Supplement

1) Background mutation rate (BMR) heterogeneity

Studies to detect cancer drivers in whole genome sequence (WGS) single nucleotide variant (SNV) data often involve an evaluation of a variant’s frequency relative to the BMR-calibrated expected frequency. A key hallmark of cancer is the breakdown of DNA repair processes, causing the entire genome to mutate randomly. Finding a significantly mutated element—which may be involved in cancer driving processes—must therefore involve a comparison to the BMR, and it is critically important to formulate an accurate BMR model (Lawrence, et al., 2013). Many studies limited their analyses to the exome, which has well-studied mutation patterns and functional characterization (Baca, et al., 2013). However, there are many important variants that drive cancer by affecting regulatory elements in the noncoding portion of the genome, the most well-known of which is TERT. Exome-only studies would not be telling the entire story, and therefore it is important to expand the scope of these analyses to the whole genome.

However, an accurate understanding of the whole genome’s BMR is much more difficult compared to the exome. The BMR varies widely from region to region, owing to a range of mutation “covariates”. These covariates include the timing of a region’s DNA replication synthesis during S phase of the cell cycle, the region’s GC percent, and the region’s sensitivity to Dnase I sites, which serves as a proxy for open chromatin. Aside from these three major influences, there are hundreds of other contributing factors to consider. Hence, a fully realized model would require a considerable amount of work to develop—every possible influence would have to be accounted for.

With Mutations Overburdening Annotations Tool (MOAT), we sidestep the issues involved with using an explicit model, and instead focus on what background variants would be observed by creating permutations of the input data. These permutations occur in a local genome context that is small enough that the values of the covariates can be assumed to be constant. Hence, the BMR implied by the permuted data serves as a good indicator of whether the studied elements have significantly elevated mutation burdens.

2) MOAT-a Implementation

The annotation-based permutation algorithm for MOAT, a.k.a. MOAT-a, is amenable to mass parallelization on a graphics processing unit (GPU). These specialized hardware units were originally designed for rendering 3D computer graphics, and are optimized for performing parallel matrix transformations, which correspond to changes in the graphics drawn on the attached monitor. The unit’s onboard memory (known as “video RAM” or VRAM) is used to store information on 3D models composed of polygons, represented in the VRAM as the coordinates of the polygons’ vertices. The surfaces of these polygons are painted on with “textures”, which comprise the other major portion of the VRAM. Thousands of arithmetic processors—simplified versions of CPUs—carry out the transformations on this data (Nickolls, et al., 2008).

Any computer program that involves a large amount of arithmetic computation (compute intensity) relative to its amount of memory accesses (memory intensity) can be parallelized and run on a GPU, thus massively improving its running time. In recent years, the use of GPUs in this manner, known as general purpose GPU (GPGPU) computing, has skyrocketed. The Nvidia corporation, which manufactures and sells the Geforce and Quadro line of GPUs, has developed its own GPGPU language known as Compute Unified Device Architecture (CUDA). Although other frameworks have been developed since, such as Open Computing Language (OpenCL), CUDA remains the most mature GPGPU framework to this day. More recent efforts have involved the development of high level programming languages that make it easier for developers to specify what a parallel program should do without understanding too many specifics of the architecture, such as Thrust and TensorFlow (Abadi, 2016).

MOAT-a’s adaptation into a CUDA program was based on the realization that the original serial program spent a large fraction of its running time on compute intense steps that involved generating random numbers for permutation bin placement, and calculating the intersecting variants as an assessment of background mutation burden. Hence, we implemented a CUDA version that copies the variant and annotation data to the GPU’s heap, where the graphics stream processors carry out the necessary computations with a parallel speedup of up to several hundred times faster than the corresponding CPU version. We believe this will greatly aid in WGS analysis given the expected deluge of sequencing data in the near future.

3) MOAT-v Implementation

The variant-based permutation algorithm for MOAT, a.k.a. MOAT-v, involves placing permuted variants within whole genome bins in a manner that reflects the observed mutation biases of the WGS sample. In addition to confining permuted variants to the same genome bin as the original variants—thus preserving the region’s mutation density—the variant placement scheme must preserve the trinucleotide mutation bias of the original variants. Differences in the biochemistry of the component bases mean that different nucleotides will mutate at different frequencies. Therefore, MOAT-v features a trinucleotide context preservation option that chooses permuted variant locations that have the same trinucleotide context as the original input variant. In order to accommodate this feature, MOAT-v must import the reference genome into main memory, which makes MOAT-v substantially more memory intense than MOAT-a. As a result, we opted to parallelize MOAT-v for multi-core CPUs using the OpenMPI framework—a standard for coordinating multiple processes with an interprocess communication API (Gabriel, et al., 2004).

A master process will divide the work amongst the remaining worker processes, and communicate the necessary data to those processes, which serve as workers. Each worker is assigned a single chromosome, which means each process will be importing a separate reference FASTA file (the reference genome is typically provided with a single FASTA file for each chromosome). This arrangement means that there will be no file I/O contention between the processes, enabling optimal parallel speedup. Ideally, there will be as many CPU cores as there are chromosomes (25, including chr1-22, X, Y, and M), but in the event that there are fewer cores, MOAT-v will assign as many chromosomes as it can to the workers, and when one of the workers is finished, it will signal the master that it is ready to process a new chromosome. Hence, if any processes finish early, they are assigned additional work to keep them maximally utilized. Another consequence of this arrangement is that there is no running time benefit to running MOAT-v on more than 25 cores.

4) MOAT-sim Implementation

MOAT-sim developed as a direct offshoot of MOAT-v, hence its parallelization scheme is very similar. MOAT-sim enables the use of whole genome mutation covariate data to identify and cluster whole genome bins that mutate in a similar fashion. The variant placement step in MOAT-sim permutes variants within each bin covariate cluster, instead of each bin. Hence, the variant placement workload of a single cluster will likely involve reference genome import from several chromosomes, which will incur a small penalty to the overall running time.

5) MOAT evaluation: variant and annotation data

[bookmark: _GoBack]The WGS variant data that we used in our evaluation of MOAT came from a range of published WGS cancer studies. The majority of this data was derived from a set of 507 whole genome cancer samples published in (Alexandrov, et al., 2013). This data includes sequence variants from patients with breast cancer, leukemia, liver cancer, lung cancer, lymphoma, medulloblastoma, pancreatic cancer, and pilocytic astrocytoma. In addition, we added 95 prostate cancer samples from (Baca, et al., 2013; Berger, et al., 2011; Cancer Genome Atlas Research, 2008; Weischenfeldt, et al., 2013), 26 unpublished glial tumor samples, 32 kidney cancer samples from the TCGA (Cancer Genome Atlas Research, 2008), and 100 stomach cancer samples from Wang et al. (Wang, et al., 2014).

The transcription start site (TSS) annotation data used in the MOAT evaluation was derived by parsing the GENCODE v16 (Harrow, et al., 2012) annotation file. We extracted the 100bp immediately upstream of each GENCODE gene annotation.
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