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ABSTRACT 

Summary: Identifying genomic regions with higher than expected 

mutation counts is useful for cancer driver detection. Previous 

parametric approaches require numerous cell-type-matched 

covariates to for accurate background mutation rate (BMR) 

estimation, which is not practical for some tumors. Permutation based 

nonparametric approaches would avoid these issues, but usually 

suffer from extreme computational efficiency issues. Hence, we 

introduce MOAT, which utilizes a nonparametric approach that makes 

no assumptions about mutation process except that BMR changes 

smoothly with other genomic features. We show how we can do the 

permutations in MOAT in a very computationally efficient manner 

using GPU acceleration to make the calculation feasible for large 

genomic regions. MOAT's nonparametric scheme randomly permutes 

single nucleotide variants, or target regions, on a relatively large scale 

to provide robust burden analysis. 

 

Availability and Implementation: MOAT is available at 

moat.gersteinlab.org 

Contact: pi@gersteinlab.org 

Supplementary information: Supplementary data are available at 

Bioinformatics online. 

2 INTRODUCTION  

A common analysis strategy in cancer driver detection is to look for 

genomic elements with high variant accumulation across patients. 

However, the background mutation rate (BMR) is highly 

heterogeneous across the genome due to numerous influences. 

Inaccurate modeling of BMRs could in turn introduce false positives 

into cancer driver detection. Our Mutations Overburdening 

Annotations Tool (MOAT) differs from parametric schemes and 

does not make any assumption except that the BMR remains 

constant within a local context. 

MOAT offers an annotation-centric algorithm (MOAT-a), a 

variant-centric algorithm (MOAT-v), and a somatic variant 

simulator (MOAT-s) built on MOAT-v’s variant placement 

algorithm. Moreover, we can use MOAT to gauge the functional 
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impact burden of annotations relative to the surrounding genome. 

MOAT is useful for comparing observed and permuted variant 

impact scores. Here, we provide an example using Funseq2 scores 

(Fu, et al., 2014). In the following sections, we describe MOAT’s 

implementation and recall of known noncoding cancer drivers. 

3 METHODS 

Several covariates jointly affect the BMR in a complicated and 

dynamic manner, making variant burden analysis very challenging 

(Lawrence, et al., 2013). The length of the test region usually varies 

from hundreds to thousands of bases, while external features such 

as replication timing can work at up to a megabase resolution. To 

address these challenges, MOAT circumvents the need for 

parametric models by explicitly permuting the variants or 

annotations within a region where the levels of all the covariates are 

essentially constant. One important issue with these permutation 

algorithms is that their running times do not scale well to whole-

genome annotation sets. We addressed this issue by taking 

advantage of large-scale graphics processing unit (GPU) 

parallelization. 

3.1 MOAT-a: Annotation-Centric Permutation 

MOAT requires two input files: an annotation file (afile) and a 

variant file (vfile). MOAT-a uses NVIDIA’s compute unified device 

architecture language (Nickolls, et al., 2008) for general-purpose 

GPU acceleration (Figure 1a). MOAT-a iterates through each 

annotation, computing the intersecting variant count. It defines a 

genomic block with user-defined boundaries for permuting the 

annotation n times. MOAT-a then finds the variant counts of the n 

random bins, and compares them to the annotation’s observed 

variant count to provide empirical p-values. When MOAT-a is used 

with a variant impact signal file, it generates observed and permuted 

annotation impact scores by summing the intersecting variants' 

impact scores to calculate p-values. 

We can adjust the boundaries of the intervals for choosing 
permuted annotations—d_min and d_max—to scale the surrounding 
genome context with respect to the size of the original annotation. 

†The authors wish it to be known that, in their opinion, the first two authors 

should be regarded as joint First Authors. 
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Ideally, the permutation intervals will provide enough range to 
enable non-overlapping sampling. As a rule of thumb, the choice of 
d_min should be large enough to avoid potential mutation burden 
signal from "bleeding" into the permutation intervals. 
Simultaneously, the selected d_max must be small enough that the 
BMR covariates remain approximately constant within the 
permutation intervals. For example, in our analysis of transcription 
start site(s) (TSS) mutation burdens, where TSS are roughly 100 bp 
in length, we used a d_min of 2kb and a d_max of 50kb.  

3.2 MOAT-v: Variant-Centric Permutation 

MOAT-v creates permuted datasets by assigning new coordinates to 

each variant within a local genomic region to account for the 

covariate effects from known genomic features (Figure 1). MOAT-

v (and similarly in MOAT-s) offers the option to preserve the tri-

nucleotide context of the original variant when choosing a new 

variant location (see supplement). This constraint reflects the 

differential mutation probabilities of different tri-nucleotides while 

preserving the mutational signatures. MOAT-v generates a 

permuted dataset by subdividing the genome into blocks of a user-

defined size within which variants are permuted, thus generating n 

permutations (Figure 1b). We can determine the empirical p-value 

for each annotation based on the fraction of permutations with 

variants equal to or greater than the observed variant count. Unlike 

MOAT-a, we designed MOAT-v to parallelize its workflow across 

multiple central processing unit (CPU) cores using the OpenMPI 

framework (Gabriel, et al., 2004), due to the more memory intensive 

nature of the tri-nucleotide context preservation. 

The ability to adjust the width of the whole-genome bins in 

MOAT-v enables users to select a width that represents regions in 

which the BMR covariates are expected to be approximately 

constant. Hence, the permutations that MOAT-v creates will honor 

the expected density of regional mutations due to these covariates. 

Our analyses of a few of the most significant covariates, such as 

DNA-replication timing, histone marks, and guanine-cytosine 

content, indicate that a suitable bin size range is 50 – 100 kb (see 

supplement). 

3.3 MOAT-s: Simulated Somatic Variant Datasets 

In addition to the main MOAT programs, we developed a variant 

simulator, MOAT-s, that reflects the levels of whole-genome 

covariates that directly influence the background mutation rate. 

MOAT-s evaluates covariate signals over a set of whole-genome 

bins. The simulator then clusters these bins based on their covariate 

signal profiles, and allows variants to be permuted not just within 

their local genome context, but across all bins that share the same 

covariate signal profile (i.e. across bins in the same equivalence 

class). Specifically, MOAT-s clusters the whole-genome bins using 

k means, which use the distances between the bins' covariate signal 

profiles to group them into a predefined number of clusters (see 

supplement).  

4 RESULTS 

4.1 MOAT-a 

We demonstrated the parallel speedup by running MOAT-a on 

datasets of various sizes. Using a dataset of ~8 million cancer 

variants from (Alexandrov, et al., 2013; Wang, et al., 2014), we used 

three different annotation sets to demonstrate the scalability of 

MOAT-a (Harrow, et al., 2012; Thurman, et al., 2012; Yip, et al., 

2012). We demonstrate that the GPU version of MOAT-a scales 

very well with respect to the number of annotations (e.g. ~9-fold 

speedup on ~3 million annotations), and with respect to the number 

of permutations (e.g. ~256-fold speedup on 100,000 permutations), 

resulting in dramatically improved running times (Supp Table 1).  

Due to the lack of a gold standard, assessing MOAT’s predictions 

is challenging. Nevertheless, we used the aforementioned cancer 

variant dataset to demonstrate how MOAT-a can find elevated 

mutation burdens in genomic elements by identifying highly 

mutated GENCODE elements. TERT, which has well-documented 

cancer-associated promoter mutations, carried a significant 

mutation burden. Other well-known cancer-associated TSS sites, 

such as TP53, LMO3, and AGAP5, also had significant mutation 

burdens. 

4.2      MOAT-v & MOAT-s 

Using the same set of cancer variants as in the MOAT-a tests, we 

evaluated MOAT-v’s running time. The running time scales close to 

Figure 1 (a) MOAT-a shuffles each annotation to a new location within the 

local genome context bounded by user-defined parameters d_min and 

d_max, producing n permutations. (b) In MOAT-v, the whole genome is 

divided into bins of user-defined width W, within which variants are moved 

to new coordinates, thereby preserving the local mutation context. As with 

MOAT-a, MOAT-v produces n permutations. (c) MOAT-s bins the entire 

genome, whereupon it calculates the covariate values for each bin. The 

program then clusters bins with similar covariate values, represented here as 

bins with the same color (we refer to these clusters as equivalence classes). 

The input variants that fall within each cluster are then permuted to new 

locations chosen from the bins within the same cluster, honoring 

trinucleotide context preservation if requested. 
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linear with the number of CPUs, indicating an even division of labor 

between each CPU core. MOAT-s’s running time exhibited similar 

characteristics (data not shown). 

We then applied MOAT-v on the same variant and annotation sets 

to find elevated cancer mutation burdens. MOAT-v produced 

comparable results as MOAT-a, flagging the same known cancer-

associated TSS sites as significant. 

5 DISCUSSION 

Here, we introduce MOAT, a new software tool to facilitate 

identification of high mutation burden. We demonstrate the 

usefulness of this tool for flagging putative noncoding cancer 

drivers, and provide parallelized versions that dramatically improve 

running time. Given the demand for efficient and meaningful 

analysis of genome sequence data, which scientists are producing at 

very high rates, we believe that MOAT’s provision of such analysis 

for genetic disease drivers is timely. 

 

Funding: This work was supported by the National Institutes of 

Health [grant number 5U41HG007000-04]. 
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