
brief communications

nature methods  |  VOL.12  NO.4  |  APRIL 2015  |  347

presumably rare). Similarly, the allelic linkage for a pair of RNA 
editing sites may also appear random, although processive editing 
does exist6 that may lead to allelic bias of multiple editing sites.

To examine whether allelic linkage may enable the discrimina-
tion of RNA editing sites from SNPs, we calculated the mutual 
information (MI) associated with SNPs or RNA editing sites in 
RNA-seq reads (Online Methods). Indeed, MI values associated 
with the two types of variants demonstrated a striking difference 
(Fig. 1b, Supplementary Fig. 1a and Supplementary Note 1),  
reflecting the discriminative power of this approach. On the basis 
of this rationale, the GIREMI method calculates the MI of publicly 
available SNPs (such as from the dbSNP database) and unchar-
acterized RNA variants in a given RNA-seq data set and uses this 
to predict RNA editing sites and further parameterize a GLM for 
enhanced performance (Supplementary Fig. 1, Online Methods, 
Supplementary Software and https://www.ibp.ucla.edu/research/
xiao/GIREMI.html).

As a proof of concept, we first applied GIREMI to a deeply 
sequenced Encyclopedia of DNA Elements (ENCODE) RNA-seq 
data set derived from the GM12878 human lymphoblastoid cell 
line, which has associated genome sequencing data7. The MI step 
predicted 31,660 RNA editing sites (99.6% being the A-to-G type), 
and the GLM found 5,117 additional putative A-to-G editing  
sites. Because the genome of GM12878 has been well studied, 
most of the SNPs in this cell line are already included in dbSNP, 
which afforded an advantage in predicting RNA editing sites. To 
evaluate the performance of GIREMI, we assumed that 10–90%  
of the GM12878 SNPs were unknown (Fig. 1c). Strikingly, 
the false discovery rate (FDR, % GM12878 SNPs in predicted 
editing sites) was only 3% when 30% of GM12878 SNPs were 
assumed to be unknown (Fig. 1c). The FDR increased to only 
7.6% if 90% of SNPs were unknown, which is an extreme over-
estimate of the fraction of unknown SNPs in a common human 
sample given the recent expansion of dbSNP. Performance did not 
change substantially when a different read-mapping method was  
used (Supplementary Fig. 2 and Supplementary Note 2). It 
should be noted that the FDR defined here assumes that SNPs 
are the only source of error; other possible artifacts, for example, 
those due to alignment mistakes, are not accounted for. Applied 
to other data sets, GIREMI also outperformed previous methods8  
in sensitivity and accuracy (Supplementary Fig. 3a,b and 
Supplementary Table 1).

The identification of RNA editing sites depends closely on 
sequencing depth4,8, and prediction accuracy may deterio-
rate at lower depths. To examine this relationship, we repeated 
the analysis with downsampled GM12878 data (Fig. 1d  
and Supplementary Fig. 3c,d). As expected, the number of 
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rna editing generates post-transcriptional sequence  
changes that can be deduced from rna-seq data, but detection 
typically requires matched genomic sequence or multiple 
related expression data sets. We developed the Giremi tool 
(genome-independent identification of rna editing by mutual 
information; https://www.ibp.ucla.edu/research/xiao/Giremi.
html) to predict adenosine-to-inosine editing accurately 
and sensitively from a single rna-seq data set of modest 
sequencing depth. using Giremi on existing data, we observed 
tissue-specific and evolutionary patterns in editing sites in the 
human population.

Accurate identification of the RNA ‘editome’ is needed to better 
understand the diversity of gene expression and its functional 
implications1–3. Many tools have been developed recently to  
identify RNA editing sites from RNA-seq data (summarized in ref. 4).  
However, challenges still exist, including the requirement for 
genome sequence data from the same individual in order to dis-
criminate RNA editing sites from genomic single-nucleotide poly-
morphisms (SNPs)4. Even with matched whole-genome sequence, 
some SNPs still escape identification, possibly owing to nonuni-
formity in sequencing coverage or other issues. Other methods use 
multiple RNA-seq data sets to increase the confidence of finding 
individual sites, but this precludes analysis of single data sets and 
may miss unique changes5. Here we report a method to accurately 
identify the RNA editome independently of genome sequence 
using a single RNA-seq data set of modest sequencing depth.

Our GIREMI method uses allelic linkage between single-
nucleotide variants (SNVs) to detect candidate editing sites and 
improves the predictive power with generalized linear models 
(GLMs). In a typical RNA-seq data set, many reads contain 
SNVs that may correspond to genomic SNPs, RNA editing sites 
or experimental errors. A pair of SNPs in the same read (or read 
pair, in paired-end sequencing) maintains the same haplotype 
in the RNA as in reference genomic DNA (Fig. 1a). In contrast, 
a SNP and an RNA editing site exhibit variable allelic linkage 
because RNA editing occurs post-transcriptionally to either  
allele randomly (unless allele-specific editing exists, which is 
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RNA editing sites dropped as sequencing depth decreased. 
Remarkably, unlike previous methods, the accuracy of GIREMI 
was not affected much by sequencing depth, with low FDR (8.8%)  
even at very low sequencing depth (<30 million singleton reads  
or 15 million pairs). Similar performance was observed for  
single-end data (Supplementary Fig. 4).

To further evaluate performance, we compared GIREMI- 
predicted editing sites to those from a “genome-aware” method 
that utilizes SNPs identified in whole-genome sequencing data9 
(Table 1, Supplementary Table 2 and Supplementary Note 3).  
In addition, we included results of the genome-independent  
“multiple data sets” method that calls RNA editing sites using  
RNA-seq data from multiple samples5. For two levels of assumed 
unknown SNPs (30% and 50%), GIREMI consistently predicted 
more editing sites at higher accuracy (measured as 1 – % SNPs 
among predicted editing sites), with greater overlap with the 
genome-aware method and a higher percentage of A-to-G sites 
(%AG) than the multiple data sets method (Supplementary Note 3).  
Thus, GIREMI exhibited superior performance despite requiring 
only a single RNA-seq data set.

Recent studies identified a large number of editing sites in Alu 
regions with high confidence10,11. In contrast, accuracy of pre-
dicted non-Alu editing sites was relatively low, especially for those 
in coding regions5. GIREMI also demonstrated variable accuracy  
for different types of regions (Supplementary Table 2 and 
Supplementary Notes 3 and 4). Overall, the sensitivity and accuracy  
of GIREMI are both high compared to the existing genome- 
independent method in pinpointing Alu and noncoding editing 
sites of non-Alu regions. We obtained similar results for human 
brain RNA-seq data (Supplementary Table 3) reflecting typical 

individual lab-based projects in which a small number of samples 
are collected, either with or without biological replicates.

Compared to noncoding sites, editing sites in coding regions 
(recoding sites) are much less prevalent, and existing methods 
suffer from low sensitivity and accuracy in pinpointing non-Alu 
coding editing events5. On an initial examination, the accuracy 
of GIREMI was also low (~28% on average) for these sites in 
nonrepetitive regions but still higher than that of the multiple 
data sets method (5.3% on average; Supplementary Table 2). 
For a detailed evaluation, we examined whether GIREMI could 
identify previously reported recoding sites that are conserved 
between human and mouse12. As most recoding sites are highly 
tissue specific, we used RNA-seq data sets derived from a panel 
of primary human tissues (Supplementary Note 5). Among the 
47 recoding sites with adequate read coverage (≥5) in at least 
one sample, 43 were correctly identified by GIREMI, yielding an 
overall sensitivity of 91.5% and an average per-sample sensitivity  
of 71.4% (Supplementary Table 4). Given the high sensitivity and 
the expected small number of non-Alu coding sites, we can lever-
age the rapidly expanding sets of known coding sites to improve 
accuracy. For the GM12878 data, the accuracy in predicting 
nonrepetitive coding sites was 67–80% if only known sites were 
considered (Supplementary Note 5).
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figure 1 | The GIREMI method. (a) The allelic combinations of two SNPs 
in the same RNA-seq reads are the same as their DNA haplotypes, whereas 
a SNP and an RNA editing site (or a pair of RNA editing sites) exhibit 
variable allelic linkage. (b) Distributions of mutual information associated 
with SNPs and RNA editing sites, estimated using GM12878 RNA-seq data 
(ENCODE, cytosolic, poly(A)+) and its associated genome sequencing data. 
(c) RNA editing sites predicted by GIREMI in the GM12878 data. Different 
fractions of genomic SNPs of GM12878 were assumed as unknown by 
excluding them from dbSNP (mean of 9 trials of randomized SNP  
selection shown for each). Gray bars show the fraction of GM12878 SNPs 
among all single-nucleotide mismatches in the mapped RNA-seq reads 
after filtering for artifacts (Online Methods). Orange bars show the 
fraction of false positives (GM12878 SNPs) among all predicted editing 
sites (i.e., FDR). The number of predicted editing sites and percent  
A-to-G editing are listed in orange. (d) Performance of GIREMI at different 
sequencing depths (downsampled GM12878 data). Number of mapped 
reads (singletons) is shown along the x axis. Fifty percent of the GM12878 
SNPs were assumed to be unknown. Labels are as in c.

table 1 | Performance of GIREMI compared with other methods applied to the GM12878 data (cytosolic, poly(A)+ RNA-seq)

region

Genome-aware 
method9 Giremi multiple data sets method5,a

no. of sites %aG no. of sites %aG accuracyb (%) overlapc (%) no. of sites %aG accuracyb (%) overlapc (%)

All 41,027 98.8 37,591 98.6 98.1 90.0 8,307 90.2 85.0 18.5
Alu 39,757 99.7 36,131 99.0 99.4 90.4 7,797 98.5 87.1 24.9
Repetitive non-Alu 260 88.6 267 83.7 84.3 86.4 26 65.6 65.4 14.8
Nonrepetitive 1,010 73.5 1,193 82.8 73.8 87.6 484 41.0 55.6 29.2
aResults were derived using two data sets (GM12878 and YH RNA-seq; supplementary note 3). Editing sites were identified in the two data sets separately, and final GM12878 editing sites  
were called by requiring their presence in YH results. Results of another mode of the multiple data sets method (pooled samples) are included in supplementary table 2. bAccuracy was defined 
as (1 – % SNPs among predicted editing sites in each category); 30% of GM12878 SNPs were assumed to be unknown in applying the GIREMI and multiple data sets methods. cOverlap was 
calculated relative to the results of the genome-aware method. %AG, percentage of A-to-G sites.
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Owing to the genome-independent nature of GIREMI, it  
can be applied to any RNA-seq data set without restrictions. We 
first examined the variation of editomes across human tissues, 
a fundamental question not yet addressed on a genome-wide 
scale. We used a panel of 38 Genotype-Tissue Expression (GTEx) 
RNA-seq data sets from five human subjects and eight primary 
tissue types (four brain regions, heart, skeletal muscle, thyroid 
and lung)13. The samples were chosen such that each individual 
had data from nearly all eight tissues types (Supplementary 
Table 5). When clustered according to how RNA editing ratios 
correlate in pairwise comparisons, the samples segregated 
largely by tissue instead of by individual (Fig. 2a). Three major  
tissue groups were observed, encompassing (i) lung and thyroid,  
(ii) brain regions and (iii) muscle (heart and skeletal). Different 
brain regions were barely distinguishable on the basis of their 
editing profiles. This tissue-dominated clustering pattern is 
especially striking given that the number of predicted editing 
sites varied greatly across samples largely owing to sequencing 
depth variation (Supplementary Fig. 5 and Supplementary 
Table 6). This result is unlikely to be a byproduct of the expected 
tissue-dominated clustering of overall gene expression, as the 
editing ratios are not correlated with gene expression levels 
(Supplementary Fig. 6). Thus, our observation supports the 
existence of tissue-specific regulation of RNA editing. In addition,  
our result is consistent with a recent report of tissue-dominant 
clustering of editing sites in rhesus macaque14. Notably, in con-
trast to the previous study, our study included only shallowly 
sequenced RNA-seq data (12.3–41.1 million mapped read pairs) 
without specific genomic data of the samples.

In examining the patterns of tissue-specific editing (TSE), we 
observed the largest difference in RNA editing between brain and 
muscle-related tissues, with up to 24% of editing sites being spe-
cific to brain tissues (Supplementary Fig. 7a). In addition, muscle 
demonstrated a considerably smaller number of editing sites and 
lower editing levels compared to thyroid or lung (Supplementary 
Fig. 7b). The mRNA expression levels of the RNA-editing enzyme 
ADAR1 (Supplementary Fig. 7a) explained approximately 77% 
of the variability in editing levels across tissues (Supplementary 
Fig. 8a). Similarly notable concordance was not observed for 
ADAR2 (Supplementary Fig. 8b).

Overall, TSE sites were highly enriched in 3′ UTR regions 
compared to all editing sites (P < 2.2 × 10−16, Fisher’s exact test; 
Supplementary Fig. 9a). Interestingly, higher sequence conserva-
tion was observed in 3′ UTR regions harboring TSE sites than in 
those flanking non-TSE sites (Fig. 2b), supporting existence of 
selection pressure in TSE regions. We observed a number of dis-
tinctive genomic features of 3′ UTR TSE sites and their associated 
genes (Supplementary Fig. 9). In addition, brain-specific editing 
sites were often in genes related to energy, cellular metabolism 
and apoptosis, whereas lung- or thyroid-specific editing sites were 
found in genes related to signal peptide processing and response 
to stimuli (viral or inflammatory) (Supplementary Table 7).

We next examined the level of variability in editomes across 
human individuals, a fundamental question that has not been 
addressed on a global scale. To this end, we analyzed RNA-seq 
data of lymphoblastoid cells of 93 people in the 1000 Genomes 
Project (GBR population)15 and identified a total of 22,715 
editing sites. For each editing site covered by at least ten total 
reads in ≥50% of individuals, we calculated the fraction of these  
individuals expressing the edited nucleotide. We used this value 
to represent the prevalence of an editing site in the population 
and observed that the majority of editing sites (88%) had a preva-
lence of at least 50% (Supplementary Fig. 10a). Levels of RNA 
editing varied considerably across the prevalence groups, with 
an overall trend of enhanced editing as prevalence increased 
(Supplementary Fig. 10b).

All prevalence groups consisted of editing sites enriched in  
3′ UTRs relative to the general composition of the human transcrip-
tome (Fig. 2c). Notably, a smaller percentage of intronic editing 
sites was observed here than in the GTEx data set (Supplementary 
Fig. 9a), possibly owing to differences in RNA-seq protocols. 
Intriguingly, the group of rare editing sites showed a considerably 
higher enrichment in coding regions than other groups. In addi-
tion, rare editing sites were associated with more highly conserved 
3′ UTR regions, whereas common editing sites were found in less 
conserved regions (Fig. 2d and Supplementary Fig. 11). Although 
located in functionally important regions (i.e., coding and highly 
conserved 3′ UTRs), rare editing sites are probably not functionally  
significant given their low editing levels. Possibly, these editing 
sites represent random innovations of the transcriptome of few 

figure 2 | RNA editomes of human tissues and individuals.  
(a) Comparison of RNA editing sites across human tissues by  
hierarchical clustering of Pearson correlation coefficients (calculated  
for editing ratios of all editing sites that are present in 35 samples). 
Different brain regions are represented in the same color given their  
highly similar editing profiles. (b) Conservation of the immediate  
neighborhood of tissue-specific editing (TSE) sites in 3′ UTRs.  
Sequence conservation (percentage of sequence identity in primates) of 
each position flanking editing sites (position 0) is shown. Shaded regions 
represent 95% confidence intervals. A similar plot for non-TSE sites is  
included for comparison. (c) Distribution of editing sites in different  
types of intragenic regions for 93 humans. Editing sites were grouped 
according to their prevalence in this population. “Noncoding” refers to  
noncoding genes or noncoding transcripts of coding genes. Regional  
distribution of nucleotides in the entire transcriptome of coding genes 
(without introns) is shown as a reference (T). (d) Conservation of 3′ UTR  
regions flanking two groups of editing sites with different prevalence  
levels (solid lines), similarly as in b. Dashed lines correspond to the  
sequence identity if Gs in other genomes were assumed as a conserved  
base given a reference nucleotide A in human9.
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individuals that have not yet undergone long-term selection. 
Purifying selection may exist to prevent these sites from gaining 
higher editing levels or higher prevalence in the population.

In contrast, common editing sites were associated with relatively 
high editing levels. This observation argues against the possibility 
that these sites are randomly occurring transcriptome innova-
tions. Rather, common editing sites should be associated with 
certain advantage such that evolution has preserved their preva-
lence. Because these sites are less conserved than TSE sites, as with 
non-TSE sites (Fig. 2b,d), it is unlikely that most of the common 
editing sites are functionally critical. An alternative hypothesis 
is that many common RNA editing sites are byproducts of the 
RNA-editing machinery carrying out functions to mediate other 
aspects of gene expression; perhaps this machinery being under 
selection has led to an apparent preservation of the RNA editing 
sites across populations (Supplementary Note 6).

We have presented a method for the identification of RNA edit-
ing independent of sample-specific genome sequences with high 
accuracy, even given low sequencing depth. Applying GIREMI 
yielded novel insights about tissue-specific editing and evolutionary 
implications of RNA editing, and we expect that the tool will enable 
many new discoveries from routine RNA-sequencing studies.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Mapping of RNA-seq reads. RNA-seq reads were mapped to the 
reference human genome (hg19) and transcriptome (Ensembl 
release 71) using our previously published method9,16. The 
method was designed to enable unbiased mapping of alterna-
tive RNA alleles corresponding to RNA editing or expressed 
single-nucleotide polymorphisms (SNPs). Briefly, Bowtie17 and 
Blat18 were used to align all reads to the reference genome, and 
Bowtie was used to align all reads to the transcriptome. Results 
from the three parallel mapping procedures were merged into a 
union. Final mapped reads were required to satisfy a dual-filtering  
scheme such that a read (or a pair of read in paired-end data) 
maps uniquely with up to n1 mismatches (per read) and does not 
map to any other regions with up to n2 mismatches (per read)  
(n2 > n1). For all data sets, n1 and n2 values were set to be about 5% 
and 12% of the read length, respectively. We previously showed 
that this mapping method effectively reduced the mapping bias to 
alternative alleles9,16 and facilitated relatively accurate quantifica-
tion of allelic ratios compared to other methods4.

All data sets from ENCODE cell lines, U87MG cells and GTEx 
human tissues were mapped in the same way as described above. 
For the 1000 Genomes data sets, we downloaded mapped reads 
(.bam files) directly. However, we implemented an additional fil-
tering step using Blat to remove possible ambiguous mapping 
(such as those due to existence of pseudogenes or homologs), 
similarly to in refs. 19,20.

Preprocessing to identify and filter mismatches in RNA-seq 
reads. The RNA-seq reads were piled up to identify mismatches 
relative to the reference human genome (hg19). All duplicate 
reads were removed within each RNA-seq library except the 
one with the highest-quality score at the mismatch position. 
Duplicate reads were defined here as (pairs of) reads mapped to 
exactly the same genomic locations. For each mismatch position, 
a total read coverage of ≥5 was required and the variant allele  
was required to be present in at least three reads. According to 
previous literature4,8,19–23, a number of filters were desirable to 
remove potential artifacts resulted from sequencing or mapping 
bias. We thus imposed additional procedures as described in our 
previous work4 to discard the following types of mismatches: 
those located in simple repeats regions or homopolymer runs of 
≥5 nt, those associated with reads substantially biased toward one 
strand, those with extreme variant allele frequencies (>95% or 
<10%) and those located within 4 nt of a known spliced junction. 
To further reduce the impact of sequencing errors, we calculated  
a log-likelihood ratio (LLR) to examine the likelihood of a  
mismatch being a sequencing error, as described in ref. 9.  
We only retained mismatches passing an LLR cutoff of 2.

The same procedures as described above (read mapping and 
mismatch filtering) were applied for all methods included in this 
study, i.e., the GIREMI, genome-aware and multiple data sets 
methods. In addition, known SNPs (in dbSNP) were excluded 
from predicted editing sites by the multiple data sets method.

GIREMI. The GIREMI method combines statistical inference of 
MI between pairs of single-nucleotide variants (SNVs) in RNA-
seq reads with machine learning to predict RNA editing sites. The 
input to GIREMI includes a list of SNVs (mismatches) derived 
from an RNA-seq data set and known SNPs in public databases 

such as dbSNP. The output is a collection of predicted RNA edit-
ing sites and their editing levels. Except public SNP information, 
GIREMI carries out all analyses using one RNA-seq data set  
of interest and does not rely on any other genomic or RNA-seq 
data sets.

Mutual information (MI) of SNVs and RNA editing predic-
tion. As the first step of GIREMI, we identify known SNPs (from 
dbSNP) in the list of SNVs derived from the RNA-seq reads. We 
then extract all RNA-seq reads that harbor the known SNPs and 
the subset of reads (or read pairs in paired-end RNA-seq; required 
≥5 such reads) that cover more than one SNP. SNP pairs located 
in the same (pairs of) reads were retained for MI calculation. As 
an example, in the GM12878 data set, a total of 5,306 SNPs (out of 
37,775 SNPs covered by ≥5 RNA-seq reads) were involved in this 
calculation. In another less deeply sequenced RNA-seq data set 
(GTEx SRR595926, 31M mapped reads), 884 SNPs out of a total of 
10,590 RNA-seq–covered SNPs were used for this step. Although 
the percentage of SNPs used for the calculation of MI is not high, 
it is adequate to generate the reference MI distribution (such as 
that in Fig. 1b) for further prediction of RNA editing sites. The 
number of RNA editing sites suitable for MI calculation is much 
larger than that of SNPs. For example, 32,548 editing sites were 
used to generate the example distribution of MI (Fig. 1b), where 
our previous genome-dependent method was applied to predict 
RNA editing sites9.

For each SNV si, we consider all possible nucleotides A, C, G 
and T as the four possible states of the variable si. Thus, for a 
joint variable representing a pair of mismatches (si, sj), a total of 
16 states are possible. Although it is unlikely that all 16 states are 
present in one RNA-seq data set, we use this scheme because it is 
general and can accommodate possible existence of sequencing  
errors or other complexity. The probabilities of observing  
each state of si, sj or (si, sj) were calculated using the maximum-
likelihood method. A value of 0.01 was assumed for states that 
were not observed in the actual data considering existence of 
sequencing errors of all possible nucleotides and accounting 
for low sequencing depth in realistic data sets. Incorporation of  
this pseudo-value led to an increase of MI of about 0.2 for both 
SNPs and editing sites (Fig. 1b), but the final editing predictions 
with or without this pseudo-value are very similar (data not 
shown). The MI of (si, sj) is thus

I s s p n n
p n n

p n p ni j i j
i j

i jnj Nni N
( , ) ( , )log

( , )

( ) ( )
=











∈∈
∑∑

where N = {A, C, G, T} and ni and nj represent the states of si and 
sj, respectively. We used natural log for the above formula.

Then, the MI of a SNP si is defined as

I s
I s s

Ti
i js j S

( )
( , )

=
∈∑

where S is the collection of other SNPs paired with si, and T is the 
total number of pairs in S.

As an example, the distribution of I(si) values for SNP  
pairs detected in the GM12878 data set is shown (Fig. 1b).  
In theory, the maximum MI should be log(2) = 0.7 for SNP pairs. 
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However, in practice, larger values were sometimes observed, 
owing to limited read coverage at each site and the numerical 
difference between joint probability and marginal probability of 
the states. The marginal probability was estimated using all reads 
covering the particular SNV, whereas the joint probability was 
estimated using reads covering both SNVs. Thus, the number of 
joint reads is often smaller than that of the marginal reads and 
the joint probability is less accurately estimated than the marginal 
ones. This discordance sometimes led to MI values larger than 
the theoretical upper bound.

For each RNA-seq data set, the MI of SNPs is calculated inde-
pendently. Thus, a data set–specific distribution of I(si, sj) is 
derived. Subsequently, for a SNV sx that is not a known SNP, an 
I(sx) value is calculated similarly as described above by examining 
its relationship with other SNVs (either known SNPs or otherwise). 
On the basis of the distribution of I(si) of known SNPs, a P value is 
calculated for sx to test the null hypothesis that I(sx) is not different 
from the distribution of I(si) for SNPs. A P-value cutoff of 0.05 was 
used to call RNA editing sites. Correction of P values for multiple 
testing was not applied owing to the discovery nature of this test. 
As an example, we predicted 31,660 RNA editing sites (99.6% being 
the A-to-G type) in this step for the GM12878 data set.

Generalized linear model (GLM) for the prediction of  
RNA editing. As the second step of GIREMI, RNA editing sites 
identified by the MI approach are used to train a GLM to predict  
additional editing sites. The GLM incorporates two types of  
features that have discriminative power for SNPs and RNA editing 
sites. The first feature quantifies the deviation of the allelic ratio 
of the unknown SNV from an expected allelic ratio reflecting 
the allelic expression of the respective gene. The second type of 
feature represents the sequence preferences of the neighborhoods 
of RNA editing sites (mainly A-to-G). It should be noted that the 
GLM step only analyzes A-to-G mismatches as candidate RNA 
editing sites, without including other types of SNVs.

To estimate the expected allelic ratio r of a gene g, we extract all 
expressed heterozygous known SNPs (S) (dbSNP) in gene g (read 
coverage ≥5). The allelic ratio r is calculated by maximizing the 
log-likelihood function log L(r | D), where D refers to the RNA-
seq data for gene g. We assume reads covering a specific SNP sj in 
gene g follow a binomial distribution. Thus, the estimated allelic 
ratio r̂  that maximizes log L(r | D) of gene g is 

ˆ
( )

r
m

m n

s js j S

s j s js j S

=
+

∈

∈

∑
∑

where m and n refer to the number of reads with alternative  
and reference alleles, respectively. In practice, the haplotype  
information for SNPs in S is not known. Thus, we arbitrarily 
assign msj as the read count for the major allele and nsj as that  
for the minor allele in the RNA-seq data. This assumption 
may cause a biased allelic ratio larger than the actual value. 
Nevertheless, the same directional bias exists in the allelic ratio 
for a specific SNV that is to be compared to r̂ . Thus, the impact 
of this bias will be largely canceled out. In cases where no SNP 
is available in gene g, an expected ratio of 0.5 is used assuming  
the gene has no allelic expression bias.

A heterozygous SNP is expected to have an allelic ratio that is 
largely consistent as the allelic ratio of the gene. In contrast, RNA 
editing sites may have allelic ratios that substantially deviate from 
that of the gene. Thus, we use the absolute difference (d) between 
the allelic ratio of the unknown SNVs and the estimated r̂  of the 
gene as one feature in the GLM. This feature has the discrimi-
native power for SNPs and RNA editing sites (Supplementary 
Fig. 1c), but exceptions do exist. For example, it cannot identify 
editing sites with editing levels similar to allelic ratios of genetic 
SNPs in the same gene. In addition, a minor fraction of SNPs may 
have allelic ratios largely different from that of the entire gene if 
allele-specific splicing or other local RNA processing events affect 
the allelic expression of the SNPs16.

To increase the discriminative power, we incorporated 
sequence-based features into the GLM. Importantly, these  
features are not based on sequence motifs built from a priori 
knowledge regarding RNA editing. Instead, they were derived 
using editing sites predicted by the MI step of GIREMI. Thus, the 
features are specific to the data set of interest without any a priori 
assumptions. To this end, we generate a positional weight matrix 
(PWM) for the sequence neighborhood of the predicted editing 
sites (Supplementary Fig. 1d). For an unknown SNV, a composite 
sequence score was calculated using its −1 and +1 nucleotides 
according to the PWM. It should be noted that putative editing 
sites predicted by the MI-based approach are mostly (>97%) of 
the A-to-G type. Thus, the sequence features derived here largely 
reflect those of A-to-I editing that is known to demonstrate nucleo-
tide preferences at the −1 and +1 positions9.

Together, for each unknown SNV of the A-to-G type, the GLM 
estimation is

Y g d cd c= + +−1
0( )b b b

where d represents the difference between the allelic ratio of the 
SNV and the estimated r̂  of the gene and c denotes the composite 
score for the sequence features. β0, βd and βc are the respective 
coefficients of the GLM, which are solved using a binomial link 
function.

The GLM of each RNA-seq data set was trained using the  
putative editing sites predicted by the MI approach. In addition,  
a leave-one-out scheme was applied where the genetic allelic  
ratio was estimated using all expressed heterozygous SNPs  
except one per gene. These randomly excluded SNPs were used  
as training data together with the putative editing sites. The  
training data were then separated into two random subsets of  
the same size. The first subset was used to parameterize the  
GLM model. The recall and precision of the predictive model 
were evaluated using the second subset. To reach a trade-off 
between the recall and precision, an F measure was calculated 
as follows:

Fb
b

b
= + × ×

×
( )1 2

2
precision recall

precision + recall

In the above F measure, we set β to be 0.5, which puts more 
emphasis on precision than recall. Finally, a cutoff for the pre-
dicted probability of a site being an RNA editing site was chosen 
to achieve an F measure of 0.75.
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It should be noted that, although GLM was designed to  
predict A-to-G sites only, the MI method was not restricted  
to identification of A-to-G sites alone. Thus, other types of  
RNA-DNA mismatches do exist in the final results, but with  
the vast majority being A-to-G. The biological credibility of the 
other types of RNA-DNA mismatches is still under debate, which 
is not a focus of this work.

The two steps in GIREMI demonstrate different efficacies 
for different types of editing sites. The MI step is most effective  
for editing sites in close proximity with other editing sites or  
SNPs (such as A-to-I editing in Alu regions that are known to 
cluster together). Its sensitivity is lower in predicting editing sites 
in isolation. In contrast, the GLM step, although contributing a 
relatively small number of additional sites overall as a second step 
of GIREMI, is an important procedure to ensure high sensitivity 
in identifying recoding sites. Thus, both steps are essential for 
our method.

Code availability. GIREMI was implemented using a combina-
tion of R, Perl and C codes. The package is available at https://
www.ibp.ucla.edu/research/xiao/GIREMI.html.

RNA-seq and SNP data sets. ENCODE RNA-seq data sets were 
downloaded from the UCSC Genome Browser (http://genome.
ucsc.edu/ENCODE/). In this study, we used the data sets derived 
from cytosolic polyadenylated RNA. U87MG RNA-seq data (wild 
type and ADAR1 knock down) were obtained from our previous 
study9. GTEx RNA-seq data sets were downloaded from dbGAP 
with permission. The 1000 Genomes RNA-seq data were down-
loaded from the Geuvadis project (http://www.geuvadis.org/). 
SNPs derived from genome sequencing data were obtained from 
the 1000 Genomes Project for GM12878 and a genome sequenc-
ing project for U87MG cells24. Public SNP data were obtained 
from dbSNP (version 137).

Tissue-specific editing (TSE). In the analysis of the GTEx data, 
we compared the editomes of any pair of tissues included in this 
study. Each editing site was required to have a read coverage of 
at least ten reads in ≥75% of samples (i.e., individuals) in either 
tissue under comparison. A moderated t-test25 was applied to 
determine whether the editing levels were significantly different 
across the two tissues (using samples that meet with the read 
coverage cutoff; FDR <5%). Editing sites that passed this test were 
defined as TSEs.

The heat map of editomes of different tissues (Fig. 2a) was 
generated on the basis of Pearson correlation of pairs of sam-
ples. For each sample pair, only RNA editing sites with adequate 
read coverage (at least ten reads) in both samples were included. 
Hierarchical clustering was used to generate the clusters.

Conservation analysis of regions flanking editing sites. The 
same method as in our previous work9 was used to evaluate the 
conservation level of each editing site and their flanking regions. 
Briefly, with the 46-way multiz alignments from the UCSC 
browser26, we focused on the ten primates, including human, 
chimp, gorilla, orangutan, rhesus, baboon, marmoset, tarsier, 
mouse lemur and bush baby. On the basis of the multiple sequence 

alignments, the percent identity at each nucleotide position of 
interest was calculated, together with a 95% confidence interval.

Gene Ontology (GO) analysis. GO analysis was conducted  
similarly as in ref. 27. Briefly, the GO terms of each gene were 
obtained from Ensembl. To identify GO categories that are 
enriched in a specific set of genes, we compared the number of 
genes in the set with a particular GO term to that in a control gene 
set. The control gene set was constructed so that the randomly 
picked controls and the test genes have one-to-one matched 
transcript length and G+C content. On the basis of 10,000 ran-
domly selected control sets, a P value for enrichment of each 
GO category in the test gene set was calculated as the fraction of 
times that Ftest was lower than or equal to Fcontrol, where Ftest and 
Fcontrol denote, respectively, the fraction of genes in the test set 
and a random control set associated with the current GO category.  
A P-value cutoff (the smaller of 1/10,000 or 1/total number of  
GO terms considered) was applied to choose significantly 
enriched GO terms.

Comparison of TSEs with binding sites of RNA-binding  
proteins (RBPs). Publicly available CLIP-Seq data were  
collected for hnRNP A1, A2/B1, F, M, U (ref. 28), hnRNP H  
(ref. 29), hnRNP C (ref. 30), AGO2, IGF2BP1, QKI, PUM2  
(ref. 31), DGCR8 (ref. 32), ELAVL1 (ref. 33), EWSR1, FUS,  
TAF15 (ref. 34), LIN28 (ref. 35), MOV10 (ref. 36), PTB (ref. 37), 
SFRS1 (ref. 38), TDP43 (ref. 39), TIA1 and TIAL1 (ref. 40). CLIP 
tag clusters were directly downloaded from the above publications 
or generated using our in-house pipeline. TSEs in 3′ UTRs were 
then examined for their overlap with CLIP clusters of the above 
proteins collectively, similarly for non-TSEs.
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