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0. ABSTRACT (WUM): @ O(Z_Dég D

Interactions between biomolecules are at the core of human biology. Disease arises not only
from single molecular defects but also from disturbed interactions between many proteins and
functional genomic elements. The same interactions that make life so complex and wonderful,
also make some diseases difficult to treat. Network theory is a well-developed branch of
mathematics that organizes and analyzes the interactions of parts within a system. Network
theory is of particular relevance to biology and medicine, as it provides tools and a framework
for understanding molecular interactions. Through a network approach to biomedical data,
insights from across diverse fields can be brought to bear on biomedical data.
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1. INTRODUCTION:
1.1 Networked systems are at the core of human biology (PDM):

Human health and disease depend on vast networks of molecules that interact and
communicate. Transfer of genetic information, cellular communication, and human metabolism
are all mediated by complex pathways and networks of molecules. Network analysis of
large-scale data has been used to identify critical pathways and proteins in gene regulatory
networks {24092746}, including molecular pathways affected by cancer \{22955619, ENCODE
and Cancer?}. Off-target effects of prescription drugs have been predicted through a network
model of metabolism \{23455439}. Insights into inflammatory diseases like asthma have been
revealed by studying the structure and function of networks of inflammatory signaling molecules
\{23407534, 25981665, 17962519}.

Molecular networks change and evolve over time with surprising dynamic complexity
\{15372033}. Pro-inflammatory T-cells of the immune system rewire their regulatory networks in
autoimmune disease \{23467089, 27307629}. The microbiome of the gut interacts with the
human metabolome, and both change together in response to diabetes, or pregnancy, or
antibiotic treatment \{22863002, 26633628,24445449}. Substantial changes in the epigenome
are observed in human tissues according to cell-type \{25693563}. Network rewiring may be
both the cause and consequence of changes to human health \{19741703}. Complete
understanding of many molecular networks requires an understanding of these temporal
features.

The temporal evolution of molecular networks allows them to perform logical operations and
transmlt complex signals \{14530388}. Exciting discoveries have been made related to the
possibi >gic based communication on networks. For example, this network logic appears
g the orchestration of embryonic development \{23412653,22927416}. There
sibility for future bioengineering of molecular interaction networks to perform
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complex logic, and to intervene in disease processes {23041931, 24908100}. A greater
understanding of biological networks and their logical structures may eventually provide a
platform for augmentation of existing biological capability.

There is potential for theory and techniques from across the well-developed field of @C\\)Q/W‘j
network-science to be gainfully applied to molecular data. Novel network analysis techniques \K\/V G
like HotNet \{25501392,21385051} use the principle of ‘guilt by association’ to identify T\cl
associated molecular function in molecular networks. Advanced machine learning techniques

like the deep neural network method DeepBind, have resulted in the discovery of network

topology through large-scale analysis of genetic sequences \{26213851}. Connectedness

among molecular structures means that network-based techniques are a natural fit for analyzing

large data sets of molecular information \{19741703}.

Network analysis of biomedical data is not just a research technique but is critical to the practice

of modern medicine. Autism and schizophrenia are among diseases that we now understand

are unlikely to be associated with a single molecular alteration, but by multiple affected genes in

critical molecular pathways\{27479844, 23453885}. Clinical use of gene expression panels, like

the 21-gene panel OncoType Dx that predicts breast cancer recurrence, use molecular 0%
phenotype as a proxy for disease phenotype \{26412349}. Disease transmission through social = S
networks, as in the 2013 ebola-virus outbreak in West Africa \{26465384} or Zika-virus spread in

the Americas \{28538723, 27013429}, may be tracked through molecular signatures left by the

virus as it spreads. These examples suggest the value of the application of network analysis

techniques to medicine.

Insight into biological networks may be gained through cross-disciplinary network comparisons.
It appears the gene-regulatory network of E. Coli is built for robust function in comparison with a
computer network that prioritizes economy and reuse above redundancy \{cite}. Using the
context of a social network, apparently distant connections between immune cells, may, in
reality be closer than appearance \{28263321}, and ‘cross-talk’ between immune cells may
modulate the body’s immune response \{24923297}. Evidently by comparing networks from
different disciplines through analogy, we may gain insight into both networks.

1.2 Networks leverage abundant biomedical data (PDM):

The Human Genome Project arguably represents the first big-data and large-scale science
project in biology \{12690187}, and marked the transition of molecular biology from a ‘data-poor’
to a ‘data-rich’ field \{12432964}. It was this transition that was a motivator for the development
of the discipline of systems biology \{12432964, 20604711}. When large-scale science projects
that produce ‘parts list’ of molecular structures and entities, systems biology seeks to
understand how these parts are connected. Network theory became a foundational technique
making sense of these increasingly large data sets of connected biomolecules.

Molecular biology projects continue to expand in size and scope. Genome-scale network
reconstructions of metabolic networks have been produced for hundreds of species, and are
constantly undergoing refinement \{24811519, 27893703}. The recently released BioPlex 2.0 is
the largest protein-protein interaction ever built, with 56,000 listed interactions \{28514442}.
Whole genome sequencing projects like 100,000 Genomes project, and the NIH’s Genome
Sequencing Project, now seek to enroll hundreds of thousands of participants \{26310768,



https://www.genome.gov/27563453/}. Visions have been presented for even larger scale
sequencing \{26430149, 23138308}, and the growth of big data in genomics may outpace big
data growth in other data intensive fields \{26151137}.

Networks produced from data of this scale have been likened to a ‘hairball’ when visualized,
suggesting their complexity \{27047991}. Identifying meaningful structure and function in these
hairballs represents a challenge in the field of biology. The application and development of
computational network approaches represents one of the most promising means of unravelling
the complicated patterns of connection in these networks \{27387938, 27387949, 23194371}.

The importance of network techniques for analyzing large-scale molecular interaction data is
further stressed by the need to integrate diverse sources of molecular data. The number of
advanced functional molecular assays available to researchers continues to grow through
projects like ENCODE \{25693563}, and new network-based approaches for integrating
large-scale biological data are being developed \{24464287, ENCODEC?}. Integration of
functional genomics data has been proposed as the clearest way-forward to understanding the
significance of human genetic variation \{20020535, Functional precision cancer
medicine—moving beyond pure genomics}. Network approaches play a central role in the
integration of these diverse sources of large-scale molecular interaction data.

2. MODELING A MOLECULAR INTERACTION NETWORK
2.1 Basic features of an abstract molecular interaction network (PDM):

Before discussion of more advanced techniques for modelling and analyzing molecular
interaction networks, we’ll present a few widely used definitions and principles that serve as
building blocks for more advanced methods.

Central to an interaction network, is a collection of biomolecules with evidence of direct interface
of their molecular surfaces [Figure 1.a.1]. This is a ‘parts list’ of molecular entities, without
labeled connections. If the pattern of connections between molecules is known, a network can
be formed [Figure 1.a.2]. Upon such a basic network, a progressive layering of information and
logic can be tailored according to the network under study. For example, the direction of
connections [Figure 5.a.3] and the weight of connections [Figure 1.a.4] may be important
information for regulatory networks and gene co-expression networks, respectively.

Higher order relationships between molecular species are also possible. Arbitrarily complex
computation can be performed on a network, and abstracted in the form of logic modules or
motifs [Figure 1.a.5]. Molecular networks and logic performed by the network exist in 3 spatial
dimensions, and this 3D spatial information can be important to understanding the structure and
function of a molecular interaction network [Figure 1.a.6].

Matrix representations of interaction network variables are also possible for some networks.
Matrix representation of the connections, weight, and direction of connections in hypothetical
interaction networks are shown in Figure 1.c.


https://www.genome.gov/27563453/

This set of network variables (connections, direction, weight, time-dependent logic, and spatial
geometry) are basic building blocks that network scientists use to describe molecular interaction
networks. In addition to these basic building blocks, summarized in Figure 1, a pictorial glossary
of network terminology is presented in Figure 2.

2.2 Incorporating molecular structure in a network model (SK):

Although there are advantages to abstract representations of molecular networks, there are also
inherent limitations. For instance, protein-protein interactions are often represented as a
network. Nodes in this network correspond to individual proteins and edges represent
interactions between them. Such abstract representations are helpful to gain insight into the
overall topological properties of the network. Furthermore, one can identify key proteins based
on their connectivity in the network. However, such abstract representations do not provide any
biophysical insight into interactions underlying protein-protein interactions.

To address this issue, various studies have integrated three-dimensional structural information
data available for various biomolecules to produce structural interaction network (SINs)
\cite{17185604,18364713, 21826754} [Figure 3]. Integration of structural information can help
address key issues. For example, one can identify key residues or domains on the surface of
proteins, which are involved in interactions. In addition, structural information is helpful to predict
binding affinities and kinetic constants of the underlying interactions. Furthermore, SINs are
helpful in identifying obligate (permanent) or transient interactions in a network. Structural
information can also help to distinguish between simultaneous and exclusive interactions. These
are key network properties, which cannot be addressed with a simple abstract representation of
the network. Finally, integration of structural information can help in gaining mechanistic
understanding of rare or disease-associated mutation impact on protein interactions
\cite{27915290}. Structural interaction networks can thus be used to prioritize variants in a
disease cohort or rare deleterious variants in a population level study.

2.3 Network ‘rewiring’ - the time based evolution of molecular networks (DL):

Biological networks are hardly static; they may evolve slowly over time or transform rapidly in
order to adapt to an environmental change, throughout the development \{20486137}, or simply,
as a result of accumulation of mutations. In the context of biological networks, rewiring refers to
a complex reformation of interacting partners, such as genes, proteins, and other biologically
relevant chemicals [Figure 4].

The central concepts of network rewiring have been around for decades. There have been
previous attempts to understand the network dynamics by comparing transcription factor-gene
networks in different conditions, but the scope of these efforts were limited to availability of data
\{15372033}. The advent of large-scale genomic and proteomic surveys allowed for creation of
different types of biological networks, including protein-protein interaction networks (PPls) and
gene regulatory network (GRNSs), in different cellular contexts. While it is still difficult to grasp the
dynamic nature of biological networks, these advanced assays can provide clearer insight into
how genes and proteins operate in point-in-time snapshot, and researchers have been trying to
stitch these snapshots back to answer more complex questions in systems biology.



Many studies have focused on the broadest timescale for network rewiring by linking the
evolutionary changes of biological networks to diversity among species \{26657905}. In specific,
it has been shown that regulatory changes in transcription factor-target networks may account
for the species differentiation \{17690298, 20378774, 21253555, 23198090}. However,
researchers have also attempted to interpret the network rewiring at much shorter timescales. It
is possible to introduce an artificial perturbation into a network and examine the rewiring
consequences. One study on a bacterial gene network has shown that perturbations that span
four orders of magnitude can propagate and alter up to approximately 70% of the transcriptome
\{26670742}. Rewiring has often linked as a result of mutations. A single mutation placed at a
regulatory protein binding site can alter the binding specificity, perturbing its interacting
neighbors, and consequently, it could have a detrimental downstream effect on the whole
network.

Naturally, many studies have attempted to measure the rewiring to infer the consequence for
disease phenotype. For example, cancer mutations could affect both downstream and upstream
rewiring of the regulatory network, altering cell-signaling and regular gene expressions
\{26388441,26388442}. To measure the rewiring, target changing, of TF-gene network involves
comparing of networks at two states, before and after the rewiring. Regulatory interconnection
between genes can be represented as ones that are gained, lost, or retained. As a result,
network rewiring can change gene hierarchy. One study showed rewiring of gene network can
promote or demote the importance of a gene as regulator \{21045205}.

More recently, CRISPR genome editing technology has been developed and widely applied in

the field of genomics, allowing us to build more complex models to test the effects of cancer \A
mutations. It could prove to be an excellent tool to experimentally validate the results of rewiring Q
obtained via an integrative approach. \/\ /

2.4 Network motifs, network logic, and network stability (MTG):

Most biological networks, such as protein-protein interaction network, have evolved to mLx'w4ze
network efficiency, functionality, and stability. From this standpoint, to fully reveal the underlying
mechanisms of the biological networks that we study, it is important to understand the
organizing principles of biological network structure. Network structure evolves alongside
biological function, and lays the foundation for complex network processes.

Studies have shown that small structurally stable network motifs are enriched in transcription
regulatory networks and perform various functions \{16187794}. Negative autoregulation motifs,
for example, have been shown to shorten the response time of stimuli-induced gene expression

regulation, as well as reduce cell-cell variation in protein levels. Feedforward loops are another D
frequently observed motif in gene regulation networks [Figure 5]. Feedforward loops can filter 9]
persistent signals from brief spurious pulses of signal, and are also capable of generating \<\

pulses and accelerating biological responses. Combinations of network motifs allows for more
precise control of biological systems, including the temporal order of gene expression and
oscillations in expression \{17510665}.

Biological networks have also developed structure to enhance stability. The molecular network,
for example, is subjected to exogenous attacks or endogenous mutations that result in
dysfunction. A cascading deleterious effect could propagate via links in the network. An



observed feature of many molecular interaction networks is the duplication of extremely vital
hubs. Multiple and repeated domains are enriched in hub proteins. \{16780599}. While
redundancy may lead to inefficiency, biological networks must balance between stability and
energy-loss.

3. TOOLS AND ALGORITHMS FOR NETWORK ANALYSIS
3.1 Advances in network algorithms -- network propagation methods (DC):

In biology and other disciplines, networks have long been used to study complex associations
within large datasets. In the context of biology, such datasets include physical interactions
between proteins (i.e., protein-protein interaction networks), regulatory relationships (e.g.,
associations between transcription factors and target genes or miRNAs and their associated
targets), or directed pathways of interacting cellular species. As these datasets grow in size, the
associated networks used to describe them grow in topological complexity. Positively identifying
true signals in these networks can be difficult to attain, given the noise and complexity that
accompany the large detests."Recently developed algorithmic frameworks have been developed
to capture difficult-to-discern relationships between genes, as well as to identify sub-networks
that may be dysregulated. Along these lines, algorithms based on network propagation have
proven to be the most powerful \{28607512} [Figure 6.a.].

Generally speaking, the term “network propagation” refers to the analysis of networks by
allowing some form of information to flow from node another via shared edges \{26683094,
22035267}. This information may traverse from node to node as a random walk, for instance.
Edges may also be weighted (by confidence of an interaction, for example) to influence the
“current” of information traveling from one node to another.

Other approaches at inferring gene-gene associations include direct neighbors or shortest
paths. Such methods may suffer from high rates of false positives or false negatives, whereas
propagation-based methods may optimally capture known gene-gene associations. For
instance, Ruffalo et al. use propagation to positively identify cancer-associated genes using
both somatic variant data and gene expression as input to the original network \{26683094}.

Such methods have also been leveraged to identify cancer sub-types based on patient
stratification \{24037242}, and they have also been used in an array of other disease contexts
\{26963104, 27307626, 27489002, 24464287}.

3.1 Advances in network algorithms -- machine learning and neural networks (Holly
Zhou):

Machine learning, especially deep learning, is valuable for networks analysis because its
multilayered neural networks can “learn” complex patterns and multi-level information
processing within cells. The learning layers can reduce complex, many-dimensional data into
lower-dimensions at each layer and integrate diverse data types at higher layers \{26252139},
thereby making complex networks more tractable to regulatory genomics studies. By finding
hidden patterns in large datasets, machine learning models can predict relationships in
networks without requiring strong assumptions about underlying mechanisms \{27474269}. A
machine learning workflow involves gathering vast amounts of data, preprocessing the data,



training and testing a model, and interpreting results. At each layer of the neural network, inputs
are transformed by a nonlinear processing unit (activation function) and fed into the next layer.
The processing unit performs feature extraction, which extracts information to pass into the next
layer to facilitate learning.

We use two example problems to motivate our coverage of popular machine learning
techniques, as well as to highlight advantages and disadvantages of current methods: 1)
predicting the effects of noncoding variants, and 2) predicting transcription factor (TF) binding

sites. | ? s L__?\

Eukaryotes have complex regulatory ne --we still do not know the mechanism of many
noncoding variants in geno W are linked to human disease. Gjven a single
sequencing assay data input, Basset can Iearn acell’s chromatln acce33|b|I|ty code’to better

annotate genome mutations genomic
variants in poorly-annotated noncodlng regions to phenotypes \{19474294} Unlike standard
neural nets, Basset uses a convolutional neural networks (CNN) with three convolution layers
and two fully connected layers [Figure 6.b.]. In standard neural nets (fully connected networks),
each hidden layer contains independent neurons that receive a vector input; layers are fully
inter-connected. The last layer, which is also fully connected, outputs the prediction (e.g.,
classification score). CNNs allow for greater complexity--they usually contain an input layer,
convolution layer, rectified linear unit (ReLU) layer, pool layer, and a fully-connected layer (see
FIGURE for an explanation of CNNs). CNNs allow researchers to study SNVs with much greater
resolution and to learn more abstract representations of the regulatory DNA--researchers can
prioritize mutations predicted to contribute to regulatory activity and deprioritize others
\{27197224)}.

Notable methods for modeling DNA and RNA targets of regulatory proteins include DeepBind
\{26213851}, DeepMotif \{https://arxiv.org/abs/1605.01133}, and a deep-learning based
imputation method for TF binding predictions \{28234893}. Identifying these targets is important
for modeling biological processes and for discovering variants that could cause human disease.

DeepBind uses the aforementioned convolutional network architecture with mini-batch
stochastic gradient descent to predict the sequence specificities of DNA- and RNA-binding
proteins. Mini-batch stochastic gradient descent (SGD) seeks to minimize an objective function;
while the standard gradient descent tries to converge for each training example, mini-batch
SGD computes the gradient against more than one sample at each step for a smoother
convergence. To prevent overfitting, the model uses dropout regularization, weight decay, and
early stopping \{26213851}. Dropout regularization refers to randomly setting neurons to have a
value of 0 in the intermediate steps, or “dropping” them. Weight decay penalizes large
weights—this improves the model’s generalization. DeepBind improves upon prior
motif-scanning algorithms by taking into account RNA-binding proteins that can recognize
secondary or tertiary structural elements. It also recognizes higher-order structures that result
from competitive or synergistic effects of protein binding \{26213851}. DeepBind takes as input
data from high throughput experiments and is validated through Pearson correlation, Spearman
correlation, and AUROC comparisons with 26 published algorithms.

DeepMotif improves on the TF binding classification of DeepBind through a deep CNN and a
highway multilayer perceptron (MLP) framework \{https://arxiv.org/abs/1605.01133}. A highway



network allows for hundreds of layers where information can flow directly between neurons of
different layers. It is based on long short-term memory (LSTM) neural networks in its “gates” that
control how much of the output activation and how much of the raw input to pass through the
layers. In contrast to DeepBind, which involves one convolutional layer, DeepMotif has several
convolutional layers. When trained on the same dataset as DeepBind, DeepMotif achieves a
WO.QM over DeepBind’s of 0.931 \{https://arxiv.org/abs/1605.01133}.

Both DeepBind and DeepMotif compute TF binding preferences based on position weight
matrices (PWMs), but they do not take into account low-affinity binding sites or repeat sequence
symmetries. A new model, TFImpute, takes these into account through multi-task learning
(MTL) \{28234893}. This provides a more accurate model of TF-DNA binding specificity; as TFs
have only been profiled under limited conditions, TFImpute could shed insight on gene
expression under unique conditions. Multi-task learning models the way humans learn by
exposing the model to related tasks with the goal of getting the model to perform better on one
general task or metric. TFImpute uses MTL by combining combinations of cell lines and TFs into
continuous input vectors. TFImpute has comparable performance to DeepBind and DeepMotif
on ChIP-seq data but achieves greater accuracy on TF-cell line combinations without ChIP-
data. However, there was greater variance in the confidence of specificity prediction on
combinations without ChIP-seq \{28234893}.

Although deep neural networks can generate accurate predictions for a wide range of
applications, complicated networks can sometimes be much more difficult to interpret than
simpler models. Great care must be taken when selecting model parameters and preprocessing
training data, as well as understanding the structure of the chosen network and how information
flows through it. As computational power becomes more accessible and experimental methods
improve, we will have greater amounts of high quality data to work with. Such trends will expand
our need for deep neural networks to better elucidate the complicated biological networks
studied in systems biology.

3.3 Approaches to understand the biological meaning of network features (WUM):
It is common for a reader, upon encountering a visual depiction of a large network, to be struck

by its incomprehensibility and struggle to make sense of the “hairball.” Fortunately, it is not
necessary to comprehend the full detail of the network to interpret it biologically. Here are thre

fruitful alternatives, in increasing order of sophistication: focusing on one subnetwork at a time/ ’9
attending to summary statistics about network properties, and contrasting a network with X9
appropriate comparisons. Qj (Q\ ¥
Much of the true impact of assembling full biological networks simply follows from organizing V2,

network information in a way that makes it easy for domain experts to extract the subnetwork of

the graph relevant to them. The biologist studying the molecular mechanisms of some protein

may care a great deal about which proteins interact with their protein of interest, as well as

perhaps which proteins interact with those, and so forth. This commonplace approach to li/’—’;
gleaning some knowledge from a network does offer some practical motivation for assembling
biological networks even if it does not take full advantage of network science as a branch of
mathematics.

Summary statistics about network properties are more tractable than the fully detailed network,



but are ultimately difficult to interpret without context. The distributions of node degree and of

the distances between nodes, for example, offer broad, quantitative descriptions of the

connectivity properties of a network and can be seen at a glance. In isolation, however, it is no

clear which aspects of these distributions or other properties are biologically relevant. %\\Lf‘y (,/\

The richest understanding of a biological network comes from contrasting a network with
appropriate comparisons. Identifying or constructing the appropriate comparisons can be quite

difficult. To understand normal biology or disease, it is often of interest to identify which network ®
properties are under evolutionary selection or have been perturbed from their healthy states. — OZgSS
DIScIf

When assessing evolutionary forces acting on a network, it is important to consider how the
generative processes of evolution neutral mutation affect network properties. For example, old
genes beget new genes through duplication events, leading to protein products with similar
binding partners as their ancestors. This neutral process leads to a characteristic “scale-free”
distribution of edges within protein-protein interaction networks. Without knowledge and
correction for this neutral process, an observer might incorrectly conclude that the scale-free
distribution of edges within protein-protein interaction networks represents an independently
evolved network property.

The identification of synergistically- or redundantly-acting mutant gene pairs in cancer is a
common example of a search for selective pressures on network properties. If two genes are
co-mutated more frequently than expected by chance, this suggests synergy between them.
Conversely, if two genes are mutated less frequently than expected by chance, this suggests
redundancy between them. A challenging task is to calibrate what sort of co-mutation frequency
would be expected “by chance.” A popular approach is to generate an empirical null distribution
as a series of hypothetical patient-mutant gene sets, simultaneously preserving the distribution
of number of mutations across patients and genes as in the original cohort, but with permuted
connections between mutant genes and patients.

3.4 Causal inference about network properties (WUM)

How does some trait affect the fithess of an organism? Which alterations contribute to disease
pathology? These causal questions are among the most general and essential questions in
biology. Network theory gives us, at a minimum, the vocabulary to pose these questions about
network properties. More substantially, network theory offers techniques that attempt to answer
these questions, some of which will be reviewed here. However, despite significant progress,
causal inference on network properties remains an unsolved problem.

One indication that some network property of normal biology is not a product of evolutionary
selection is if that property is a simple consequence of neutral mutational processes. A famous
example pertains to the observation that the degree distribution of protein-protein interaction
networks follows a scale-free, exponential distribution. Network scholars wondered whether
something about scale-free distributions might favor efficient or resilient information flows
through the cell and were therefore independently evolutionarily selected. However, simulations
show that known neutral processes of gene duplication are sufficient to explain the observed
scale-free degree distribution, and therefore, evolutionary selection need not be invoked to
explain this distribution.



In general, we will not always understand neutral mutational processes in sufficient detail to
model them. When there is limited knowledge of the biomechanistic processes of neutral
mutation or if the biological context is farther removed from genetic processes, an alternative
approach is to derive null models using more general techniques from network theory. There
are two general strategies for constructing null models: forward-generative models, which build
random networks from scratch, and permutation-based models, which use an observed network
as a template for random networks. Both strategies hold constant chosen foundational network
properties — such as the degree distribution of a network — while varying other properties of the
network in a uniformly (or approximately uniformly) random way. If the network properties of the
observed network significantly differ from those of the null networks, they are considered to be
more likely to be fundamental to the network and therefore stronger candidates as relevant for
biology and disease.

Unfortunately, there is no automatic process for selecting which network properties to hold
constant when constructing null models. For example, the fact that the mammalian brain divides .
into two hemispheres is a foundational property of the brain that has a dramatic impact on @
network properties. If this inherent hemispheric structure in the brain is not taken into account,
then many properties of human neural networks will incorrectly appear significantly different
from null even if it were the case that they merely represented random perturbations from this
hemispheric structure. This example illustrates the general principle that the fundamentality or
causal impact of network properties are extremely difficult to infer and cannot be solved by any
one network algorithm.

These limitations are certainly not unique to network theory, but network theory does suffer from
a peculiar additional barrier in causal inference: In other areas of science, interventiqnal
experiments can definitively establish causation; whereas, it is not possible to experimentally
perturb a system’s network properties without perturbing its individual elements, which must
always compete with the network properties as an explanation for some experimental effect.

4. APPLICATIONS

4.1 Network medicine: clinical application of molecular interaction networks (PDM):

Complex diseases are conditions understood to have multiple determinants of severity, that

include genetic and environmental risk-factors \{18523454}. Complex diseases include

prevalent conditions like heart-disease \{22733336}, asthma \{21281866, 20860503}, autism

\{21614001}, schizophrenia \{11976442,25056061}, diabetes \{27398621}, and cancer /<
\{25109877}. Single or multiple effectors in the same molecular pathway may cause a complex 6 \€<
disease, or a disease may result from a more distributed network effect with multiple involved q/\
pathways {24287332}. &N\ -
Even for so-called ‘single-gene disorders’ — diseases that are understood to be caused by a 50
single mutation of a single gene -- the manifestations and severity of disease may depend a

network process. For example, cystic fibrosis is a congenital lung disease caused by a defect in

the CFTR membrane protein channel, but the severity of the condition may depend on an

associated miRNA regulatory network \{22853952}, and on the presence of disease-modifier

gene mutations \{16723978, 19242412}.



Gene set enrichment analysis (GSEA), and other forms of pathway analysis address the
possibility of pathway driven diseases directly \{16199517,19033363}. Pathway analysis reveals
that genetic variation in patients with autism affects many genes, but these genetic variants
appear to organize into relatively few functional pathways \{24768552, 27479844}. In diabetes,
many of the genes in the same pathway as the transcriptional activator PGC-1a have
independently been associated with diabetes \{12808457, 27094040}. These results suggest
that it may not be possible to fully understand such conditions except in the context of a network
of interacting elements.

\
Network interactions between molecular contributors is sometimes measurable as an epistatic
effect, even when the involved pathways and interactions themselves are not &;essarily known
\{24572353}. In cases where the source of these interactive effects between molecules is not E’/
known, subsequent identification through network-based analysis may be possible \{27708008}.

Networked based analyses have revealed shared molecular pathway alterations among

diseases that were once thought distinct. Calcium-channel pathway mutations are shared by _l_ +
5-different different psychiatric conditions: autism spectrum disorder, attention

deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia

\{23453885}. Cancers that are thought to be distinct based on organ system may share similar

underlying gene and pathway alterations \{25109877}. Our understanding of relationships

between diseases may be reorganized, by thinking according to network definitions of disease,

rather than established disease definitions \{17502601}.

Knowledge of molecular network architecture in health and disease may also lead to disease
treatment. A network approach to drug discovery allows researchers to identify new target
molecules through their network interactions, and minimize side-effects by identifying the
relationships between interacting molecules \{23384594}. The principle of multi-drug therapy is
to address the multiple networked molecular contributors to disease -- and has led to successful
management of HIV, depression, and some forms of cancer \{28697253, 22579283, 15688074,
27404187}. The bioengineering of interaction networks may be able to restore function to
patients with certain diseases. An engineered gene-network restored thyroid function in a
mouse model of Grave’s disease \{26787873}.

4.2 Network techniques in cancer genomics (JZ):

Molecular networks have particular relevance to cancer biology. Using a pathway or network
based approach to analyzing mutational patterns, cancer types may redefined or
subcategorized. This approach, when performed as part of a broad molecular profiling strategy,
has defined novel cancer subtypes for many cancers including breast cancer \{23000897},
melanoma \{26824661}, lung cancer \{25079552}, and kidney cancer \{26536169}. Significantly,
the only route to diagnosis of metastatic cancer of unknown primary origin may be through
analysis of the patterns of activity and cross-talk defined through molecular profiling
\{25140961}.

Regulatory networks may provide deep functional annotations to more accurately evaluate
mutation impact and prioritize key mutations in cancer. For example, network centrality
information has been used by researchers to pinpoint key cancer mutations \cite{netsnp and
funseq2}. Transcription factor (TF) and RNA binding protein networks may also provide insight



to explain disease-specific expression patterns and help highlight key cancer regulators. For
instance, by combining large-scale expression profiles from cancer patients with TF networks
identified by ChIP-seq experiment, it is possible to identify important TFs that drive
tumor-to-normal differential expression \{rabbit 26056275, 28000771}.

Integration of diverse sources of biological network data may be used to reveal novel cancer

biology [Figure 7]. Integration of TF-gene, miRNA-gene, and protein-protein interaction network

data has been used obtain a systems-level view of various diseases, including cancer. This
integration of diverse network information may be used to highlight key genes and mutations
associated with tumorigenesis. Unlike mutational frequency based methods, which require
sequencing data from large cohorts to achieve satisfactory statistical power, scientists are able

to obtain a global view of mutational effect for multiple genes through network propagation
techniques \cite{DriverNet 23383675, VarWalker 24516372, HotNet2 25501392, NBS

24037242, and TieDIE 23792563}. Such methods have been successfully applied on M U T
moderately sized patient cohorts to identify cancer related genes. PT G_

Network associations may yield new cancer therapies. For example their is great interest in the
molecule CMTM6 because it has been shown to interact with the molecule PD-L1 and regulate
PD-L1 expression. PD-L1 itself helps regulate the body’s immune response to cancer cell
surface markers, and \{28813417}. Thus, perhaps CMTMG6 will prove similarly useful as a
regulatory target. Knowledge of these pathways may result in development of new cancer
therapies, and combination drug therapies that reduce the risk of developed resistance to
cancer therapy \{27433843,25838373}.

4.3 Cross-disciplinary comparisons provide insight into molecular interaction networks.
(PDM):

We may learn more about the mechanisms and function of molecular networks through
cross-disciplinary comparison to networks found in other natural and engineered syste
[Figure 8].

A comparison of the transcriptional interaction network of the bacteria Escheriae coli to the call
graph of the Linux operating system demonstrated that the transcriptional network in Escheriae
coli has a robust architecture, with many network elements sharing overlapping function
\{20439753} [Figure 8.a.]. Conversely, the Linux call-graph is built on frequent reuse of many
basic operating functions. An analysis of biological protein-DNA and protein-protein interactions
in both Saccharomyces cerevisiae and Escheriae coli to internet connectivity networks also
favored the robustness of the biological networks \{24789562}.

Rieckmann et al. recently conceptualized the human immune system as a social network. By
mapping a social network architecture based on cytokine ‘messages’ between cells, these
researchers demonstrated unexpectedly close relationships between immune cell types
\{28263321}. For example, neutrophils and naive-B-cells were unexpectedly closely related, as
were natural killer cells and memory T-cells \{28345632}. It's intriguing to think that the
discovered proximity of relationships in this ‘small-world’ network may reflect how immune cells
interact within the compartments of the human body \{28418389}.



Metabolic networks have been described as a type of ‘scale-free’ network, meaning that the

network is self-similar at each scale, with the degree of nodes following a power law. ‘XT
Metabolism appears organized around two central hubs -- pyruvate and acetyl-CoA \dQQ
\{15729348}. This is similar to how already well-used airports are likely to gain additional flight AL N
routes due to the efficiencies in airline travel that are gained by travelling through a network hub =/ N
\{10.1038/nphys489, 15911778}, o

Like metabolic networks, protein-protein interaction networks are also often thought of as
‘scale-free’ networks, following this same rich-get-richer principle \{doi:10.1038/nphys209}.
However, researchers have also suggested that protein-protein interaction networks may be
more similar to geometric networks based on their network topology \{15284103}. Electrical
grids are connected based upon the existing geographies of cities, and wireless mesh
networking similar connects electronic devices based on spatial proximity. The observation that
protein-protein interaction networks appear to have geometric network topology, may be related
to the spatial organization molecules within the cell, as determinant of their interactions
\{15284103, 25985280}. Geometric constraints within cells may also provide bio-inspired
templates for efficient generation of geometric graphs. Such a possibility was demonstrated
through comparison of the growth of the single-celled organism Physarum plasmodium to the
rail system in Tokyo \{20093467}.

5. CONCLUSION:

began with an gverview and introduction to how molecular interaction networks have played
in the development diverse scientific fields including molecular biology,
medicine, and netivork science. We surveyed how network topology and network dynamics may
be ive insight into human biology and human disease. The time-dependency and
computational capacity of interaction networks offer a means of maintaining homeostasis, but
these same networks may also serve as the sensor and driver of common diseases.

We discussed two promising algorithmic approaches to identifying novel molecular associations:
network propagation algorithms that seek to identify important associations between molecules
through a diffusion-type process, and machine learning techniques, including deep learning
models, that may identify novel network structure through sophisticated pattern recognition
performed on markers of molecular interaction. Related to this discussion of network algorithms,
we provided some viewpoints on how the study of interaction networks can benefit from network
comparisons. These comparisons can be made via a null model of interaction -- a random
generative process -- or in comparison to other biological or nonbiological networks.

Our discussion of molecular interaction networks concluded on the topic of applied uses for
molecular interaction networks. Applications in medicine have resulted greater knowledge of
disease, and new disease treatments. We highlighted the case of networks in cancer, as a
particular set of diseases that have benefited from applied network science. The use of
molecular interaction networks to make cross-disciplinary comparisons, has lead to greater
understanding of networks in wide-ranging fields of study.

We hope to have given the reader of sense of the strategic significance of network analysis
techniques and interaction networks. These authors hold the strong conviction that because
molecular interaction networks are the lowest common denominator in many higher-order



biological systems, network analysis techniques will be a critical component of future advances
in molecular biology and medicine. These authors further believe that there will be
cross-disciplinary advantages to investigation of molecular interaction networks, propelled by
the need for the adoption of new network techniques to analyze large data sets, and by the
need to integrate diverse sources of information.

6. SUMMARY POINTS:

1. Molecular interaction networks represent the base-layer of function for many
higher-order biological systems, and have contributed to the development of knowledge
in biology, medicine, and data science.

2. Abstract network representations provide a useful platform to model network behavior,
however, not all interactions can be inferred without molecular structural information. /

3. Molecular networks are not static, but evolve over time and space, and this evolution
enables function in both health and disease.

4. New algorithms for understanding molecular interaction have revealed novel molecular
relationships. Promising techniques include network propagation, and neural network
based deep-learning models.

5. The significance of a molecular interaction network requires a comparison standard -- a
null model (either physiologic or randomly generated), or a cross-disciplinary comparison
can serve as such a comparison standard.

6. Many disease processes arise through pathway or network phenomena, and require an
understanding of network properties to understand their pathology and identify treatment
strategies.

7. Cross-disciplinary network comparisons contribute insight into molecular network
structure and function.

7. FUTURE PROSPECTS:
1. Challenge of identifying appropriate null comparisons for molecular interaction networks.
Possible null comparisons include random network rewiring, random generative

processes, and cross-disciplinary network analogies.

2. Incorporation 3 dimensional structure, and time dependency (network logic, network
rewiring) into network models.

3. New application of network algorithms to refine network predictions, including machine
learning techniques, and network propagation algorithms.

4. Designing efficient, scalable algorithms for large search spaces that provide accurate
approximations to actual network behavior.



10.

Defining scalable approaches for integrating diverse molecular data sets, including
functional genomics data.

Translational research, applying techniques to medicine, and scaling solutions for clinical
data, including correlation with clinical phenotypes.

Increased experimentation with network engineering and network intervention as a
means of disease treatment.

Expansion of cross-disciplinary network science efforts, for example molecular
epidemiology (intersection of social networks, molecular networks, and epidemiology),
molecular phenotypic pathology (intersection of pathology and molecular networks).

Redefinition of disease by molecular phenotype and molecular pathology will require
substantial pathway and network analysis.

Identifying appropriate validations for the predictions of network analyses on a genomic
scale.



Q
o

:]7 network networked
embedding system
molecular structures

a c d e
® ¢ 0 00

Qo -
Qa
<
abstraction
scale
° ‘ { e

[ .
population
® o0

- human

+ connectivity
(geometric representation)

[ -
)

a
[}

V- — organ

co

.g. protein-protei interaction

o
oo

Wy — cell

+ connection direction @

organelle

e.9. gene regulation
molecular

v

+ connection weights

€.9, Gene co-expression

+ graphlet/modular logic

Bon

#jAN D
§7i nverter|

e.g. complex signalling

v

P> k||

+ 3D spatial organization

e.g. 30 genome.

Figure 1: a) b) c)

Figure 2:



flagellar
proteins

OR gate
feed forward loop

AND gate
feed forward loop

@I;arabinnse
[ —

9

FliA

—
fliLMNOPQR
X, FIhDC
¥
X FliA
T T
X flIMNOPQR

(flagellar protein production)

o
o

E«g«gl
z L
« 2«

]
araBAD

<=

(arabinose metabolism)

X5 = (1-%) X, + (1-%,) %, + XX, Ys =Y1Ye
xt 1wt \
wt 1 1 owt 1
xto ] vt 1
time time

Figure 2: a) b) c)










