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ABSTRACT 
Summary: Identifying genomic regions with a higher-than-expected 
mutation burden can confer several useful applications such as can-
cer driver detection. Here, we introduce the Mutations Overburdening 
Annotations Tool (MOAT), new software that can perform mutation 
burden analysis at high speeds. MOAT makes no assumptions about 
the mutation process, except that the background mutation rate 
(BMR) changes smoothly with other genomic features. This nonpara-
metric scheme randomly permutes the variants (or target regions) on 
a relatively large scale to provide robust burden analysis in cancer 
driver detection. Furthermore, the MOAT software suite incorporates 
MOAT-sim, a somatic variant simulator that randomly permutes the 
input variants with effective covariate control. MOAT also offers the 
option to evaluate the functional impact within annotations for burden 
analysis. We conclude that MOAT is useful for a broad range of anal-
yses that would benefit from variant permutation. 
Availability and Implementation: MOAT is available at moat.ger-
steinlab.org 
Contact: mark.gerstein@yale.edu 
Supplementary information: Supplementary data are available at 
Bioinformatics online. 

2 INTRODUCTION  
A common analysis strategy in cancer driver detection is to look for 
genomic elements with high variant accumulation across patients. 
However, the background mutation rate (BMR) is highly heteroge-
neous across the genome due to numerous influences. Inaccurate 
modeling of BMRs could in turn introduce numerous false positives 
in cancer driver detection. Our Mutations Overburdening Annota-
tions Tool (MOAT) differs from other parametric schemes and does 
not make any assumptions except that the BMR remains constant 
within a local context. 

MOAT offers an annotation-centric algorithm (MOAT-a), a vari-
ant-centric algorithm (MOAT-v), and a somatic variant simulator 
(MOAT-sim). Moreover, we can use MOAT to gauge the functional 
impact of annotations relative to the surrounding genome. MOAT is 
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useful for comparing observed and permuted scores (of any func-
tional whole-genome set) to evaluate functional impact. Here, we 
provide an example Funseq2 file (Fu, et al., 2014). In the following 
sections, we describe MOAT’s implementation and recall of known 
noncoding cancer drivers. 

3 METHODS 
Several covariates jointly affect the BMR in a complicated and dy-
namic manner, making variant burden analysis very challenging 
(Lawrence, et al., 2013). However, the length of the test region usu-
ally varies from hundreds to thousands of bases, while external fea-
tures such as replication timing can work at up to a megabase reso-
lution. Therefore, MOAT circumvents the need for parametric mod-
els by explicitly permuting the variants or annotations within a re-
gion where the levels of all the covariates are essentially constant. 
One important issue with these permutation algorithms is that their 
running times do not scale well to whole-genome annotation sets. 
We addressed this issue by taking advantage of large-scale graphics 
processing unit (GPU) parallelization. 

3.1 MOAT-a: Annotation-Centric Permutation 
MOAT requires two input files: an annotation file (afile) and a var-
iant file (vfile). MOAT-a uses NVIDIA’s compute unified device 
architecture language (Nickolls, et al., 2008) for general-purpose 
GPU acceleration (Figure 1). MOAT-a iterates through each anno-
tation, computing the intersecting variant count. It defines a genomic 
block with user-defined boundaries for permuting the annotation n 
times. MOAT-a then finds the variant counts of the n random bins, 
and compares them to the annotation’s observed variant count to 
provide p-values. If we run MOAT with a functional impact score 
option, we can compute and use the variants' scores to calculate an-
notation scores by summing the scores of the intersecting variants. 

We can adjust the boundaries of the intervals for choosing per-
muted annotations—d_min and d_max—to scale the surrounding 
genome context with respect to the size of the original annotation. 

†The authors wish it to be known that, in their opinion, the first two authors 
should be regarded as joint First Authors. 
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Ideally, the permutation intervals will provide enough range to ena-
ble non-overlapping sampling. As a rule of thumb, the choice of 
d_min should be large enough to avoid potential mutation burden 
signal from "bleeding" into the permutation intervals. Simultane-
ously, the selected d_max must be small enough that the BMR co-
variates remain approximately constant within the permutation in-
tervals. For example, in our analysis of transcription start site(s) 
(TSS) mutation burdens, where TSS are roughly 100 bp in length, 
we used a d_min of 2kb and a d_max of 50kb.  

3.2 MOAT-v: Variant-Centric Permutation 
MOAT-v creates permuted datasets by assigning new coordinates to 
each variant within a local genomic region to account for the covari-
ate effects from known genomic features (Figure 1). MOAT-v offers 
the option to preserve the tri-nucleotide context of the original vari-
ant when choosing a new variant location (see supplement). This 
constraint reflects the differential mutation probabilities of different 
tri-nucleotides while preserving the mutational signatures. MOAT-
v generates a permuted dataset by subdividing the genome into 
blocks of a user-defined size within which variants are permuted, 
thus generating n permutations. We can determine the p-value for 
each annotation based on the fraction of permutations with variants 
equal to or greater than the observed variant count. Unlike MOAT-
a, we designed MOAT-v to parallelize its workflow across multiple 
central processing unit (CPU) cores using OpenMPI framework 
(Gabriel, et al., 2004), due to the more memory intensive nature of 
the tri-nucleotide context preservation. 

The ability to adjust the width of the whole-genome bins in 
MOAT-v enables users to select a width that represents regions in 
which the BMR covariates are expected to be approximately con-
stant. Hence, the permutations that MOAT-v creates will honor the 
expected density of regional mutations due to these covariates. Our 
analyses of a few of the most significant covariates, such as DNA-
replication timing, histone marks, and guanine-cytosine content, in-
dicate that a suitable bin size ranges from a 50 – 100 kb resolution 
(see supplement). 

3.3 MOAT-sim: Simulated Somatic Variant Datasets 

In addition to the main MOAT programs, we developed a variant 
simulator, MOAT-sim, that reflects the levels of whole-genome co-
variates that directly influence the background mutation rate. 
MOAT-sim evaluates covariate signals over a set of whole-genome 
bins. The simulator then clusters these bins based on their covariate 
signal profiles, and allows variants to be permuted not just within 
their local genome context, but across all bins that share the same 
covariate signal profile. Specifically, MOAT-sim clusters the 
whole-genome bins using k means, which use the distances between 
the bins' covariate signal profiles to group them into a predefined 
number of clusters (see supplement).  

4 RESULTS 
4.1 MOAT-a 
We demonstrated the parallel speedup by running MOAT-a on da-
tasets of various sizes. Using a dataset of ~8 million cancer variants 
from (Alexandrov, et al., 2013) and (Wang, et al., 2014), we used 
three different annotation sets to demonstrate the scalability of 
MOAT-a (Harrow, et al., 2012; Thurman, et al., 2012; Yip, et al., 
2012). We demonstrate that the GPU version of MOAT-a scales 
very well with respect to the number of annotations (e.g. ~9-fold 
speedup on ~3 million annotations), and with respect to the number 
of permutations (e.g. ~256-fold speedup on 100,000 permutations), 
resulting in dramatically improved running times (Supp Table 1).  

Due to the lack of a golden standard, assessing MOAT’s predic-
tions is challenging. Nevertheless, we used the aforementioned can-
cer-variant dataset to demonstrate how MOAT-a can find elevated 
mutation burdens in genomic elements by identifying highly mu-
tated GENCODE elements. TERT, which has well-documented 
cancer-associated promoter mutations, carried a significant muta-
tion burden. Other well-known cancer-associated TSS sites, such as 
TP53, LMO3, and AGAP5, also had significant mutation burdens. 
4.2 MOAT-v 
Using the same set of cancer variants as in the MOAT-a tests, we 
evaluated MOAT-v’s running time. The running time scales were 
close to linear with the number of CPUs, indicating an even division 
of labor between each CPU core. MOAT-sim’s running time exhib-
ited similar characteristics (data not shown). 

We then applied MOAT-v on the same variant and annotation sets 
to find elevated cancer mutation burdens. MOAT-v produced com-
parable results as MOAT-a, flagging the same known cancer-asso-
ciated TSS as significant. 

5 DISCUSSION 
Identifying genomic elements with a high mutation burden can help 
narrow down the exact site of functional disruption. Here we intro-
duce MOAT, a new software tool to facilitate such analyses. We 
demonstrate the usefulness of this tool for flagging putative noncod-
ing cancer drivers. We also provide parallelized versions that dra-
matically increase the speed of mutation burden analysis. Given the 
demand for efficient and meaningful analysis of genome sequence 
data, which scientists are producing at very high rates, we believe 
that MOAT’s provision of such analysis for genetic disease drivers 
is very timely. 
 
Funding: This work was supported by the National Institutes of 
Health [grant number 5U41HG007000-04]. 

Figure 1 (a) MOAT-a shuffles each annotation to a new location within the 
local genome context bounded by user-defined parameters d_min and 
d_max, producing n permutations. (b) In MOAT-v, the whole genome is di-
vided into bins within which variants are moved to new coordinates, thereby 
preserving the local mutation context. As with MOAT-a, MOAT-v produces 
n permutations. 
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