ARTICLE

doi:10.1038/nature22071

Whole-genome landscapes of major melanoma subtypes

Nicholas K. Hayward^{1,2}*§, James S. Wilmott^{1,3}*, Nicola Waddell^{2,4}*, Peter A. Johansson²*, Matthew A. Field⁵, Katia Nones^{2,4}, Ann–Marie Patch^{2,4}, Hojabr Kakavand³, Ludmil B. Alexandrov⁶, Hazel Burke¹, Valerie Jakrot¹, Stephen Kazakoff^{2,4}, Oliver Holmes^{2,4}, Conrad Leonard^{2,4}, Radhakrishnan Sabarinathan^{7,8}, Loris Mularoni^{7,8}, Scott Wood^{2,4}, Qinying Xu^{2,4}, Nick Waddell⁴, Varsha Tembe⁹, Gulietta M. Pupo⁹, Ricardo De Paoli–Iseppi³, Ricardo E. Vilain³, Ping Shang³, Loretta M. S. Lau¹⁰, Rebecca A. Dagg¹¹, Sarah–Jane Schramm⁹, Antonia Pritchard², Ken Dutton–Regester², Felicity Newell², Anna Fitzgerald¹², Catherine A. Shang¹², Sean M. Grimmond¹³, Hilda A. Pickett¹⁰, Jean Y. Yang¹⁴, Jonathan R. Stretch¹, Andreas Behren¹⁵, Richard F. Kefford^{1,16}, Peter Hersey^{1,17}, Georgina V. Long^{1,18}, Jonathan Cebon¹⁵, Mark Shackleton¹⁹, Andrew J. Spillane¹, Robyn P. M. Saw¹, Núria López–Bigas^{7,8,20}, John V. Pearson^{2,4}§, John F. Thompson¹§, Richard A. Scolyer^{1,3,21}§ & Graham J. Mann^{1,9}§

Xiaotong Li JClub

Materials & Methods

- 183 melanoma samples = 140 cutaneous + 35 acral + 8 mucosal
- fresh-frozen tissue and blood samples
- average depth 85× (range 43–219×) in the tumour sample
- average depth 64× (range 30–214×) in the matched normal
- Mutations calling pipelines
 - somatic mutations and germline variants: qSNP and GATK
 - somatic Indels of 1–50 bp in length: Pindel
 - somatic copy number and ploidy: TITAN tool
 - structural variants: qSV tool

Mutation Burden

Mutational Processes

Mutations and copy number changes in selected published melanoma driver genes

Mutations and copy number changes in selected published melanoma driver genes

Genes and signaling pathways recurrently altered in melanoma

Genes and signaling pathways recurrently altered in melanoma

• A pathway was considered altered in a given sample if at least one gene in the pathway contained an SNV/indel or structural variant.

Recurrent promoter mutations: DPH3, NFKBIE, RPS27 and PES1

Overview of structural variants

Complex structural rearrangements

MELA_0010

а

Duplication

Deletions

Tandem Duplication
Intrachromosomal

Structural rearrangement

- Translocation
- Inversion
- Amplified Inversion
- Foldback Inversion

Copy Number

Gain

Loss

Summary

- Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world.
- In cutaneous melanomas, heavily mutated landscape of coding and noncoding mutations resolved novel signatures attributable to ultraviolet radiation.
- However, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology.
- Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma.
- Mutations affecting the TERT promoter were the most frequent of all.
- Most melanomas had potentially actionable mutations, most in components of the mitogenactivated protein kinase and phosphoinositol kinase pathways.