
chemprobstats: A pipeline for differential 
analyses of RNA chemical probing data 
 
other possible names: diffProbeR, DARC-Probe (Differential Analysis of RNA 
Chemical PROBing data) 
 
previous title: Modeling overdispersion in RNA chemical probing data and 
application to secondary structure prediction 
 
Abstract  
 

Chemical probing can uncover biological properties of RNA nucleotides, 
including structural context, chemical modification, and protein binding \cite{	
26575240, 28216634, 26544910}. Technological advances are continually 
expanding the applications of these techniques, as probes for new RNA 
properties are developed and probing assays have been adapted to in vivo 
conditions, with results read out by high throughput sequencing. Despite the 
great utility of chemical probing experiments for RNA biology, comparatively little 
is known about the statistical properties of chemical probing experiments. This is 
particularly important, because inference of nucleotide properties from chemical 
probing relies upon differential analysis of RT stops or mutations between treated 
samples and untreated controls. Moreover, properties like RNA structure and 
chemical modification are thought to differ tissue specifically and in other 
biological contexts, and differential analysis of probing experiments between 
conditions would be greatly aided by more detailed statistical modeling. Here we 
show that chemical probing data–like count data from many other biological 
assays, but in contrast to previous assumptions in the probing field–are 
overdispersed relative to the Poisson distribution. We devise a method to model 
probing data using the negative binomial distribution, implemented through an R 
package that we call chemprobstats. Our model of probing data provides an 
improved fit to a variety of RNA probing data, and resulting p-values track better 
with expected biochemical biases of probing reagents than previous models. We 
further incorporate our models into a method for RNA secondary structure 
prediction, which we benchmark against RNAs of known structure and apply to 
novel data for the Fendrr lncRNA. Finally, we apply our model to test for 
differential pseudouridine modification of RNA bases in different genetic contexts 
in yeast, laying the analytical groundwork for studies of tissue or condition 
specific RNA nucleotide properties. 
 
 
Introduction 
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Chemical probing techniques can reveal biologically important properties 
of RNA molecules at single nucleotide resolution. The applications of this 
versatile set of tools include studies of RNA structure, chemical modification, and 
interactions with proteins, all of which aid mechanistic investigations of RNA 
function and regulation. The utility of chemical probing experiments to study RNA 
biology has expanded in scope, as probes have been developed that work in vivo 
and techniques have been adapted to a sequencing platform for both 
transcriptome wide \cite{ 25192136, 28504680, structure: 24270811, 27819661, 
24336214, 25951283} and targeted \cite{26646615, 26544910, 27578869} 
analyses. Technical improvements are also enabling experimentation under 
different biological conditions, which will enable a greater understand of how 
properties like RNA structure and chemical modification are regulated. The most 
widely used probes–e.g. dimethyl sulfate (DMS) and selective 2’ hydroxyl 
acylating (SHAPE) reagents–aid RNA secondary structure determination by 
selectively modifying single-stranded and flexible nucleotides. Nucleotides 
modified by chemical probes are then read out by reverse transcriptase (RT), 
which terminates cDNA synthesis or inserts incorrect bases at chemical adducts 
(we refer to RT stops and mutations more generally as RT events). Comparing 
results of probing experiments to controls with no chemical treatment enables 
calculation of nucleotide reactivities, which are then converted into probabilistic 
constraints for RNA secondary structure prediction, or parallel inferences about 
other nucleotide properties \cite{19109441}. 

Though chemical probing experiments can uncover diverse biochemical 
information about RNA nucleotides, the extent to which these experimental 
signals can be confounded by noise is not well understood. Ideally, if the 
conditions of experiments were exactly the same–such that every RNA molecule 
had the same probability of generating an RT event at a given nucleotide, both 
within and between experimental replicates–then observational noise could be 
modeled accurately using distributions that make this simplifying assumption. 
Indeed, the Poisson distribution, which is often used to model chemical probing 
data, assumes that the underlying statistical process being modeled is uniform. 
Moreover, most analysis methods for chemical probing analysis address the 
results of a single replicate, or the pooled results of multiple replicates rather than 
exploring the variability between experimental samples \cite{25028896, 
28501650}. There is reason to be concerned that the Poisson model may 
underestimate the variability observed in probing data. Indeed, many types of 
biological data – ranging from gene expression (RNA-Seq)\cite{17728317, 
19910308 } to mutation rates in cancer genomes \cite{ 26304545} – are often 
overdispersed relative to Poisson statistics (have greater variability than 
expected), due to heterogeneity in biological conditions within or between 
experimental samples. If chemical probing data are also overdispersed relative to 
Poisson statistics, explicit modeling of replicate data could be critical to 
assessing confidence in nucleotide reactivities and for downstream applications 
such as structure prediction. Statstical modeling would be all the more important 
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to identification of nucleotides with different properties under different biological 
conditions. Supporting the opportunities to improve the analysis of chemical 
probing experiments, one recent method, BUM-HMM (Beta-Uniform Mixture 
Hidden Markov Model) used the empirical variability in control chemical probing 
experiments to assess the significance of differences between treated and 
control experiments\cite{ 27819660}, which showed improvements in robustness 
of observations for RNAs with low sequencing coverage. However, to our 
knowledge, no existing method provides a straightforward statistical treatment of 
independent probing experiments that explicitly models variability in both treated 
and control experiments. 

Here we conduct a systematic investigation of statistical overdispersion in 
data from a variety of chemical probing techniques. We demonstrate that across 
multiple probes, types of experimental conditions (in vitro vs. in vivo), and in both 
targeted and genome-wide studies, counts observed from probing experiments 
are often overdispersed. To address this problem, we develop chemprobstats, a 
new tool that uses replicate observations to model overdispersion in chemical 
probing data. Our tool more accurately models the count data that are produced 
in chemical probing experiments, enabling statistical identification of significantly 
modified bases. We show an application of our approach to RNA secondary 
structure prediction, one of the traditional focuses of chemical probing analysis, 
developing a model-based approach to consider observational noise in 
converting chemical probing reactivities into constraints for structure prediction. 
We demonstrate the utility of our package for prediction of a variety of RNAs of 
known structure, as well as novel probing data for the 5’ region of the Fendrr 
RNA. We further apply our model to perform differential analysis of 
pseudouridine modification in between wild type yeast and those lacking 
enzymes that catalyze the pseudouridine modification.  
 
Results 
 
RNA chemical probing data are overdispersed 
 

To motivate development of a method to consider observational noise in 
the analysis of chemical probing data, we began by examining the replicate 
observations of a sample dataset: in vivo DMS probing of the mouse 18S rRNA. 
We focused on replicate RT stop counts from chemically treated RNA samples. 
Models commonly used to simulate or analyze probing data employ the Poisson 
distribution, which assumes the probability of producing and RT stop at a given 
nucleotide is the same for each RNA molecule, both within and between 
experimental samples. We hypothesized that probabilities of producing an RT 
stop at a given nucleotide may in fact be heterogenous between RNA molecules, 
which would the Poisson model to underestimate experimental variability. This 
heterogeneity could arise through differences in experimental conditions 
(particularly for in vivo samples) between experiments, or from differences in how 
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different RNA molecules (and cDNAs) behave through the entire process of 
probing and library preparation.  

To gain an intuitive feel for whether our sample probing dataset follows 
Poisson statistics, we plotted the RT stop counts for two samples for a sample 50 
nt region of the mouse 18S rRNA (Figure 1a), after normalizing for the number of 
reads where the RT reached each nucleotide of interest (see methods). Treating 
one replicate as a reference, we drew 95% confidence intervals assuming that 
data fit the Poisson distribution, and observed that for 19 of the 50 nucleotides, 
counts for the second replicate were outside the confidence interval of the 
reference replicate (2.5 outliers would be expected). To investigate the level of 
variability in probing data across a larger region of the 18S rRNA, we estimated 
the mean counts at each nucleotide, then simulated replicate datasets according 
to the Poisson distribution (Figure 1b), and finally compared the agreement 
between these simulated replicate observations to observed replicates (Figure 
1c). Consistent with our initial observations, observed variability was much 
greater than that assumed by the Poisson model, implying that the data are 
overdispersed. 

To investigate the overdispersion of chemical probing data more formally, 
we considered the p-values from the Poisson exact test between coverage 
corrected counts of replicates of the DMS-treated 18S rRNA data. Since these 
are replicate experiments, we expect that observations from both replicates at 
each nucleotide come from the same distribution. If the model accurately 
describes the variability of the data, this would lead p-values comparing replicate 
observations to follow the uniform distribution. To test whether this is the case, 
we plot the ordered Poisson exact p-values between replicates against the 
quantiles of the uniform distribution (quantile-quantile plot, Figure 1d) and 
observe that the Poisson exact p-values are almost all more extreme than any p-
value. This observation is borne out by using the Kolmogorov-Smirnov test, a 
standard test for whether the goodness of fit of two distributions, which shows 
that Poisson p-values differ greatly from the uniform distribution (p < 2.2*10-16). 
Together, these observations show that the Poisson distribution greatly 
underestimates the variability in in vivo DMS probing data of the Xist RNA, and 
that these data are overdispersed. 

We next considered whether the overdispersion we observed in in vivo 
mouse 18S rRNA DMS probing data was particular to this dataset, or to some of 
its properties. It would be logical, for example to suggest that overdispersion 
comes primarily from biological variation, and that noise in in vitro probing 
experiments would be modeled more accurately by the Poisson distribution. 
Further, overdispersion could plausibly be observed specifically in a particular 
dataset, or only with certain chemical probing reagents. To address this question, 
we processed a variety of chemical probing data, both in vitro and in vivo, and for 
probing reagents including DMS, SHAPE reagents, and CMC which irreversibly 
modifies pseudouridine residues. We find that across these different conditions, 
all datasets tested display overdispersion as measured by the Kolmogorov-
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Smirnov test (Table S1 ***not made yet). Interestingly, we find that RT event 
counts in most control experiments are also overdispersed, implying that 
heterogeneity in experimental steps conducted after probing is still sufficient to 
cause overdispersion (Table S1 ***not made yet). 
 
Modeling overdispersion in chemical probing data by adapting 
methodology used for RNA-Seq analysis 
 

Having established that chemical probing data are overdispersed, we next 
sought to develop a more accurate way to model count data produced by 
chemical probing experiments. This posed a challenge as relatively few 
replicates are typically conducted because of cost constraints, making it hard to 
make accurate variance estimates for each data point (nucleotide) individually. 
As we considered this problem, we noted that chemical probing techniques can 
be viewed largely as an extension of RNA-Seq experiments, where instead of 
counting reads at genes, RT events are counted at nucleotides. With the 
exception of chemical treatment, the key steps of the two techniques–reverse 
transcription, library preparation, and sequencing–are highly similar. Moreover, 
cost also limits the number of replicates produced for RNA-Seq experiments, and 
RNA-Seq data are well known to be overdispersed \cite{17881408, 20979621, 
25516281}. We therefore considered whether we could adapt methods used for 
RNA-Seq analysis to model the overdispersion of chemical probing data. 

To model overdispersion in chemical probing data, we chose to adapt the 
RNA-Seq analysis tool, DESeq2, which takes advantage of common information 
among many measurements (of gene expression) made in parallel to aid 
inference of count distributions \cite{25516281}. DESeq2 employs the negative 
binomial distribution, which is closely relative to the Poisson distribution but 
contains a dispersion parameter, α, which is zero when there is no 
overdispersion (Poisson) but takes higher values when data are overdispersed 
(see Methods). DESeq2 estimates the dispersion parameter by first making 
estimates for each gene (or nucleotide for chemical probing), then observing a 
trend between mean counts and dispersion values, and finally adjusting 
dispersion values toward the trend. Though DESeq2 can analyze normalized 
counts of any type, standard normalization for RNA-Seq is based upon the total 
number of reads in the experiment. In contrast, as above, we normalize input 
counts to the number of reads that reach the nucleotide of interest (for RT stops) 
or that cover the nucleotide of interest (for mutations). 

We used DESeq2 to model normalized counts for our sample dataset: RT 
stop counts for in vivo DMS probing of the mouse 18S rRNA. We observe that as 
for RNA-Seq data, the dispersion parameters fit for each nucleotide trend with 
the mean counts (Fig 2a). To gain the same intuitive feel for the fit of the negative 
binomial models to the data, we compared simulated negative binomial replicates 
(Fig 1d) to observed replicates (Fig 1c) and Poisson replicates (Fig 1b), finding 
that the negative binomial replicates are much more similar to the real replciates 
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than the Poisson replicates. To evaluate the negative binomial models produced 
by DESeq2 more formally, we fit a model using 5 replicates of the Xist DMS data 
and computed negative binomial p-values given the model for the observations of 
a sixth replicate. As in our analysis of fit to the Poisson distribution, if the 
negative binomial model matches the variability of the data, then the p-values for 
the sixth replicate relative to the model should follow the uniform distribution. We 
observe that our negative binomial p-values are much closer to following the 
uniform distribution than Poisson p-values (Figure 1e), with less significant 
evidence that the negative-binomial p-values differ from expected uniform 
quantiles than we do for the Poisson distribution (Kolmogorov-Smirnov test, 
Poisson: p < 2.2*10-16; Negative Binomial: p = 2*10-5).  

We next modeled the variety of chemical probing datasets of different 
types that we had found to be overdispersed relative to the Poisson distribution. 
For each dataset, we fit either Poisson or negative-binomial (using DESeq2) 
models to all but one replicate and then compared p-values of a test replicate to 
the uniform distribution. The Kolmogorov-Smirnov statistics for the negative 
binomial p-values are consistently lower (better fit) than for Poisson p-values 
(Figure 1f, Table S1), implying that our negative binomial fits improve modeling of 
a wide variety of chemical probing datasets. 
 
Using p-values from chemprobstats for biochemical inference 
 

A more accurate statistical model of chemical probing data should aid 
biochemical inference from these datasets. The structure probing reagents 
SHAPE and DMS are expected to modify single-stranded nucleotides 
preferentially over double-stranded bases, while DMS is also selective for A and 
C bases. Meanwhile carbodiimide probing followed by reversal is selective for the 
modified base, pseudouridine \cite{25192136}. We performed statistical tests 
comparing treated and control RT event counts to identify bases that have 
significantly more RT events due to treatment. We then compared the distinctive 
ability of p-values from our negative binomial model to that of Poisson p-values, 
as well as the empirical p-values produced by recently published BUM-HMM 
method that uses empirical differences in untreated samples as the null 
distribution against which to test treatment-control comparisons. Precision-recall 
curves, which measure precision as increasing numbers of positive identifications 
are made, show that negative binomial p-values have greater distinctive ability 
than either of the other two statistical tests for distinction of AC vs. GU 
nucleotides for in vivo, targeted DMS probing of 3 RNAs: Xist, U2 snRNA, and 
7SK RNA (Fig 2a-e). The negative binomial p-values outperform other tests for 
distinction of pseudouridine bases from unmodified uridines in carbodiimide 
probing data of the human 18S rRNA, and perform comparably to the other tests 
for distinction of single stranded vs. double stranded nucleotides from in vitro 
SHAPE probing of the E coli 5S rRNA \cite{27064082}. We report performance 
for an expanded list of RNAs, using the area under both precision-recall and 
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receiver operator curves as metrics, in Table 1 (***Table 1 not made yet***). We 
note that we would not expect perfect performance from a statistical metric in any 
of these comparisons, because the in no case is the chemical probing reagent 
perfectly selective for the type of base. 

Because chemical probes are often not perfectly selective for nucleotides 
with the property of interest, with the potential for nonzero reactivity toward all 
bases, many analysis methods focus on the degree of reactivity of each 
nucleotide, as opposed to the statistical significance of its difference from the 
background control. Our negative binomial fits enable us to consider both the 
magnitude and confidence in our reactivity estimates simultaneously. To illustrate 
this, we made violin plots showing the inferred distribution of a common 
measurement of reactivity–the increase in probability of stopping or mutation due 
to treatment (denoted ∆Pstop, ∆Pmut, or more generally, ∆P; see Methods)– by 
simulating from the treated and control count distributions for each nucleotide 
\cite{ 26646615} (Fig 2e-h). We show these plots for segments of each RNA 
used in the p-value vs. biochemical property comparisons above. The use of 
inferred reactivity distributions has the potential to be useful for inference of the 
many different nucleotide properties that can be measured by chemical probing. 

 
chemprobstats enables incorporates modeling of overdispersion into RNA 
secondary structure prediction 
 

As an application of our statistical modeling of chemical probing counts, 
we sought to develop a method to incorporate inferred reactivity distributions into 
RNA secondary structure prediction. RNA structure prediction methods typically 
rely on levels of nucleotide reactivity, based on the observation that the degree of 
reactivity is more structurally meaningful than simply whether the reactivity is 
above zero \cite{19109441}. This may be because chemical probing reagents are 
selective for certain bases, but often have positive, nonzero reactivity toward all 
bases \cite{27803152}. RNA structure prediction methods typically perform one 
of a variety of normalization methods on ∆P or similar metrics of reactivity, and 
then define functions that convert these normalized reactivities into probabilities 
that each nucleotide is paired. These probabilities are converted to 
pseudoenergy terms that can be used to constrain free energy-based RNA 
secondary structure prediction algorithms \cite{19109441, 24895857}. 
 To create a replicate-aware method to incorporate chemical probing data 
into RNA secondary structure prediction, we represent counts for treated and 
control experiments by the negative binomial distributions we fit using DESeq2. 
Similar to the violin plots for ∆P above, we simulated many replicates of our 
experimental data. We then calculated ∆P, used the so-called boxplot method 
(see Methods, \cite{ 19109441 }) to create normalized reactivities. These 
reactivities were converted to probabilities using the method proposed by Deigan 
et al.: 
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∆G = a*log(R+1) + b 
p(paired)/p(single-stranded) = exp(-∆G/RgasT) 

p(single-stranded) = 1/(1+exp(-∆G/RgasT)) 
 

Here, R represents normalized reactivity, Rgas is the gas constant, T is 
temperature, which is taken to be 37C (310.15 K). The final probability estimate 
was taken as the mean of the probabilities computed from sampling from treated 
and control count distributions. Of note is that there are two free parameters in 
the Deigan method that control the degree to which high reactivity indicates low 
pairing probability (a, above) and that no reactivity indicates higher pairing 
probability (b, above) (Figure 3b). The best values for a and b are typically 
determined based on optimization of prediction performance for RNAs of known 
structure.  

We implemented our replicate-sensitive method for converting raw 
chemical probing counts to structure prediction constraints using in vitro SHAPE 
data for the 5S ribosomal RNA, an RNA of known structure \cite{ 25303992, 
22976082, maybe others}. Pairing probabilities from our method were input into 
the RNAstructure software package for structure prediction. To evaluate our 
predictions, we use two metrics: sensitivity, the proportion of correct base pairs 
that are predicted; and positive predictive value (PPV), the proportion of 
predicted base pairs that are correct. Our probabilistic method enables correct 
prediction of the 5S rRNA structure (sensitivity = 100%, PPV = 100%, Fig 3a), in 
contrast to an inaccurate prediction from an unconstrained structure (sensitivity = 
27.0%, PPV = 24.3%, Fig 3b). We can also see that prediction accuracy is robust 
to parameters of the Deigan pseudoenergy function that control the degree to 
which high reactivity indicates low pairing probability (a) and that no reactivity 
indicates higher pairing probability (b) (Fig 3c). This demonstrates the ability of 
our replicate-sensitive method to aid accurate prediction of RNA structure on a 
model RNA. 
 
Application of noise aware RNA structure prediction to probing of the 
Fendrr lncRNA 
 
 The Fendrr lncRNA is essential to development in mouse models 
\cite{23369715, 24381249} and expression of its human transcript is associated 
with prognosis in gastric cancer \cite{25167886}. We sought to investigate this 
RNA’s structure by combining chemical probing and our chemprobstats pipeline. 
We in vitro transcribed and the 5’ region of Fendrr, and probed this RNA with the 
SHAPE reagent 1M7.  
 
Plan: 

• Fold 5’ region of Fendrr lncRNA (maybe other regions as well) 
• Plot structure with coloring for SHAPE constraints 
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• Assess confidence in predicted base pairs (pairing probability and 
Shannon entropy calculations) 
	

 
chemprobstats enables differential analysis of nucleotide properties 
between conditions 
 
 The analyses conducted thus far consider probing experiments in a single 
condition, but nucleotide properties like RNA structure and chemical 
modifications can change substantially under different biological conditions. For 
example, RNA chemical modifications are thought to vary tissue specifically in 
humans, based upon the expression of enzymes that catalyze or regulate the 
deposition of modifications. We thus sought to extend our approach to 
identification of bases with different reactivity toward chemical probes under 
different conditions. The generalized linear model framework used by DESeq2 to 
fit our negative binomial models also enables testing of contrasts more 
complicated than simple comparison of two conditions. Here we ask whether the 
treated vs. control difference in one condition is greater than that in another. As a 
first test dataset, we used Pseudo-Seq data in yeast cells with and without 
deletion of the Pus7 gene, which is known to catalyze deposition of 
pseudouridine sequence specifically \cite{25192136}. 
 
Plan: 

• Quantify RT stops/coverage for PseudoSeq data in yeast 
• Identify differentially modified bases 
• Show motif enrichment in top hits, similar to that seen by Wendy Gilbert 

and Aviv Regev groups. 
 
Discussion 
 

In this study, we investigate the noise characteristics of chemical probing 
experiments on RNA. This field has expanding applications, ranging from a 
traditional focus on RNA secondary structure to increasing interest in 
identification of chemically modified nucleotides and sites of RNA-protein 
interaction. We establish that data from these experiments are often 
overdispersed, and often do not fit well to previous noise models proposed by 
other groups that make simplifying assumptions. We develop a pipeline – 
chemprobstats – that fits negative binomial distributions to the counts of reverse 
transcription events – either mutations or stops – that result from chemical 
treatment. chemprobstats further includes an application of statistical modeling of 
chemical probing data to RNA structure prediction. We show that the p-values 
from the chemprobstats more clearly distinguish nucleotides according to the 
expected selectivity of chemical probes in a variety of ways. Use of inferred from 
treated and control count distributions from chemical probing experiments in 





structure prediction yields similar results to previous methods. We also develop a 
novel method to search for nucleotides with differential properties between 
biological states. 

Several avenues exist for improvement of statistical modeling of chemical 
probing data. First, the biases leading to overdispersion of probing data are not 
fully understood. While some heterogeneity undoubtedly comes from biological 
variability for in vivo probing data, technical factors are also likely at play, 
especially given our finding that in vitro data are also overdispersed. It may be 
possible to correct or better model biases such as level of probe treatment, 
primer bias, and read mappability.  Though this study has focused primarily on 
targeted experiments, progress is already being made in correcting for priming 
biases, read mappability, and transcript abundances in genome-wide 
experiments \cite{28501650}. We also recently showed that nucleotide adducts 
can induce RT stops or mutations preferentially at different nucleotides within the 
same experiment, and both can be meaningful for interpretation of RNA 
structure.  

In addition to investigation of experimental biases, it may also be possible 
to improve statistical modeling of count data from chemical probing. Our method, 
based upon the RNA-Seq tool DESeq2, employs the negative binomial 
distribution and uses mean counts as a covariate to help infer which nucleotides 
have similar distribution parameters. Other statistical distributions, such as the ß-
binomial distribution, may also be appropriate for modeling, and adding other 
covariates, such as nucleotide context may better inform which nucleotides have 
similar distributional properties.   

Beyond modeling of the statistical count distributions of chemical probing 
data, we provide an application, incorporating reactivity distributions we fit into 
RNA structure prediction. It is notable that because chemical probes can likely 
react to some extent with all nucleotides, that simple detection of positive 
reactivity is not enough to yield information about a biochemical property of 
interest. Gold standard data are essential to the development of methods to infer 
biochemical properties from probing data. In the case of RNA structure 
prediction, this is further complicated by the fact that predictions involve 
probabilistic constraints from probing data and nearest-neighbor free energy 
models. The method we develop here should be viewed as a starting point, but a 
wide variety of methods have been considered to incorporate probing data into 
RNA secondary structure predictions, and merging these methods with statistical 
models of count data, or development of new methods, may improve structure 
prediction. Similarly, the statistical modeling techniques that we develop provide 
a foundation for considering observational noise when inferring biochemical 
properties from any chemical probing method. 

We apply our chemprobstats pipeline to analysis of the secondary 
structure of the 5’ region of the Fendrr lncRNA. We find ………… This illustrates 
the value of the chemprobstats package, and suggests ……… about Fendrr 
biology. 
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Add something about results from differential pseudouridine modification 
analysis! 
 
 
Figure legends 
 
Figure 1. Overdispersion of chemical probing data and modeling using the 
negative-binomial distribtution and DESeq2. (Panels A-F go from left to right, 
then top to bottom) 
 

A. Plot of mouse 18S DMS stop counts from a reference replicate with 
Poisson confidence intervals (black). Counts for a second replicate are 
plotted as well, with points marked in red if they exceed the Poisson 
confidence interval and otherwise in gray.   

B. Scatterplot of Poisson simulated replicates for mouse 18S DMS stop 
counts. 

C. Scatterplot of two biological replicates of mouse 18S DMS treated with 
DMS in vivo stop counts. 

D. Scatterplot of negative-binomial simulated replicates for mouse 18S stop 
counts. Distribution was fit using DESeq2. 

E. Relationship between mean counts and the negative binomial dispersion 
parameter (which controls overdispersion) while fitting mouse 18S stop 
counts using DESeq2. Dispersion parameters are initially fit separately to 
each nucleotide (black dots), then a trend is fit to these dispersion 
estimates (red line), and final estimates (blue dots) are made combining 
information from the individual estimates and the trend. 

F. Quantile-quantile plot for stop counts from mouse 18S treated with DMS in 
vivo. P-values of observed data against assumed distributions are 
compared to the uniform distribution on log10 scale. From six replicates, 
one was chosen to fit the Poisson model and the other five were tested 
against this replicate.  
 

 
 
 
Figure 2. Evaluation of biochemical inferences made with negative binomial p-
values (from DESeq2) and comparison to other methods  
(Panels A-I go from top to bottom, starting with the left column) 
 

A. Precision recall plot for A and C bases for in vivo targeted DMS probing of 
the mouse 18S rRNA. Negative binomial p-values fit with DESeq2 are 
compared to those from BUM-HMM and the Poisson exact test. 

B. Precision recall plot for A and C bases for in vivo targeted DMS probing of 
the mouse U2 snRNA. 



C. Precision recall plot for A and C bases for in vivo targeted DMS probing of 
the mouse Xist snRNA. 

D. Precision recall plot for pseudouridine bases for in vivo carbodiimide 
probing (with reversal) of the human 18S rRNA. Positives are 
pseudouridine, and negatives are uridines; other bases are excluded. 

E. Precision recall plot for A and C bases for in vitro SHAPE probing of the E 
coli 5S rRNA. 

F. (F-J)Violin plots showing distributions of ∆Pstop, a measure of nucleotide 
reactivity. Plots show data for (F) Targeted in vivo DMS probing mouse of 
the mouse 18S rRNA RNA, (G) in vivo DMS probing mouse of the mouse 
U2 snRNA, (H) in vivo DMS probing mouse of the mouse Xist RNA, (I) in 
vivo carbodiimide probing (with reversal) of the human 18S  rRNA, and (J) 
in vitro SHAPE probing of the E coli 5S rRNA. Violins represent ∆P values 
calculated from 10,000 sets of treated and control counts, simulated from 
negative binomial distributions fit to real data. Violins for DMS treatment 
colored by RNA base, while for SHAPE, violins are colored by when 
nucleotides are single-stranded (green) or paired (gray). Nucleotides with 
significant levels of reactivity (FDR < 0.01) are indicated by bold letters 
with stars below along the x-axis. Bars in the centers of violins indicate 
mean estimated reactivity. Dots indicate estimated reactivities from 
individual replicates.  

 
Figure 3. Structure prediction of 5S rRNA with SHAPE data 

A. 5S rRNA structure predicted using in vitro SHAPE constraints with the 
chemprobstats approach. Nucleotides are colored by the probabilities of 
pairing produced with probing data and our negative binomial models. 
This predicted structure is correct (100% sensitivity, 100% positive 
predictive value). 

B. 5S rRNA structure predicted without constraints. Nucleotides are colored 
by the probabilities of pairing produced with probing data and our negative 
binomial models. This  predicted structure has sensitivity = 27.05%, 
positive predictive value = 24.3%, 

C. Sensitivity of predicted 5S rRNA structures with SHAPE constraints, using 
different parameters of the Deigan pseudoenergy function. 

D. Positive predictive value of predicted 5S rRNA structures with SHAPE 
constraints, using different parameters of the Deigan pseudoenergy 
function. 

 
 
 
 


