)

f(si) : number of individuals with SNV si

nT : total number of individuals in the 
population

17

Further normalization with the gold standard 


%of the gold standard information = pmi(SFGE;NA12878) / SGS(NA12878) 



How much information a typical Hi-C experiment 
contain?
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However, this is just one experiment out of 18 that was used to create the whole Hi-C 
library. Can we get more information by adding these experiments together?
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Putting Hi-C experiments together does not change the outcome
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How much information a typical RNA-Seq 
experiment contain?
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Hi-C reveals more information at transcript and coding regions 
compared to RNA-Seq

Transcript Protein-coding

21
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How much information ChIP-Seq contain?
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Seems like both ChIP-Seq and RNA-Seq leak only a small proportion of private information.

Now, the question becomes “does this leakage enough to link the individuals to a panel of 

genotypes? 
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Expk {S}
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Linking attack with the publicly available fastq files



Quantification of Linking Accuracy
1. Amount of information we have for the target individual +

2. Amount of information we have for other individuals in the panel -


- Rank of all the pmi(S;i) values, where S is the set of genotypes called from experiment, and i is the genotypes of 
individual i in the panel.


- Calculate gapi  for each individual as


Individual i is extremely vulnerable


Individual i is vulnerable


Individual i can be vulnerable with auxiliary information


Individual i cannot be identified


pm
i

Individual i

gapi
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ChIP-Seq reveals way less information compared to other 
assays. However, it provides comparable linking accuracy to 

WGS and Hi-C!

0 0.5 1 1.5 2
Total Coverage (bp) 1011

1.5

2

2.5

3

3.5

ga
p N

A
12

87
8

WGS
Hi-C1
Hi-C2
Hi-C3
Total RNA-Seq
polyA RNA-Seq

0 1 2 3 4 5
Total Coverage (bp) 109

0

0.5

1

1.5

2

2.5

3

3.5

ga
p N

A
12

87
8

H3K4me3
CTCF-Broad
H3K27ac
H3K27me3
H3K36me3
H3K4me1
H3K4me2
H3K9ac
H4K20me1
H2AFZ
H3K79me2
H3K9me3
rnap2
PBX3
rnap2
CTCF-Iyer
JUND
CTCF-Snyder
RELB
HDGF

25



ChIP-Seq reveals way less information compared to other 
assays. However, it provides highest linking accuracy!

A better comparison can be made by normalizing the gap by the coverage

absolute linking  quality (expk) = log2 [ max(gap)/{coverage at max(gap)} ]


coverage = total coverage / haploid genome size
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Genotyping Accuracy
For a high quality linking, we needed


1. High information overlap with the target individual

2. Less information overlap with the rest of the panel


X Y

h(x|y) h(y|x)pmi(x;y) {h(x,y)

npmi(x;y) = pmi(x;y)/h(x,y)

If npmi(x;y) = -1, x and y never occurring together

npmi(x;y) = 0, x and y are independent

npmi(x;y) = 1, x and y are completely co-occuring


Normalized point wise mutual information - npmi(x;y) 

If X is the genotype set called from experiment, Y is the gold standard, then npmi(x;y) can be used as a 
metric for genotyping accuracy.


Not only missed genotypes (h(y|x)) but also the noise (or the False Positives or h(x|y)) will affect this 
metric. 
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The difference between npmi of Hi-C and WGS is smaller compared to 
difference between pmi
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X Y

h(x|y) h(y|x)pmi(x;y)

Variant calling from Hi-C is less noisy compared to WGS?

noise(X)=h(x|y)/h(x)

Self information of X that 
does not overlap with 
self information of Y

Self 
information of 

X
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Yes! At low coverages … 
Still somewhat better at high coverages
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Variant calling from ChIP-Seq is comparable to Hi-C and WGS in terms 
of noise - maybe a bit more noisy
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Variant calling from RNA-Seq has the highest amount of noise

Potential Reasons:

* Split Reads

* RNA editing
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Imputation of more SNVs

Use IMPUTE2 and 1000genomes panel to impute new SNVs using LD blocks


Imputed SNVs are further filtered based on <0.3 certainty threshold


pmi score is adjusted 
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Imputation substantially increases the information
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More information can be imputed from ChIP-Seq&RNA-Seq compared 
to Hi-C
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 - Having more depth in a concentrated area vs. having shallow depth but sampling 
the genome in many LD blocks 
  - More room for imputation - data is sparse

3’ 5’
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However, imputation decreases linking accuracy
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Because we impute SNVs that have high MAFs in the population and end up having 
common SNVs to the individuals in the panel
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We can further put all ChIP-Seq together and gain a wealth of 
information about the individual
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Phenotypes can be inferred using noisy&incomplete sequencing data 
from RNA-Seq and ChIP-Seq
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Blue vs. brown eye
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A	theore(cal	Framework	

Given properties of an experiment with sequencing product, can we predict approximately how much 
information will be leaked without calling variants?


As the total coverage increases, leaked information increases - trivial but is it linear?


Can depth of the coverage alone predict the leaked information?


Every experiments comes with biases (i.e transcription factor binding site distribution, non-coding 
genome, just protein coding genome, etc)


Can we quantify the bias? Does that help us to quantify the leaked information?


          If y is the leaked information, is there an f? If so, what are x?
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Lander-Waterman Statistics
ACATGACGCACTGCGCTGTGACATGACGCCCAGCGCGGTGTCATGACGCACTGCGCTGTG

Depth of 
coverage, d

Breadth of coverage, b

Lander-Waterman Equation 
d=NxL/G


N = number of reads

L =  length of the reads

G = haploid genome length

• Since G >> L, end effects are ignored

• Left-hand ends of the fragments are independently distributed with uniform distribution over [0, G]

• Any left hand falls in an interval (x , x+L) with a probability of N/(G-1),  G is large, so N/G

• Number of fragments that fall in to this interval has a binomial distribution with a mean of NxL/G = d

• Since N>>L, this distribution approximates to Poisson with a mean and std of d


depth

P(
X=

de
pt
h)
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Lander-Waterman statistics can be used to estimate the bias
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• Expected distributions are derived 
using mean = NL/G for each 
experiment


• Bias ~ divergence from Poisson


Kullback–Leibler divergence

DKL i s the expecta t ion o f the 
logarithmic difference between the 
depth distribution of an experiment 
and its expected Poissonian behavior 
if it were to be a WGS experiment 

WGS 0.235717159

Hi-C 0.447761206

RNA-Seq 1.725381274

CTCFSnyder 0.296116866

DKL
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A Theoretical Framework
ACATGACGCACTGCGCTGTGACATGACGCCCAGCGCGGTGTCATGACGCACTGCGCTGTG

Depth of 
coverage, d

Breadth of coverage, b

Lander-Waterman Equation 
d=NxL/G


N = number of reads

L =  length of the reads

G = haploid genome length

y = nmpi(X;NA12878)   (genotyping accuracy)

x1=breadth of the coverage

x2=depth of the coverage


x3=DKL (divergence from expected distribution)

X Y

h(x|y) h(y|x)pmi(x;y) {h(x,y)
npmi(x;y) = pmi(x;y)/h(x,y)
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Nonlinear relationship between the features and npmi
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Regression Learning 

• 19 different learners (linear regression, different trees, SVM with different kernels, Gaussian 
process regression) 


• Best fit = Gaussian Process Regression with exponential kernel
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Regression Learning 

• Total of 45 data points (values range between 0 and 35)

• 40 is used for training, 5 is for test (randomly sampled)

• 5-fold cross validation during training


10-2 10-1 100 101 102

predicted
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100

101

102
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Training data, RMSE=0.06

10-1 100 101 102

predicted

10-1

100

101

102

tru
e

Test data, RMSE=0.07
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A few points to consider in the future

• We can simulate more data points to increase the sample size for the 
learner


• Definition of bias can be changed and it might help to build a better 
predicter
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• Try to predict the information content of a different kind of functional genomics 
data such as ATAC-Seq or Faire-Seq



How can we secure this data?
Privacy preserving file format


Option 1: MRF Format - For RNA-Seq


Problems: 
• Indels can be inferred from the split reads
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Total coverage (bp) 1010
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allSNV
indel Individual is 

extremely 
vulnerable

1
2
3

AlignmentBlocks           ID
chr1: + :201:250:1:50
chr5: -- :561:510:1:50
chr3: + :724:773:1:50
  .  .  .

ID            Sequence
1
2
3

GTCGTGCTCGTATC...
ATGCGTCAGTCGTT...
CTCGTGCATGCCGT...
 .  .  .

Public Private

MRF file is significantly smaller 
     ~400 MB uncompressed
BAM file  
     ~1 - 2 GB
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How can we secure this data?

Privacy preserving file format


Option 2: MRF Format Re-visited


As it turns out STARR prints deletions differently than split reads in a bam file


A
B

A B

C

C
Splice junction read

TS1 TE1 TS2 TE2 Reference 
genome

Chr n: +/- : TS1—TE1:TS2—TE2
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How can we secure this data?

Privacy preserving file format


Option 2: MRF Format Re-visited


As it turns out STARR prints deletions differently than split reads in a bam file


A
B

A B

C

C
Deletions

Reference 
genome

S1 S1+N

N: read length

Chr n: +/- : S1—S1+N
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How can we secure this data?

Privacy preserving file format


Option 2: MRF Format Re-visited


As it turns out aligners prints indels differently than split reads in a bam file


A
B

A B

C

C
Insertions

Reference 
genome

S1 S1+N

N: read length


Chr n: +/- : S1—S1+N
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How can we secure this data?

Privacy preserving file format


Option 3: GMZ Format (MRF+privateKey) 

Objectives: 
• Keep the public data light (small file size)

• Keep the private data light

• Minimize the information leakage

• Maximize the utility


Privacy in traditional data science sense…

Internet

Bob

Alice Privacy preserving mapping
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Privacy in traditional data science sense…

Privacy	preserving	mapping	
	
S	à	set	of	variables	that	should	remain	private	
Y	à	set	of	measurements	that	S	can	be	inferred	
U	à	distorted	version	of	Y		

S	à	Y	à		 à	U	

Privacy	preserving	mapping		
PU|Y (.) Calmon	and	Fawaz,2012	

increase utility 
decrease privacy risk

50



How can we secure this data?
Privacy preserving file format


Option 3: GMZ Format (MRF+private-key) 

Alice Bob
plaintext

Alice plaintext chipher chiphertext
Bob
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How can we secure this data?
Privacy preserving file format


Option 3: GMZ Format (MRF+private-key) 

Alice plaintext chipher chiphertext
Bob

m = plaintext

c = chipper text

Ek = encryption chipper, k is a cyrptographic key

Dk = Ek-1 = decryption chipper


c = Ek(m)

Dk(c) = Dk(Ek(m)) = m


KGB ciphertext found in a hollow nickel in Brooklyn in 1953
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https://en.wikipedia.org/wiki/Hollow_Nickel_Case
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How can we secure this data?

Privacy preserving file format


Option 3: GMZ Format (MRF+private-key) 

An example encryption technique: Vernam Chipper (one-time pad) 

• Information-theoretically secure - impossible to crack

• Used to store highly sensitive data - NSA uses one-time pad


• Based on exclusive-or (XOR, ⊕)

• x⊕y is true when exactly one of x and y is true

• x⊕y is false when x and y are both true or both false


• c = m ⊕ k  and m = c ⊕ k


Dk(Ek(m)) =  c ⊕ k 

               = (m ⊕ k) ⊕ k 


  = m ⊕ (k ⊕ k)  

  = m ⊕ 0 

  = m




k = sum of numerical values of alphabet

(A=0, B=1, C=2, …, Z=26 -> k=26)


Let’s say Alice wants to say “HELLO” to Bob

 H       E       L       L       O  message
   7 (H)   4 (E)  11 (L)  11 (L)  14 (O) message
+ 23 (X)  12 (M)   2 (C)  10 (K)  11 (L) key
= 30      16      13      21      25     message + key
=  4 (E)  16 (Q)  13 (N)  21 (V)  25 (Z) (message + key) mod 26
      E       Q       N       V       Z  ! ciphertext

Bob converts chipher text “EQNVZ”  


   E       Q       N       V       Z  ciphertext
    4 (E)  16 (Q)  13 (N)  21 (V)  25 (Z) ciphertext
-  23 (X)  12 (M)   2 (C)  10 (K)  11 (L) key
= -19       4      11      11      14     ciphertext – key
=   7 (H)   4 (E)  11 (L)  11 (L)  14 (O) ciphertext – key (mod 26)
       H       E       L       L       O  ! message

How can we secure this data?

An example encryption technique: Vernam Chipper (one-time pad) 

Problem: Key has to be same size as the message 
For a 2GB bam file, we need to create 2GB of key file 

We might as well lock the bam file 
BUT



How can we secure this data?
Privacy preserving file format


Option 3: GMZ Format (MRF+private-key) 

1
2
3

AlignmentBlocks           ID
chr1: + :201:250:1:50
chr5: -- :561:510:1:50
chr3: + :724:773:1:50
  .  .  .

Public Private

AXTFGHUERTHABJINDWD
DETRYUWRRTYUQWEYYU
QWRUOTYHIKLWDRHUKY

 hg19       Reference Genome
GTCGTGCTCGTATC...
ATGCGTCAGTCGTT...
CTCGTGCATGCCGT...
 .  .  .

Public

X X

=

ID            Sequence
1
2
3

GTCGTGCTCGTATC...
ATGCGTCAGTCGTT...
CTCGTGCATGCCGT...
 .  .  .

Hidden

 MRF 
~400 MB

private-key 
~10 MB

BAM file 
~1—2 MB



• There is information leakage even in low coverage functional genomics data


• Enough to identify individual in a panel


• Sensitive phenotype information can be inferred from the leaked 
information


• We have developed an information theoretic framework to quantify the 
information leakage


• We can predict the leaked information by using the depth, breadth and the 
bias of the sequencing experiment


• We have improved our existing privacy preserving file formats to prevent the 
private information leakage
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Summary
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Future Directions

• Working on a linking attack using gene expression extremity + loss of function mutation from 1000genomes


• Accurate genotyping/somatic mutation load using Hi-C data for samples we don't have WGS data - especially for tissue 
samples from one individual or cells in different developmental stages from same donor


• EN-TEx data can be utilized


• Private information leakage in functional genomics data in terms of SVs. I ran CNVnator on Hi-C data for deletions (NA12878)


• Which in turn can lead to SV calling from Hi-C data (deletions and using diagonal for tandem repeats)


• Might also lead to better understanding of SV mechanism with the underlying 3D genome architecture

WGS	 		

Total	number	of	dele2ons	 227	

Total	bp	of	dele2ons	 26,474,150	

Hi-C	 		

Total	number	of	dele2ons	 804	

Total	bp	of	dele2ons	 42,710,150	

Intersect	 		

Total	number	of	dele2ons	 82	

Total	bp	of	dele2ons	 250,155,00	

True	Posi2ve	 95%
False	Posi2ve	 41%
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