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Abstract 27 
 28 
Enhancers are important noncoding elements, but they have been traditionally hard to 29 
characterize experimentally. Only a few mammalian enhancers have been validated, 30 
making it difficult to train statistical models for their identification properly. Instead, 31 
postulated patterns of genomic features were used heuristically for identification. The 32 
development of massively parallel assay allows the characterization of large numbers of 33 
enhancers for the first time. Here, we develop a framework that uses them to create 34 
shape-matching filters based on enhancer-associated meta-profiles of epigenetic 35 
features. These features are combined with supervised machine learning algorithms (i.e., 36 
SVMs) to predict enhancers. We demonstrated that our model can be applied to predict 37 
enhancers in mammalian species (eg, mouse and human). The predictions are 38 
comprehensively validated using a combination of in vivo and in vitro assays (133 39 
mouse transgenic enhancer assays in 6 different tissues and 25 human H1 hESC 40 
transduction-based reporter assays). The validation results confirm that our model can 41 
accurately predict enhancers in different species without re-parameterization. Finally, we 42 
predict enhancers in cell lines with many transcription-factor binding sites. This highlights 43 
distinct differences between the type of binding at enhancers and promoters, enabling 44 
the construction of a secondary model discriminating between these two. 45 
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 78 
 79 
 80 
 81 
Introduction 82 
 83 
Enhancers are gene regulatory elements that activate expression of target genes from a 84 
distance [1]. Enhancers are turned on in a space and time-dependent manner 85 
contributing to the formation of a large assortment of cell-types with different 86 
morphologies and functions even though each cell in an organism contains a nearly 87 
identical genome [2-4]. Moreover, changes in the sequences of regulatory elements are 88 
thought to play a significant role in the evolution of species[5-9]. Understanding 89 
enhancer function and evolution is currently an area of great interest because variants 90 
within distal regulatory elements are also associated with various traits and diseases 91 
during genome-wide association studies [10-12]. However, the vast majority of 92 
enhancers and their spatiotemporal activities remain unknown because it is not easy to 93 
predict their activity based on DNA sequence or chromatin state [13, 14]. 94 

Traditionally, the regulatory activity of enhancers and promoters were experimentally 95 
validated in a non-native context using low throughput heterologous reporter constructs 96 
leading to a small number of validated enhancers that function in the same mammalian 97 
cell-type [15, 16]. In addition to the small numbers, the validated enhancers were 98 
typically selected based on conserved noncoding regions [17] with particular patterns of 99 
chromatin [18], transcription-factor binding, [19] or noncoding transcription [20]. The 100 
small number and biases within the validated enhancers make them inappropriate for 101 
parameterizing tissue-specific enhancer prediction models [16]. As a result, most 102 
theoretical methods to predict enhancers could not optimally parameterize their models 103 
using a gold-standard set of functional elements. Instead, most of these models were 104 
parameterized based on certain heuristic features associated with enhancers, which 105 
were then utilized to predict enhancers [19, 21-30]. For example, two widely used 106 
methods for predicting enhancers were based on the fact that these elements are 107 
expected to contain a cluster of transcription factor binding sites [24] and their activity is 108 
often correlated with an enrichment of particular post-translational modifications on 109 
histone proteins [27, 30].  These predictions could not be comprehensively assessed as 110 
few putative enhancers could be validated experimentally due to the low throughput of 111 
validation assays and it remains challenging to assess the performance of different 112 
methods for enhancer prediction.  113 
 114 
In recent times, due to the advent of next-generation sequencing, a number of 115 
transfection and transduction-based assays were developed to experimentally test the 116 
regulatory activity of thousands of regions simultaneously in a massively parallel fashion 117 
[31-37]. In these experiments, several plasmids that each contains a single core 118 
promoter upstream of a luciferase or GFP gene are transfected or transduced into cells. 119 
These plasmids are used to test the regulatory activity of different regions by placing one 120 
region within the screening vector in each plasmid as differences in the gene’s 121 
expression occur due to the differences in the activity of the tested region. STARR-seq 122 
was one such massively parallel reporter assay (MPRA) that was used to test the 123 
regulatory activity of the fly genome by inserting candidate fragments from the genome 124 
within the 3’ untranslated region of the luciferase gene. STARR-seq identified thousands 125 
of cell-type specific enhancers and promoters within the fly genome [31, 38]. MPRAs 126 
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have confirmed that active enhancers and promoters tend to be depleted of histone 127 
proteins and contain accessible DNA on which various transcription factors and 128 
cofactors bind [39, 40]. These regulatory regions also tend to be flanked by 129 
nucleosomes that contain histone proteins with certain characteristic post-translational 130 
modifications. These attributes lead to an enriched peak-trough-peak (“double peak”) 131 
signal in different ChIP-Seq experiments for various histone modifications such as 132 
acetylation on H3K27 and methylations on H3K4. The troughs in the double peak ChIP-133 
seq signal represent the accessible DNA that leads to a peak in the DNase-I 134 
hypersensitivity (DHS) at the enhancers [41]. However, the optimal method to combine 135 
information from multiple epigenetic marks to make cell-type specific regulatory 136 
predictions remains unknown. For the first time, using data from several MPRAs, we 137 
have the ability to properly train our models based on a large number of experimentally 138 
validated enhancers and test the performance of different models for enhancer 139 
prediction using cross validation.  140 
 141 
Our goal in this paper is to develop a framework for making supervised enhancer 142 
prediction models using MPRA datasets. We make use of all published data resources 143 
to provide a comprehensive model for enhancer prediction that can be applied across 144 
different contexts (i.e., different species and tissue types); we validate our model in a 145 
variety of different contexts. In particular, we utilized extensive datasets from STARR-146 
seq experiments performed on fly cell lines to create and parameterize our model. Unlike 147 
previous prediction methods that focused on the enrichment (or signal) of different 148 
epigenetic datasets, we developed a method to also take into account the enhancer-149 
associated pattern within different epigenetic signals. As the epigenetic signal around 150 
each enhancer is noisy, we aggregated the signal around thousands of enhancers 151 
identified using MPRAs to increase signal-to-noise ratio, and identified the shape 152 
associated with active regulatory regions. Previous ENCODE and modENCODE efforts 153 
showed that the chromatin modifications on active promoters and enhancers were 154 
conserved across higher eukaryotes [42-48]. The signal of different chromatin 155 
modifications upstream of a gene have been used to create a universal model for 156 
predicting its expression and the parameters of the model were transferable across 157 
humans, flies, and worm. Here, we further explored this conservation of epigenetic 158 
signal shapes for constructing simple-to-use transferrable statistical models with six 159 
parameters that were used to predict enhancers and promoters in diverse eukaryotic 160 
species including fly, mouse, and human. We showed that the enhancer predictions from 161 
our transferrable model was comparable to the prediction accuracy of species-specific 162 
models.  163 
 164 
Working across organisms also allowed us to take advantage of different assays to 165 
validate our predictions in a robust fashion using multiple experimental approaches. In 166 
the first stage, we predicted enhancers in six different embryonic mouse tissues and 167 
tested the activity of these predictions in vivo with transgenic mouse assays. Due to the 168 
obvious ethical considerations of performing such transgenic assays in human embryos, 169 
we then proceeded to test the activity of these elements in a human cell-line in vitro.  170 
 171 
H1-hESC is a highly studied human cell-line in which a comprehensive set of 172 
transcription factor (TF) binding experiments are available. After validating our 173 
predictions, the many TFs provided us with the opportunity to differentiate between the 174 
enhancers and promoters. The pattern of TF and co-TF binding at active enhancers is 175 
much more heterogeneous than the corresponding patterns on promoters, which can be 176 
used to distinguish enhancers from promoters with high accuracy. Thus, our methods 177 
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provide a framework that utilizes different epigenetic genomics datasets to predict active 178 
regulatory regions in a cell-type specific manner. Further functional genomics datasets 179 
can be utilized to identify key TFs associated with active regulatory regions within these 180 
cell types. 181 
 182 
Results 183 
 184 
Aggregation of epigenetic signal (in fly) to create metaprofile: 185 
 186 
We developed a framework to predict active regulatory elements using the epigenetic 187 
signal patterns associated with experimentally validated promoters and enhancers [31]. 188 
We aggregated the signal of histone modifications on MPRA peaks to remove noise in 189 
the signal and created a metaprofile of the double peak signals of histone modifications 190 
flanking enhancers and promoters. MPRA peaks typically consist of a mixture of 191 
enhancers and promoters, and at this stage, we do not differentiate between the two 192 
sets of regulatory elements. These metaprofiles were then utilized in a pattern 193 
recognition algorithm for predicting active promoters and enhancers in a cell-type 194 
specific manner. 195 
 196 
The STARR-seq studies on fly cell-lines provide the most comprehensive MPRA 197 
datasets as the whole genome was tested for regulatory activity within these assays and 198 
these assays were performed with multiple core promoters (cite31, 50). Hence, we 199 
chose to create metaprofiles using the histone modification H3K27ac at active STARR-200 
seq peaks (see Figure 1 and Methods) identified within the S2 cell-line of the fly. 201 
Approximately 70% of the active STARR-seq peaks contain an easily identifiable double 202 
peak pattern even though there is a lot of variability in the distance between the two 203 
maxima of the double peak in the ChIP-chip signal (Figure S1). While the minimum 204 
tends to occur in the center of these two maxima on average, the distance between the 205 
two maxima in the double peaks can vary between 300 and 1100 base pairs. During 206 
aggregation, we aligned the two maxima in the H3K27ac signal across different STARR-207 
seq peaks, followed by interpolation and smoothening the signal before calculating the 208 
average metaprofile. In addition, an optional flipping step was performed to maintain the 209 
asymmetry in the underlying H3K27ac double peak because it may be associated with 210 
the directionality of transcription [49]. We also calculated the dependent metaprofiles for 211 
thirty other histone marks and DHS signal by applying the same set of transformations to 212 
these datasets. The metaprofile for the histone marks associated with active regulatory 213 
regions were also double peak signals, and the maxima across different histone 214 
modification signals tended to align with each other on average (Figure S2). This 215 
indicates that a large number of histone modifications tend to simultaneously co-occur 216 
on the nucleosomes flanking an active enhancer or promoter. In contrast, as expected, 217 
the DHS signal displayed a single peak at the center of the H3K27ac double peak 218 
(Figure 1). In addition, repressive marks such as H3K27me3 were depleted in these 219 
regions, and the metaprofile for these regions did not contain a double peak signal 220 
(Figure S2). 221 
 222 
Match of a metaprofile is predictive of regulatory activity: 223 
 224 
We evaluated whether these metaprofiles can be utilized to predict active promoters and 225 
enhancers using matched filters, a well-established algorithm in template recognition.  A 226 
matched filter is the optimal pattern recognition algorithm that uses a shape-matching 227 
filter to recognize the occurrence of a template in the presence of stochastic noise [50]. 228 
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We evaluated whether the occurrence of the epigenetic metaprofiles identified for the 229 
histone marks and DHS can be used to predict active enhancers and promoters using 230 
receiver operating characteristic (ROC) and precision-recall (PR) curves. PR curves are 231 
particularly useful to assess the performance of classifiers in skewed or imbalanced data 232 
sets in which one of the classes is observed much more frequently compared to the 233 
other class, as it plots the fraction of true positives among all predicted positives. If the 234 
area under a PR curve is higher, the corresponding model has a low false discovery rate 235 
and can easily distinguish between the positives from the negatives. On the other hand, 236 
in skewed datasets, the area under ROC curves could be high even when the FDR is 237 
high even. This is because, in these cases, even if a small fraction of negatives are 238 
predicted to be positive by the model, the false discovery rate can be high as the total 239 
number of true positives are much smaller than the total number of true negatives [51]. 240 
The matched filter score is higher in genomic regions where the template pattern occurs 241 
in the corresponding signal track while it is low when only noise is present in the signal 242 
(Figure 1). Due to the aforementioned variability in the double peak pattern, the 243 
H3K27ac signal track is scanned with multiple matched filters with templates that vary in 244 
width between the two maxima in the double peak and the highest matched filter score 245 
with these matched filters is used to rate the regulatory potential of this region (see 246 
Methods). The dependent profiles are then used on the same region with the matched 247 
filter to score the corresponding genomic tracks. 248 
 249 
We used 10-fold cross validation to assess the performance of matched filters for 250 
individual histone marks to predict active STARR-seq peaks. In Figure 2, we observe 251 
that the H3K27ac matched filter is the single most accurate feature for predicting active 252 
regulatory regions (AUROC=0.92, AUPR=0.72) identified using STARR-seq. This is 253 
consistent with the literature as H3K27ac enriched peaks are often used to predict active 254 
promoters and enhancers [23, 52, 53]. In general, several histone acetylations (H3K27ac, 255 
H3K9ac, H4K12ac, H2BK5ac, H4K8ac, H4K5ac, H3K18ac) marks as well as the H1, 256 
H3K4me2, and DHS are the most accurate prediction features (Table S1) because the 257 
matched filter scores for these features are higher on the STARR-seq peaks. The 258 
degree to which the matched filter scores for promoters and enhancers are higher than 259 
the matched filter scores for the rest of the genome is a measure of the signal to noise 260 
ratio for regulatory region prediction in the corresponding feature’s genomic track. The 261 
larger the separation between positives and negatives, the greater the accuracy of the 262 
corresponding matched filter for predicting active regulatory regions. Interestingly, the 263 
distribution of matched filter scores for STARR-seq peaks are unimodal for each histone 264 
mark except for H3K4me1, H3K4me3, and H2Av, which are bimodal (Figure S3). We 265 
also show that the matched filter scores are more accurate for predicting active STARR-266 
seq peaks than the enrichment of signal alone as they outperform histone peak calling 267 
on ROC and PR curves (Figure S4). 268 
 269 
While a single STARR-seq experiment identifies thousands of active regulatory regions, 270 
these regions display core-promoter specificity, and different sets of enhancers are 271 
identified when different core promoters are used in the same cell-type [54-58]. As we 272 
wanted to create a framework to predict all the enhancers and promoters active in a 273 
particular cell type, we combined the peaks identified from multiple STARR-seq 274 
experiments in the S2 cell-type and reassessed the performance of the matched filters at 275 
predicting these regulatory regions. Merging the STARR-seq peaks from multiple core 276 
promoters in the S2 cell-type leads to higher AUROC and AUPR for the matched filters 277 
from most histone marks (Figure 2 and Table S2).  278 
 279 
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Machine learning can combine matched filter scores from different epigenetic 280 
features 281 
 282 
We built an integrated model with combined matched filter scores of the most 283 
informative epigenetics marks (H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K9ac, 284 
and DHS) associated with active regulatory regions using a linear SVM [54]. The 285 
selection of six features ensures that the integrated model can be applied to a variety of 286 
cell lines and tissues, as many relevant ChIP-seq and DNase experiments have been 287 
performed by the Roadmap Epigenomics Mapping [59] and the ENCODE [60] Consortia 288 
in a wide variety of samples. We also assessed the performance of other statistical 289 
approaches including a nonlinear SVM for combining the features. While all these 290 
approaches performed similarly (Figure S5), a linear SVM is used in our framework for 291 
its better interpretability.  292 
 293 
During integration, the normalized matched filter score for each epigenetic feature in a 294 
particular region is scaled by its optimized weight and added together to form a 295 
discriminant function. The sign of the discriminant function is then used to predict 296 
whether the region is regulatory. The features with large positive and negative weights 297 
are predicted to be important for discriminating regulatory from non-regulatory regions. 298 
The optimized weights can also be used to measure the amount of non-redundant 299 
information added by each feature in the integrated model. According to the model, the 300 
acetylations (H3K27ac and H3K9ac) are the most important feature for predicting active 301 
regulatory regions. The DHS matched filter performed well as an individual feature 302 
(AUPR in Figure 2) to predict enhancers and can be highly predictive of regulatory 303 
activity in combination with other marks such as H3K27ac (Moore et al., in review). 304 
However, in the integrated model, the information in DHS is redundant with the 305 
information contained within the five histone marks as indicated by the fact that it has the 306 
lowest weight among the six features in the integrated model. The integrated model, as 307 
expected, achieved a higher accuracy than the individual matched filter scores (Figure 2), 308 
as they can leverage information from multiple epigenetic marks. We also trained a 6-309 
parameter SVM model using STARR-seq data in BG3 cell-line. The model is highly 310 
accurate at predicting active enhancers and promoters in the S2-cell line (Figure S6), 311 
indicating our framework of combining epigenetic features with a linear SVM model to 312 
predict enhancers is applicable across species of great evolutionary distance.  313 
 314 
 315 
To assess the information contained in other epigenetic marks, we combined the 316 
matched filters from all 30 measured histone marks along with the DHS matched filter in 317 
separate statistical models (Figure S7) and these models displayed higher accuracy 318 
(AUROC=0.97, AUPR=0.93 for SVM model with multiple core promoters) than the 6 319 
feature model presented in Figure 2. The feature weights in this model indicated that 320 
H3K27ac contains the most information regarding the activity of regulatory regions. 321 
However, we found that a few other acetylations such as H2BK5ac, H4ac, and H4K12ac 322 
contain additional non-redundant information regarding the activity of these regulatory 323 
regions and might improve the accuracy of promoter and enhancer prediction from 324 
machine learning models. 325 
 326 
Distinct epigenetic signals associated with promoters and enhancers  327 
 328 
We proceeded to create individual metaprofiles and machine learning models for the two 329 
classes of regulatory activators – promoters (or proximal) and enhancers (or distal). We 330 
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divided all the active STARR-seq peaks into promoters or enhancers based on their 331 
distance to the closest transcription start site (TSS) to delineate their likely function in the 332 
native context. Due to the conservative distance metric used in this study (1kb upstream 333 
and downstream of TSS in fly), the enhancers are regulatory elements that are not close 334 
to any known TSS and could be considered to enhance gene transcription from a 335 
distance. However, a few of the promoters may also regulate distal genes in addition to 336 
their promoter activity. We then created metaprofiles of the different epigenetic marks on 337 
the promoters and enhancers and assessed the performance of the matched filters for 338 
predicting active regulatory regions within each category (Figure 3). The highest 339 
matched filter scores are typically observed on promoters, and the matched filters for 340 
each of the six features tended to perform better for promoter prediction. The H3K27ac 341 
matched filter continues to outperform other epigenetic marks for predicting active 342 
promoters and enhancers. In addition, the DHS, H3K9ac, and H3K4me2 matched filters 343 
also performed reasonably for promoter and enhancer prediction. Similar to previous 344 
studies [61, 62], we observed that the H3K4me1 metaprofile performs better for 345 
predicting enhancers while it is close to random for predicting promoters. In contrast, the 346 
H3K4me3 metaprofile can be utilized to predict promoters and not enhancers. The 347 
histogram for matched filter scores shows that H3K4me1 matched filter score is higher 348 
near enhancers while the H3K4me3 matched filter score tends to be higher near 349 
promoters (Figure S8). The mixture of these two populations lead to bimodal 350 
distributions for H3K4me1 and H3K4me3 matched filter scores when calculated over all 351 
regulatory regions (Figure S3). 352 
 353 
We created different integrated models to learn the combination of features associated 354 
with promoters and enhancers respectively. These integrated models outperformed the 355 
individual matched filters at predicting active enhancers and promoters (Figures 3 and 356 
S9). In addition, the weights of the individual features identified the difference in roles of 357 
the H3K4me1 and H3K4me3 matched filter scores at discriminating active promoters 358 
and enhancers from inactive regions in the genome. The promoter-based (enhancer-359 
based) model performed much more poorly at predicting enhancers (promoters) 360 
indicating the unique properties of these regions (Figures S10 and S11). We also 361 
created two integrated models utilizing matched filter scores of all thirty histone marks as 362 
features for predicting enhancers and promoters. The additional histone marks provided 363 
independent information regarding the activity of promoters and enhancers as these 364 
features increased the accuracy of these models (Figure S12). The weights of different 365 
features indicate that H2BK5ac again displays the most independent information for 366 
accurately predicting active enhancers and promoters. We observe similar trends and 367 
accuracy with several different machine learning methods (Figures S9 and S12).     368 
 369 
 370 
Application of STARR-seq model to predict enhancers in mammalian species 371 
 372 
One of the important findings of previous ENCODE and model organism ENCODE 373 
efforts is the conservation of chromatin marks close to regulatory elements across 374 
hundreds of millions of years of evolution [42-48]. The relationship of chromatin marks to 375 
gene expression was very similar, for instance, in worms, flies, mice and human, so 376 
much that one could build a statistical model relating chromatin modification to gene 377 
expression that would work without re-parameterization across different organisms. This 378 
motivated us to apply our well-parameterized model based on the STARR-seq data from 379 
flies to mammalian systems -- eg. mouse and human -- and test our model performance.  380 
 381 
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We started with genome-wide predictions of regulatory regions in mouse. Tissue-specific 382 
epigenetic signals were processed and applied to our model to account for the tissue 383 
specificity of enhancers. Predictions are made in six different tissues (forebrain, midbrain, 384 
hindbrain, limb, heart and neural tube) at mouse e11.5 stage (Data available through our 385 
website at https://github.com/gersteinlab/MatchedFilter). These tissues are selected as 386 
their epigenetic signals are highly studied in mouse ENCODE, providing us with a rich 387 
source of raw data that can be utilized for making enhancer and promoter predictions. In 388 
addition, the VISTA database contains close to 100 validated enhancers that can be 389 
used for test for each of these tissues. Using our model, we predicted 31K to 39K 390 
regulatory regions in individual tissues in mouse, with each region ranging from 300bp to 391 
1100bp. Notably, a consistent proportion of two-thirds (66%~70%) of these predicted 392 
regulatory regions are distal regulatory elements for all six tissues, with the other one-393 
third (30%~34%) being proximal regulators (Table S3). These numbers agree with a 394 
previous enhancer evolution study [8], and suggest that the amount of enhancers and 395 
promoters are likely comparable in different tissues.  396 
 397 
 398 
Similarly, we did genome wide prediction of regulatory regions in ENCODE top tier 399 
human cell lines, including H1-hESC, GM12878, K562, HepG2 and MCF-7 (all available 400 
through our website). For each cell line, we utilized the 6-parameter integrated model to 401 
predict active enhancers and promoters based on the epigenetic datasets measured by 402 
the ENCODE consortium [60]. In H1-hESC, for example, we predicted 43463 active 403 
regulatory regions, of which 22828 (52.5%) are within 2kb of the TSS and are labeled as 404 
promoters. A large proportion of the predicted enhancers are found in the introns 405 
(30.41%) and intergenic regions (13.93%) (Figure S13). The predicted promoters and 406 
enhancers are significantly closer to active genes than might be expected randomly 407 
(Figure S14).  408 
 409 
Comparison of STARR-seq model to mammalian models for enhancer prediction 410 
 411 
We next tried to evaluate how well the STARR-seq model did on predicting mammalian 412 
enhancers. Particularly, we want to compare the current mouse enhancer predictions 413 
with predictions from models directly trained on mouse data. The relatively large number 414 
of known mouse enhancers from VISTA database enabled us to parameterize a model 415 
in a same way as what we did with the fly STARR-seq data. However, the VISTA 416 
database is not nearly at the same scale as the fly STARR-seq dataset. In total, we 417 
pulled together 1253 tissue specific positive regions and 8631 tissue specific negative 418 
regions from the assays.  419 
 420 
 421 
With VISTA database, we trained four models based on four sets of available E11.5 422 
mouse tissue-specific enhancers (hindbrain, limb, midbrain and neural tube), and 423 
assessed them using 10-fold cross-validation respectively. (There are no DHS data 424 
available for E11.5 forebrain and heart thus these two tissues are excluded for fair 425 
comparison). The average AUROC value is compared to the AUROC of testing STARR-426 
seq trained model on the same VISTA enhancer data. Despite the significantly 427 
unbalanced negative to positive ratios of mouse enhancers in the database, the 6-428 
parameter integrative SVM models learned using balanced fly STARR-seq data were 429 
highly accurate at predicting active enhancers and promoters in mouse (Figure S15 A). 430 
The cross-validated mouse model, while it did well, performed no better on predicting 431 
mouse tissue specific enhancers. We found that the best performing one among the 432 
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mouse models is for tissue midbrain, likely due to the fact that the number of validated 433 
midbrain enhancers is the largest. To construct a larger training sample for mouse, we 434 
pooled together the normalized z-scores of matched filter scores for six epigenetic 435 
signals of all four tissues, and parameterized a model using this larger set of data. Again, 436 
we observed that the original model trained with fly STARR-seq data performed equally 437 
well on predicting mouse enhancers and much better in predicting fly enhancers (Figure 438 
S15 B). Overall, the result suggests that using the larger and more comprehensive 439 
STARR-seq data set for parameter tuning was superior to using the smaller mouse data 440 
set, even on mouse. 441 
 442 
In human we did not have an extensive amount of validated enhancer data to allow us to 443 
re-parameterize our model and compare to the STARR-seq model. Instead, we 444 
compared our predicted enhancers to the enhancer predictions from popular 445 
segmentation-based algorithms in human cells, eg, chromHMM [63] and SegWay [27]. 446 
We observe that a majority of the predicted enhancers and promoters are also predicted 447 
to be enhancers and promoters by chromHMM and SegWay respectively (Figures S16 448 
to S19). 449 
 450 
Given the above overall statistical and computational evaluations, we are confident in 451 
the STARR-seq parameterized model. We then set out to do targeted unbiased 452 
validations of the mammalian enhancers predicted, which is described in the next two 453 
sections.  454 
 455 
 456 
Validation in vivo in Mouse  457 
 458 
To test the activity of predicted mouse enhancers in vivo, we performed transgenic 459 
mouse enhancer assay in e11.5 mice for 133 regions in heart and forebrain, including 460 
102 regions selected based on the H3K27ac signals rank of corresponding mouse 461 
tissues, and 31 regions selected by an ensemble approach from human homolog 462 
sequences (See Methods and Supplement Table S4, S5). In addition, we obtained 463 
another set of transgenic mouse enhancer assay results from ENCODE Phase III 464 
Encyclopedia (Moore et al., in review), which assessed 151 regions in mouse e11.5 465 
hindbrain, midbrain and limb. The combined results from these two large sets of 466 
validations, as well as any previously tested tissue-specific e11.5 enhancers from VISTA 467 
database, allow us to comprehensively evaluate our enhancer predictions in all six e11.5 468 
mouse tissues.  469 
 470 
Among the first 102 tested regions, 62 are selected based on forebrain H3K27ac signal 471 
rank, with 20, 22, 20 regions being in the top, middle and bottom rank respectively. 472 
Another 40 regions are selected by heart H3K27ac signal rank with half of them coming 473 
from the top rank and the other half coming from the middle rank. The bottom ranked 474 
regions were skipped because the activity of middle ranked regions dropped off so much. 475 
Consistently, the observed active rate of assessed regions decreases from top tier to 476 
bottom tier. The validation result suggested a great prediction accuracy of our model: 61% 477 
predicted active rate versus 70% observed active rate for top tier, 45% predicted active 478 
rate versus 32% observed active rate for middle tier, and 34% predicted active rate 479 
versus 35% observed active rate for bottom tier in forebrain, etc. For the other 31 human 480 
homolog sequences, 12.9% and 9.7% of the assessed regions are active in heart and 481 
forebrain respectively. The lower active rate is likely due to the fact that these human 482 
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sequences are less well behaved in mouse tissues compared to their original native 483 
environment.  484 
 485 
 486 
For systematic comparison, we evaluate the predictability of our matched filter model for 487 
each individual histone marks and DHS, as well as the integrated SVM model (Figure 4). 488 
Consistent with previous result from STARR-seq data, H3K27ac signal is the single best 489 
performed histone marks for predicting enhancers, while DHS signal performs well as an 490 
independent source. The integrated model, as expected, out-performs the individual 491 
histone mark models. We then did similar evaluation using the regulatory elements 492 
identified by the transduction-based FIREWACh assay in mouse embryonic stem cells 493 
(mESC) [36]. With the same metaprofiles, the predictions are based on epigenetic 494 
signals of mESC available from ENCODE website. Again, we observe similar results for 495 
individual histone marks and combined SVM model (Figure S20). As the in vivo and 496 
FIREWACh assays utilized a single core promoter to validate regulatory regions, the 497 
performance of the different models in Figures 4 and S20 are probably underestimated. 498 
 499 
Validation in human cell lines 500 
 501 
We proceeded to validate our STARR-seq based model for predicting human enhancers 502 
using an in vitro transduction assay. A third generation, self-inactivating HIV-1 based 503 
vector system in which the eGFP reporter was driven by the DNA element of interest 504 
was used to validate putative enhancers after stable transduction of various cell lines, 505 
including H1 hESC (Figure 5). The predicted enhancers, ranging from 650 to 2500 bp, 506 
were PCR amplified from human genomic DNA and inserted just upstream of a basal 507 
Oct-4 promoter of 142 bp (a housekeeping promoter is used so that the activity of the 508 
putative enhancers should be similar across different cell lines).  VSV G-pseudotyped 509 
vector supernatants from each were prepared by co-transfection of 293T cells, and 510 
these were used to transduce the various cell lines, with empty vector and FG12 vector 511 
serving as negative and positive controls, respectively.  Putative enhancer activity was 512 
assessed by flow cytometric readout of eGFP expression 48-72 h post-transduction, 513 
normalized to the negative control. 514 
 515 
A total of 25 predicted intergenic enhancers were randomly selected for validation 516 
(Supplementary Table S6). These predictions were chosen randomly to ensure that 517 
these truly represented the whole spectrum of predicted enhancers and not just the top 518 
tier of predicted enhancers. Of these 25 putative enhancers, 23 were successfully 519 
amplified and cloned into the HIV vector.  To measure the distribution of gene 520 
expression in the absence of enhancer, we also amplified and cloned 25 non-repetitive 521 
elements with similar length distribution that were predicted to be inactive using the 522 
same HIV vector.  All positive and negative DNA elements were transduced and tested 523 
for activity in both forward and reverse strand orientations since enhancers are thought 524 
to function in an orientation-independent manner. Functional testing was performed in 525 
HOS, TZMBL, and A549 cell lines in addition to H1-hESCs. 526 
 527 
Insertion of twelve of the 23 putative enhancers into the HIV vector resulted in a 528 
significant increase in eGFP expression (P-value < 0.05 over the distribution of gene 529 
expression for negative elements) in the H1-hESCs (Supplementary Table S7). While 530 
most of the positive enhancers displayed a significant increase in gene expression 531 
irrespective of their orientation, a few elements showed significantly higher levels of 532 
gene expression in one of the orientations. In contrast, the negatives displayed much 533 
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lower levels of gene expression typically (Figure 5 and Supplementary Figure S21). In 534 
addition, most of these elements increased gene expression of GFP in the four different 535 
cell lines even though some of the elements were preferentially active in one of the cell 536 
lines. Overall, 16 of the 23 tested predictions displayed a statistically significant increase 537 
in gene expression of the reporter gene in at least one of the cell lines (Supplementary 538 
Table S7 and Supplementary Figure S21). Given the promoter specificity of enhancers 539 
in such assays, we would anticipate that some of the elements that could not be 540 
validated in this particular vector would function as enhancers in a more natural 541 
biological context. 542 
 543 
 544 
Integrative analysis in human cell-lines: Different Transcription Factors bind to 545 
enhancers and promoters 546 
 547 
We further studied the differences in TF binding at promoters and enhancers (Figure 6 548 
and Figure S22). We focused on the human H1-hESC cell line as there is large amount 549 
of functional genomic assays from the ENCODE [60] and Roadmap Epigenomics 550 
Mapping Consortium [59] within these cell lines. Together, the consortia have generated 551 
ChIP-Seq data for 60 transcription related factors in H1-hESC cell line, including a few 552 
chromatin remodelers and histone modification enzymes. Collectively we call all these 553 
transcription related factors "TF"s for simplicity.  554 
 555 
 556 
We show that the patterns of TF binding within regulatory regions can be utilized in a 557 
logistic regression model to distinguish active enhancers from promoters with high 558 
accuracy (AUPR = 0.89, AUROC = 0.87) (Figure 6). We were also able to identify the 559 
most important features that distinguish promoters from enhancers. In addition to TATA-560 
box associated factors such as TAF1, TAF7, and TBP, the RNA polymerase-II binding 561 
patterns as well as chromatin remodelers such as KDM5A and PHF8 are some of the 562 
most important factors that distinguish promoters from enhancers in H1-hESC. This 563 
provides a framework that can be utilized to identify the most important TFs associated 564 
with active enhancers and promoters in each cell-type.  565 
 566 
 567 
We found that while most promoters and enhancers contain multiple TF binding sites, 568 
the pattern of TF binding at promoters is different from that at enhancers and that TF-569 
binding at enhancers displays more heterogeneity: more than 70% of the promoters bind 570 
to the same set of 2-3 sequence-specific TFs, which is not observed for enhancers 571 
(Figure 6C and S23). The majority of the promoters also contain peaks for several 572 
TATA-associated factors (TAF1, TAF7, and TBP). These TF co-associations could lead 573 
to mechanistic insights of cooperativity between TFs. For example, similar to a previous 574 
study [64], CTCF and ZNF143 may function cooperatively as they are observed to co-575 
occur frequently at distal regulatory regions in this study. Overall, the high heterogeneity 576 
associated with enhancer TF-binding is consistent with the absence of a sequence code 577 
(or grammar) which can be utilized to easily identify active enhancers on a genome-wide 578 
fashion. 579 
 580 
Discussion 581 
 582 
In this paper, we have developed a framework using transferable supervised machine 583 
learning models trained on regulatory regions identified by MPRAs to accurately predict 584 
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active enhancers in a cell-type specific manner. Current, most existing methods were 585 
parameterized (not properly “trained”) on regions that had various features associated 586 
with promoters and enhancers and only a small number of these regions were typically 587 
tested for regulatory activity experimentally in an ad hoc manner [19, 21-30]. The rich 588 
amount of whole genome STARR-seq experiments [31] can now establish the 589 
characteristic pattern flanking active regulatory regions within certain histone 590 
modifications. This motivated us to train a shape-matching and filtering model that can 591 
be used to identify these patterns within the shape of the ChIP-seq signals. As the 592 
chromatin marks and epigenetic profiles associated with active regulatory regions are 593 
highly conserved among organisms [42-48], we showed that a well parameterized model 594 
in one model organism can be transferred to another with high prediction accuracy. 595 
 596 
In the model, we compared close to 30 epigenetic signals for their ability to predict 597 
regulatory elements individually. The H3K27ac matched filter remains the single most 598 
important feature for predicting active regions while H3K4me1 and H3K4me3 are shown 599 
to distinguish promoters and enhancers. We characterized the amount of redundant 600 
information within the metaprofile of different epigenetic features and showed that the 601 
ChIP-seq signals of H2BK5ac, H4ac and H2A provide independent information that 602 
helps to improve the accuracy of promoter and enhancer predictions. In addition to these 603 
30-feature models, we also provide a simple to use six-parameter SVM model for 604 
combining H3K27ac, H3K9ac, H3K4me1, H3K4me2, H3K4me3, and DHS to predict 605 
active promoters and enhancers in a cell-type specific manner. These six histone marks 606 
have been measured for a number of different tissues and cell-types by the Roadmap 607 
Epigenomics Mapping [39], the ENCODE [60], and the modENCODE Consortia [65]. 608 
Based on these signals, our model could be applied in a tissue and cell-type specific 609 
fashion in other organisms like mouse and human. We trained our models with datasets 610 
from different species and demonstrated that the high-quality STARR-seq data from fly 611 
is sufficient to train a well transferable model. We also compared our result with 612 
chromHMM [63] and SegWay [27] predictions and observed the majority of them overlap 613 
(Figure S17 to S20).  614 
 615 
 616 
To avoid potential biases, we chose to validate our model using multiple regulatory 617 
assays including in vivo transgenic assays and in vitro transductions assays, in which 618 
the predicted region is tested for regulatory activity in the native chromatin environment. 619 
The transgenic assays are performed in E11.5 mice for 133 regions of three rank tiers 620 
predicted active in mouse heart and forebrain. The experiment is supplemented by 621 
another set of 151 assayed regions predicted active in mouse hindbrain, midbrain and 622 
limb in ENCODE Phase III Encyclopedia (Moore et al., in review). Together with other 623 
validated regulatory regions from VISTA database, we were able to comprehensively 624 
validate our tissue-specific predictions in six different tissues in mouse. As we show in 625 
figure 4, the H3K27ac and DHS signals continue to be the highest predictive signals in 626 
mouse. We also did a similar evaluation with publicly available FIREWACh assay data 627 
[36] in mouse, and the results are consistent. Taken together, we showed that the 628 
matched filter model is transferable with high accuracy in predicting active enhancers in 629 
mouse tissues. 630 
 631 
 632 
The human cell-line specific regulatory elements predictions are validated through in 633 
vitro transduction assays in human H1-hESC cells. The majority of the predicted 634 
elements displayed a significant increase in expression of the reporter gene, further 635 
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confirming the predictability of our model in mammalian organisms.  H1-hESC is a highly 636 
studied cell line, allowing us to analyze the differences in the patterns of TF binding at 637 
proximal and distal regulatory regions. The TF binding and co-binding patterns at 638 
enhancers are much more heterogeneous than that at promoters. This heterogeneity in 639 
TF binding patterns makes it more difficult to predict enhancers due to the absence of 640 
obvious sequence patterns in distal regulatory regions. However, we were able to create 641 
accurate machine learning models that can distinguish proximal promoter regions from 642 
distal enhancers based on the patterns of TF ChIP-seq peaks within these regulatory 643 
regions. The conservation of the epigenetic underpinnings underlying active regulatory 644 
regions sets the stage for our method to study the evolution of tissue-specific enhancers 645 
and their genomic properties across different eukaryotic species. 646 
 647 
 648 
Our results echo to the previous findings that the epigenetic profiles associated with 649 
active enhancers and promoters are highly conserved in evolution [42-48]. Therefore, 650 
our model of integrating shape-matching epigenetic scores using fly STARR-seq 651 
enhancers can be applied to predict on a variety of tissues and cell lines in other species. 652 
In the cross-comparison, we show that the six-parameter integrated model trained in 653 
STARR-seq data performs equally well at predicting mouse tissue enhancers with a 654 
model trained in VISTA mouse enhancer data. This highlights the advantage of modeling 655 
based on a comprehensive genome-wide experimental assay. In the future, we expect 656 
that more extensive whole-genome STARR-seq dataset will become available on 657 
mammalian systems. It could thus be advantageous to re-train the matched filter model 658 
on the state-of-art datasets. With the set up of our framework, re-training the model with 659 
newly generated datasets should be straightforward. We envision that our framework 660 
would benefit from these datasets and generate more comprehensive regulatory 661 
elements annotations across different eukaryotic species.  662 
 663 
 664 
 665 
 666 
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Figures and Captions 863 
 864 

 865 
 866 
Figure 1: Creation of metaprofile. A) We identified the “double peak” pattern in the 867 
H3K27ac signal close to STARR-seq peaks. The red triangles denote the position of the 868 
two maxima in the double peak. B) We aggregated the H3K27ac signal around these 869 
regions after aligning the flanking maxima, using interpolation and smoothing on the 870 
H3K27ac signal, and averaged the signal across different MPRA peaks to create the 871 
metaprofile in C). The exact same operations can be performed on other histone signals 872 
and DHS to create metaprofiles in other dependent epigenetic signals. D) Matched filters 873 
can be used to scan the histone and/or DHS datasets to identify the occurrence of the 874 
corresponding pattern in the genome. E) The matched filter scores are high in regions 875 
where the profile occurs (grey region shows an example) and it is low when only noise is 876 
present in the data. The individual matched filter scores from different epigenetic 877 
datasets can be combined using integrated model in F) to predict active promoters and 878 
enhancers in a genome wide fashion. 879 
 880 
 881 
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 882 
 883 
Figure 2: Performance of matched filters and integrated models for predicting 884 
MPRA peaks. The performance of the matched filters of different epigenetic marks and 885 
the integrated model for predicting all STARR-seq peaks is compared here using 10-fold 886 
cross validation. A) The area under the receiver-operating characteristic (AUROC) and 887 
the precision-recall (AUPR) curves are used to measure the accuracy of different 888 
matched filters and the integrated model. B) The weights of the different features in the 889 
integrated model are shown and these weights may be used as a proxy for the 890 
importance of each feature in the integrated model. C) The individual ROC and PR 891 
curves for each matched filter and the integrated model are shown. The performance of 892 
these features and the integrated model for predicting the STARR-seq peaks using 893 
multiple core promoters and single core promoter are compared. The numbers within the 894 
parentheses in A) refer to the AUROC and AUPR for predicting the peaks using a single 895 
STARR-seq core promoter while the numbers outside the parentheses refers to the 896 
performance of the model for predicting peaks from multiple core promoters. 897 
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 898 
Figure 3: Performance of matched filters and integrated models for predicting 899 
promoters and enhancers. The performance of the matched filters of different 900 
epigenetic marks and the integrated model for predicting active promoters and 901 
enhancers are compared here using 10-fold cross validation. A) The numbers within 902 
parentheses refer to the AUROC and AUPR for predicting promoters while the numbers 903 
outside parentheses refer the performance of the models for predicting enhancers.  B) 904 
The weights of the different features in the integrated models for promoter and enhancer 905 
prediction are shown. C) The individual ROC and PR curves for each matched filter and 906 
the integrated model are shown. The performance of these features and the integrated 907 
model for predicting the active promoters and enhancers using multiple core promoters 908 
are compared.  909 

  910 
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 911 
Figure 4: Conservation of epigenetic features. The performance of the fly-based 912 
matched filters and the integrated model for predicting active enhancers identified by 913 
transgenic mouse enhancer assays at 6 different tissues in E11.5 mice. A) Average 914 
AUROC and AUPR for predicting enhancers by different features and by the integrated 915 
model. The weights of the different features in the integrated model is the same as the 916 
weights shown in Figure 3 for enhancers. B) The individual ROC curves of each feature 917 
and the integrated model for each tissue are shown. C) The individual PR curves of each 918 
feature and the integrated model for each tissue are shown. 919 
 920 
 921 
 922 
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 923 
Figure 5: Enhancer Validation Experiments. A) A schematic of the enhancer 924 
validation scheme is show.  At top is third generation HIV-based self-inactivating vector 925 
(deletion in 3’ LTR indicated by red triangle), with PCR-amplified test DNA (blue, two-926 
headed arrow indicates fragment was cloned in both orientations), inserted just 5’ of a 927 
basal (B) Oct4 promoter driving IRES-eGFP (green).  Vector supernatant was prepared 928 
by plasmid co-transfection of 293T cells and used to transduce cellular targets and 929 
analyzed by flow cytometry a few days later.  B) The fold change of gene expression of 930 
eGFP is compared between negative elements and putative enhancers chosen for 931 
experiments. The p-Value of the difference in activity is measured using a Wilcoxon 932 
signed-rank test. 933 
 934 
 935 
 936 
 937 
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 938 
Figure 6: Differences in TF binding patterns at enhancers and promoters. A) The 939 
fraction of predicted promoters and enhancers that overlap with ENCODE ChIP-seq 940 
peaks for different TFs in H1-hESC are shown. The names of all TFs in the figure can be 941 
viewed in Figure S20. B) The AUROC and AUPR for a logistic regression model created 942 
using the pattern of TF binding at each regulatory region to distinguish enhancers from 943 
promoters are shown. The weight of each feature in the logistic regression model can be 944 
used to identify the most important TFs that distinguish enhancers from promoters. C) 945 
The patterns of TF co-binding at active promoters and enhancers are shown. The names 946 
of all the TFs in this graph can be viewed in Figure S21. 947 
 948 
 949 


