Logic

Data larger

Key is prioritizing

How to do this ?

Key aspect is driver v pass.



Logic

Data larger



Number of cancer mutations
annotated by COSMIC (x 10°)

(number of coding mutations
per sample)

Log10

25

20—

15+

10

Mutations downloaded from COSMIC

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

T Somatic variants in 33 cancertypes

l T ; +% Data taken from TCGA (data from

| ++I + ++ 10,489 tumor samples shown)

Cancer type

Yiet al, NRG(2017)



Fraction of different mutation types

~2/3 of variants are non-synonymous SNVs

The variants reported here are not exclusive to driver events
b Pan-cancer

dominated by SNVs: kidney clear-cell carcinoma, glioblastoma multiforme, hepatocellular carcinoma, acute myeloid
leukaemia, colorectal carcinoma and endometrial carcinoma
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carcinomas
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Identifying driver mutations
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mutations mutations
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Cancer
genomics

Chin, L etal., Nat Med (2011)



Human Genetic Variation

Population of

A Cancer Genome A Typical Genome 2,504 peoples

Origin of Variants Class of Variants

3.5-4.3M 84.7M

550 - 625K 3.6M

2.1-2.5K 60K
(20Mb)

Somatic | ~50 5K RN 88.3M
4.1 -5M

Prevalence of Variants

conmon

Driver (~0.1%) Rare* (1-4%) Rare (~75%)

* Variants with allele frequency <0.5% are considered as rare variantsin 1000 genomes project.

The 1000 Genomes Project Consortium, Nature.2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108



Cancer drivers: Significance & identification

(Finding the key mutations in “3M Germline variants &

~5K Somatic Variantsin a Tumor Sample)




Cancer drivers: Significance & identification

+ Driver mutations
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Cancer drivers: Significance & identification: functional annotations
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