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Preamble to Supplement
The recent ENCODE data release provides a rich source of information for investigating questions both in basic biology and human disease. In large part, this wealth of information derives from the multiple genomic annotations provided across multiple cell types. An overarching objective of our study is to leverage ENCODE data to provide novel insights and resources for cancer research. We performed large-scale integration of various assays to construct a companion resource to the general encyclopedia focused on top-tier cell lines and their relevance to cancer biology. In particular, we aim to integrate ENCODE and cancer genomic data to gain a more comprehensive understanding of the non-coding elements involved in oncogenesis, their associated linkages to protein-coding genes and the background mutation rates therein, and the global regulatory nature of regulators in the context of matched tumor-normal cell lines.
In addition to providing new opportunities, however, the very richness of this data introduces considerable challenges with respect to data integration and organization. Our analyses rely on an array methodologies, the details for which are difficult to include within the main text of this paper. As such, the purpose of this Supplement is to provide a clear and organized reference to support and explain the datasets, pipelines, and analyses associated with this study. In addition to supplementary text, the supplementary figures and tables provide additional information not included in the main figures.
As reflected in the main text, our study is broadly organized into several main parts: a description of the assays, background mutation rate estimation, construction of compact annotations (for greater statistical power in identifying recurrence), linking genes to non-coding elements to produce models of “extended genes” (for idenifying mutationally burdened regions), generalized and cell-type specific network analysis, the workflow for prioritizing key genomic features associated with cancer, and experimental validations. This supplement is presented in roughly a parallel fashion to the main text. It is also connected to the main text through the major results presented in the form of main text figures – captions associated with main text figures point to relevant sub-sections within this supplement. With the aim of presenting data and results (including software packages) in an organized way, we have written about this study in roughly a hierarchical fashion. The main text lies at the top of this hierarchy and synthesizes everything in a broad manner. It refers to more detailed descriptions of our methods and datasets, as provided in this supplement. Raw data files, which lie at the bottom of the hierarchy (and which are hosted as online resources) form the bedrock from which our results are built. 
We note that, in preparing this supplement, we adopt the conventions prescribed in the recent opinion piece by Greenbaum et al.1 As such, labels that correspond to sections, sub-sections, figures, tables, and data files are labeled to indicate whether these items directly parallel () or do not parallel () the main text, as well as whether these items are high-level or technical in nature (designated by “HL” and “TL”, respectively).
Part 1 of this document provides in-depth documentation of the ENCODE data that we use, along with the subsidiary steps in working with these data (including ENCODE data processing, enhancer and enhancer-target predictions, and extended gene definitions). Part 2 provides details on our recurrence analyses and background mutation rate estimation. Part 3 provides an in-depth look at how focused, compact annotations may be used to achieve greater statistical power when evaluating variant recurrence. Part 4 details our expression aggregation analyses. Part 5 is a discussion and in-depth look at our generalized and cell-type specific network analyses (including associated rewiring). Part 6 discusses our workflow for prioritizing key genomic features associated with cancer. Finally, Part 7 provides details on the EN-CODEC resource and how it may be accessed.
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[bookmark: _Toc482107490][bookmark: _Toc487014771][bookmark: _Toc490126477] (HL, ) Summary of the cancer-related encyclopedia companion resource 
Mutations associated with cancer have been well characterized in many key oncogenes and tumor suppressors. However, the overwhelming bulk of mutations in cancer genomes – particularly those discovered from the recent large-scale cancer genomics initiatives – lie within non-coding regions. Whether these mutations drive cancer development or progression, or simply emerge as byproducts of genomic instability remains an open question. Newly-released data from the ENCODE Consortium can help to address this question by providing a comprehensive characterization of non-coding genomic elements, as well as by linking such elements to well-known cancer associated genes. 
Here, we endeavor to provide a resource to the main ENCODE encyclopedia by building an “ENCODE Cancer-related encyclopedia companion” resource (EN-CODEC). The main encyclopedia is oriented toward the breath of the annotations to describe elements over thousands of cell types. In contrast, we focus on top cell types with a wide variety of profiles available. Most of these cell types are associated with cancers of the blood, liver, lung, cervix, and breast. We show that these cell types can be used to provide a better understanding of oncogenesis, and we provide a resource for interpreting the wealth of mutational and transcriptional profiles produced by the cancer community. We summarize our efforts in Figure S 11. This encyclopedia companion mainly provides three layers of resources: 1) Data provision: carefully collected and de-duplicated signal tracks from various experimental assays both within and outside ENCODE; 2) pairing cell types and datasets to cancer types; 3) Detailed Annotations: enhancers and their gene linkages, cell-type specific and generalized networks, network hierarchies, rewiring status, gene expression regulating potentials, predicted mutation rates, and motif identifications.
[bookmark: _Ref477426594][bookmark: _Toc479775528][bookmark: _Toc487014772][bookmark: _Toc490126334][image: ]Figure S 11 (HL, ) Summary of the resources in cancer related encyclopedia companion

[bookmark: _Toc487014773][bookmark: _Toc482107491][bookmark: _Toc490126478] (TL, ) Detailed annotation of TFs and RBPs 
In this study, we collected a total of 344 transcription-related factors and abbreviated them all as TFs in the main text for simplicity. For our main analyses, we further classified them into four major classes: 282 sequence-specific TFs, which bind DNA at particular motifs to regulate gene expression; 16 general TFs, which comprise that segment of the cell’s transcriptional machinery that complexes with DNA; 19 chromatin-associated TFs, which comprise complexes that bind to and remodel chromatin; and 27 co-factors, which support the function of other TFs, do not directly bind DNA, and do not belong to another class.  A detailed classification was given in the supplementary datasheet, which is also available from our main data portal (http://encodec.encodeproject.org/). 
We further extracted 68 common TFs between K562 and GM12878, annotated in Table S 11. We searched the COSMIC Cancer Gene census2 and an authoritative list of cancer genes by Vogelstein et al. to identify TFs associated with cancer.3 We further listed whether a TF has been reported to regulate the ABL gene or BCR-ABL transcript, or the BCR-ABL KEGG pathway4, because of the dominant role this fusion gene plays in CML and K562.5,6
[bookmark: _Ref477424138][bookmark: _Toc479775576][bookmark: _Toc487014774][bookmark: _Toc490126461]Table S 11 (TL, , shadow table for data in Fig. 1) Detailed Annotation of common TFs in K562 and GM12878
	TF
	Class
	FAMILY
	COSMIC
	Vogelstein
	ABL*
	BCR-ABL
Pathway*
	Vogelstein*


	ATF3
	TFSS
	bZIP
	0
	0
	1
	1
	1

	BCLAF1
	TFSS
	bZIP
	0
	0
	0
	1
	1

	BHLHE40
	TFSS
	HLH
	0
	0
	0
	0
	0

	CBX5
	chromatin
	
	0
	0
	0
	0
	0

	CEBPB
	TFSS
	bZIP
	0
	0
	0
	1
	1

	CEBPZ
	TFSS
	bZIP
	0
	0
	0
	0
	0

	CHD1
	chromatin
	Homeodomain
	0
	0
	0
	0
	0

	CHD2
	chromatin
	Homeodomain
	0
	0
	0
	0
	0

	CTCF
	TFSS
	ZNF
	1
	0
	0
	1
	1

	E2F4
	TFSS
	wHTH
	0
	0
	0
	1
	1

	EGR1
	TFSS
	ZNF
	0
	0
	0
	1
	1

	ELF1
	TFSS
	ETS
	0
	0
	0
	1
	1

	ELK1
	TFSS
	ETS
	0
	0
	0
	0
	0

	EP300
	general
	
	1
	1
	1
	1
	1

	ETS1
	TFSS
	ETS
	0
	0
	0
	1
	1

	ETV6
	TFSS
	ETS
	1
	0
	0
	0
	0

	EZH2
	chromatin
	
	1
	1
	0
	0
	0

	FOS
	TFSS
	bZIP
	0
	0
	0
	1
	1

	GABPA
	TFSS
	ETS
	0
	0
	0
	0
	0

	HDGF
	TFSS
	
	0
	0
	0
	0
	0

	IKZF1
	TFSS
	ZF-C2H2
	1
	0
	0
	0
	0

	JUNB
	TFSS
	bZIP
	0
	0
	0
	0
	0

	JUND
	TFSS
	bZIP
	0
	0
	0
	1
	1

	MAFK
	TFSS
	bZIP
	0
	0
	1
	1
	1

	MAX
	TFSS
	HLH
	1
	0
	0
	1
	1

	MAZ
	TFSS
	HLH
	0
	0
	0
	0
	0

	MEF2A
	TFSS
	MADs-box
	0
	0
	0
	0
	0

	MLLT1
	TFSS
	
	1
	0
	0
	0
	0

	MTA2
	TFSS
	ZF-GATA
	0
	0
	0
	0
	0

	MXI1
	TFSS
	HLH
	0
	0
	0
	1
	0

	MYC
	TFSS
	HLH
	1
	0
	0
	1
	1

	NBN
	TFSS
	
	1
	0
	0
	0
	0

	NFE2
	TFSS
	bZIP
	0
	0
	0
	1
	0

	NFYA
	TFSS
	CBF-NFY
	0
	0
	0
	1
	1

	NFYB
	TFSS
	CBF-NFY
	0
	0
	0
	1
	1

	NR2C2
	TFSS
	NR
	0
	0
	1
	1
	1

	NRF1
	TFSS
	bZIP
	0
	0
	1
	1
	1

	PML
	cofactor
	
	1
	0
	0
	0
	0

	POLR2A
	general
	
	0
	0
	0
	0
	0

	POLR3G
	general
	
	0
	0
	0
	0
	0

	RAD21
	chromatin
	
	1
	0
	1
	1
	1

	RCOR1
	TFSS
	MYB
	0
	0
	0
	0
	0

	REST
	TFSS
	ZNF
	0
	0
	0
	1
	1

	RFX5
	TFSS
	wHTH
	0
	0
	0
	0
	1

	SIN3A
	general
	
	0
	0
	0
	1
	1

	SIX5
	TFSS
	Homeodomain
	0
	0
	0
	1
	1

	SMAD5
	TFSS
	MH1
	0
	0
	0
	0
	0

	SMC3
	chromatin
	
	0
	0
	1
	1
	1

	SP1
	TFSS
	ZNF
	0
	0
	0
	1
	1

	SPI1
	TFSS
	ETS
	0
	0
	0
	1
	1

	SRF
	TFSS
	MADs-box
	0
	0
	0
	1
	1

	STAT5A
	TFSS
	STAT
	0
	0
	0
	0
	0

	SUZ12
	chromatin
	ZNF
	1
	0
	0
	1
	1

	TAF1
	general
	
	0
	0
	0
	1
	1

	TARDBP
	TFSS
	
	0
	0
	0
	0
	0

	TBL1XR1
	cofactor
	
	1
	0
	0
	0
	0

	TBP
	general
	
	0
	0
	0
	0
	1

	UBTF
	TFSS
	HMG
	0
	0
	0
	0
	0

	USF1
	TFSS
	HLH
	0
	0
	0
	1
	1

	USF2
	TFSS
	HLH
	0
	0
	1
	1
	1

	YBX1
	TFSS
	CSD
	0
	0
	0
	0
	0

	YY1
	TFSS
	ZNF
	0
	0
	0
	1
	1

	ZBED1
	TFSS
	ZNF
	0
	0
	0
	0
	0

	ZBTB33
	TFSS
	ZNF
	0
	0
	1
	1
	1

	ZBTB40
	TFSS
	ZNF
	0
	0
	0
	0
	0

	ZNF143
	TFSS
	ZNF
	0
	0
	0
	0
	0

	ZNF274
	TFSS
	ZNF
	0
	0
	1
	1
	1



To provide functional annotation of the RBPs included in our study, we used gene ontology (GO) categorizations from the Gene Ontology Consortium. Using the Amigo2 webserver (amigo.geneontology.org/goose), we selected 17 GO categories representing major functional categories of RBP function, and overlapped these with the list of RBPs generated by the ENCODE project. Our chosen functional categories correspond to RNA binding (GO:0003723), tRNA binding and splicing (GO:0000049 and GO:0006388), RNA splicing (GO:0043484 and GO:0000398), RNA polyadenylation (GO:0043631, GO:0006378, and GO:1900363), regulation of RNA stability (GO:0043488 and GO:0061157), rRNA processing/ribosome (GO:0006364 and GO:0003735), RNA editing (GO:0009451), and snoRNA binding (GO:0030515). Of the ~1000 ENCODE annotated RBPs, 553 are listed as "RNA binding" by GO, and 327 have at least one specific functional annotation that involves RNA binding. A summary of the RBP annotations have been listed in Figure S 12.
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[bookmark: _Toc490126479](TL, ) Matching of ENCODE cell types to major cancer types 
[bookmark: _Toc482107493][bookmark: _Toc487014777][bookmark: _Toc490126480](HL, ) ENCODE data is suitable for cancer analysis
Of all the cell lines in ENCODE, we found around 70 percent of them to be cancerous (shown in Figure S 13). Many of the cell types are quite enriched with various experimental assays for functional characterization, leaving the ENCODE data quite suitable for cancer research (Figure S 14).

[bookmark: _Ref482104015][bookmark: _Toc487014778][bookmark: _Toc490126336]Figure S 13 (HL, ) Summary of the ENCODE cell lines
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[bookmark: _Ref482104267][bookmark: _Toc487014779][bookmark: _Toc490126337]Figure S 14 (HL, ) Broad spectrum of ENCODE cell types
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[bookmark: _Toc482107494][bookmark: _Toc487014780][bookmark: _Toc490126481](HL, ) Rationale for matching cell types 
Although wide-ranging functional characterization assays are available through ENCODE, applying this data to cancer research remains challenging. Biological heterogeneity among cancer types requires that cell types studied in cancer research be optimally matched to a particular cancer of interest. However, well-matched tumor-normal pairs are only available for certain cancer types from among ENCODE cell types, and most cell types lack data from one or more key experimental assays (as shown in Fig 1). Therefore, it is necessary to create biologically relevant tumor-normal pairs and to develop algorithms to learn from sub-optimally matched data. Another challenge arises from the heterogeneous nature of raw data collected from experimental assays. Data must undergo de-duplication, unified processing, and proper normalization before accurate large-scale integration can be achieved. Here we endeavor to provide ENCODE data matched according to cancer type, and with appropriate tumor-normal pairs, for several high-incidence cancer types. A detailed matching summary is provided in in Table S 12.
To utilize extensive collection of advanced ENCODE assays on several “key cell types”, one can perform an approximate matching of cancerous cells to normal cells. For the normal cells, we could simply combine a collection of normal proxies to form a composite normal. In this way, we can maximize the functional coverages of approximately matched normal while minimizing artifacts by diluting unwanted cell type specific noises.
A key feature of the ENCODE annotation is that it includes data from a great diversity of functional assays. Because it is not currently possible to perform such a wide variety of assays on tissue from individual cancer patients, we believe that this matching provides a unique opportunity to refine our understanding of the cancer genome, using large-scale data integration.
[bookmark: _Ref474492045][bookmark: _Toc479775577][bookmark: _Toc487014781][bookmark: _Toc490126462]Table S 12. (TL,) Summary of cell line and cancer type matching 
	Cancer
	Abbreviation
	ENCODE cell line

	Breast
	BRCA
	Tumor
	MCF-7

	
	
	Normal
	HMEC, MCF-10A

	Liver
	LIHC
	Tumor
	HepG2

	
	
	Normal
	Adult liver tissue

	Lung
	LUAD [SARC]
	Adenocarcinoma
	A549

	
	
	Sarcoma
	SK-N-MC

	
	
	Normal
	Lung tissue, IMR-90

	Blood
	CML [CLL/LAML]
	Tumor
	K562, DND-41

	
	
	Normal
	CD34+ common myeloid progenitor cell, GM12878

	Cervix
	CESC
	Tumor
	HeLa-S3

	
	
	Normal
	N/A

	Colorectal
	COAD+READ
	Adenocarcinoma
	Caco-2, HCT116

	Prostate
	PRAD
	Adenocarcinoma
	LNCaP, PC-3

	Pancreas
	PAAD
	Adenocarcinoma
	Panc1



[bookmark: _Toc487014782][bookmark: _Toc490126482](TL, ) Blood cancer cell line matching
Wherever possible, we have matched each ENCODE cancer cell type with a composite normal, which was derived from multiple of normal samples with the same cell type of origin. Exact matching was not possible with K562: this cancer cell-line derives from a myeloid lineage, but there is no data-rich noncancerous myeloid cell included in ENCODE. GM12878 is a data-rich ENCODE cell-line derived from the closely related lymphoid lineage. Supporting this choice, we determined that among all non-cancerous cell-lines provided by Roadmap Epigenome and GTEX, GM12878 has the highest Spearman correlation with K562, as shown in in Figure S 15. Hence, we used GM12878 as a rough pair for K562.
[bookmark: _Ref488653299][bookmark: _Toc487014783][bookmark: _Toc488066740][bookmark: _Toc490126338]Figure S 15 (TL, ) Expression correlations with K562 from many other cell lines (TL, NP)

In addition, we found CD34+ common myeloid progenitor cells to be another close normal proxy to K562. Common myeloid progenitor cells are a direct ancester of many differentiated myeloid cells including granulocytes and monocytes, and therefore it can directly related to chronic myeloid leukemia. However, there is a limited range of data assays with CD34+ common myeloid progenitor cell, and therefore we merged them with data-rich GM12878 assays to build a composite normal.
[bookmark: _Toc482107495][bookmark: _Toc487014784][bookmark: _Toc490126483](TL, ) Breast cancer cell line matching
MCF-7 is the most studied human breast cancer cell line, with nearly 25,000 scientific publications reporting results from studies of MCF-7.7 It is a human cell line derived from a malignant pleural effusion due to breast carcinoma.8 MCF-7 is one of few cell lines that express substantial levels of estrogen receptor (ER), and so is widely used to mimic ER-positive invasive human breast cancers. It is also used to study intracellular binding constants, transport mechanisms, and DNA binding sites among ER target genes.7 T47D is also an ER-positive breast cancer cell line that has been widely used to study breast cancer, and is also derived from a malignant pleural effusion.9  Unlike MCF-7, T47D is a mutant for the tumor suppressor gene TP53.10
MCF-10A is the human breast epithelial cell line most commonly used as an in vitro model for studying normal breast cell function and transformation.11 It was derived from spontaneously immortalized benign fibrocystic mammary tissue, which is non-tumorigenic and does not express ER.11,12 Numerous studies have utilized both MCF-7 and MCF-10A cell lines to facilitate the development of breast cancer treatment and therapy, by comparing the differential response of these two cell lines under multiple experimental settings.13-15
A recent study challenges MCF-10A as a representative model for normal mammary cells, with the study authors claiming that this cell line exhibits phenotypes and expression profiles that have not been observed in mammary gland tissues,11 However, these authors caution a need for further investigation into the appropriateness of MCF-10A cells as a model for normal human mammary epithelial cells. Though we cannot exclude differences between MCF-7 and MCF-10A from causes unrelated to malignant transformation, given the wealth of ENCODE data on MCF-7, and the high incidence of breast cancer, we consider the pairing of MCF-7 and MCF-10A worthwhile.
Human mammary epithelial cells (HMEC) is another representative model for normal mammary cells and numerous studies have used them for matching normal against MCF-7 \cite{25364905, 18207346, 24831807}. HMEC is also widely used outside ENCODE and we were able to obtain external data such as Hi-C, from literature search (GSM1551613).
[bookmark: _Toc482107496][bookmark: _Toc487014785][bookmark: _Toc490126484](TL, ) Lung cancer cell line matching
A549 is a carcinomic lung epithelial cell line16 and IMR-90 is a normal lung fibroblast cell line.17 Lung fibroblasts and lung epithelial cells are closely related cell types, and conversion between these cell types is common and meaningful in tumor cells and normal cells.18,19 Lung fibroblasts like IMR-90, are mesenchymal cells that arise in embryologic development subsequent to epithelial to mesenchymal transition (EMT). The dedifferentiation of mesenchymal cells into secondary epithelial tissue following mesenchymal to epithelial transition (MET) is also observed and is best characterized in kidney development.20 It has been postulated that the dedifferentiation and metastasis of epithelial lung cancer cells, may occur through EMT and/or MET.21-24 Such a process has been observed in other cancers.19 Indeed, exposure of A549 epithelial cells to chemotherapeutic agents or TGF-B, causes differentiation to a mesenchymal phenotype, and EMT is thought to play a role in chemotherapeutic resistance of lung adenocarcinoma.25,26 These cellular relationships support the benefit of using a tumor normal comparison between A549 cancer cells and IMR-90 normal cells. Indeed, IMR-90 is frequently used as a normal control for A549 in experiment.27-33
ENCODE contains a wide range of data-rich assays on both fetal and adult lung tissues, including but not limited to DNase-seq, ChIP-seq, and RNA-seq. Not a single biosample can be used as a perfect match for A549, and therefore, we merged data-rich assays on normal lung biosamples from anatomical origin (IMR-90, fetal and adult lung tissue samples) or cellular origin (any normal epithelial cells) to form a composite normal.
[bookmark: _Toc482107497][bookmark: _Toc487014786][bookmark: _Toc490126485] (TL,) Normal to Tumor cell line matching using replication timing data
It is well known that replication timing significantly affects the mutational landscape in both germline and normal cells.34 We also made a genome-wide correlation of replication timing data (excluding ChrX and ChrY to avoid gender differences) between the cancer cell lines and several candidate normal cell types. Results are listed in Figure S 16. As expected, the best matching normal data for K562 and HepG2 cell lines are Erythroid progenitors and Hepatocytes. However, we also noticed that replication timing data in A549 and MCF-7 shows the highest correlation with those in Mesenchymal Stem cells and Splanchnic mesoderm. However, our proposed matching normal cell lines, such as like IMR-90 for A549, still showed a decent correlation regarding their replication timing profiles. 
[bookmark: _Ref475516596][bookmark: _Toc479775530][bookmark: _Toc487014787][bookmark: _Toc490126339]Figure S 16. (TL, ) Comparison of Tumor with normal cell lines by replication timing data
[image: /Users/jingzhang/Downloads/ENCODEcancer_CorrtoNormal_RT.pdf]

[bookmark: _Toc482107498][bookmark: _Toc487014788][bookmark: _Toc490126486] (TL, ) Summary of data from each experimental assay from ENCODE
We have integrated data sets from ENCODE and Roadmap Epigenomics Mapping Consortium (REMC), after performing quality control and uniform processing, to build one of the most comprehensive representations of how functional regulatory elements interplay in the human genome. All datasets used in the analysis were mapped to a standardized version of the GRCh37 (hg19) reference human genome. We used ENCODE data that was submitted and released up to October 31st, 2016 (Oct 2016 freeze). We summerized the ENCODE data with matched tumors in Figure S 17.
[bookmark: _Ref483434996][bookmark: _Toc487014789][bookmark: _Toc490126340][bookmark: _Ref483300753]Figure S 17. (HL, , Shadow figure) Summary of ENCODE data for mulitple cancer types
[image: /Users/Donghoon/Google Drive/Gerstein/ENCODE/EC_FIGURES/EC_MF1_DataSummary_v10_DL_edit.pdf]
[bookmark: _Toc482107499][bookmark: _Toc487014790][bookmark: _Toc490126487](TL, ) Collection of RNA-seq data
We downloaded the signal tracks of all RNA-seq experiments and counted the average signal of a fixed bin size (e.g 1mb, or 100kb). If there are multiple RNA-seq data for each cell type, we prioritize data in the following order: polyA mRNA > pair-end stranded > single-end unstranded > ENCODE2 RNAseq. 
[bookmark: _Toc482107500][bookmark: _Toc487014791][bookmark: _Toc490126488](TL, ) Preprocessing of Repli-seq data
The raw signal of 90 Repli-seq data sets for 15 different tissue or cell lines were downloaded from the ENCODE data portal (link here). For each tissue/cell line, in cell cycle phases G1, S1, S2, S3, S4, and G2, newly replicated DNA positions were sequenced and analyzed by massive parallel sequencing were sequenced35. Similar to Suzuki et al35, we added up the signal strength in 1mb bins by comparing the (G1 + S1) with the (S4 + G2) datasets by measuring the inverse tangent (arctangent) for each data point.36
[bookmark: _Toc482107501][bookmark: _Toc487014792][bookmark: _Toc490126489](TL, ) Deduplication of ChIP-seq data
We collected 1,040 TF ChIP-seq experiments released for ENCODE. There are 888 released TF ChIP-seq experiments for ENCODE2. We used a subset of 801 experiments that either had no treatment or ethanol treatment only. There were 570 TF ChIP-seq experiments released for ENCODE3, which had no treatment.
For a common TF target in top-tier cell lines, ENCODE has multiple of the same experiments from different labs. We carefully de-duplicated the dataset by selecting one TF ChIP-seq experiment per each sample by the following prioritization scheme. When an ENCODE3 experiment was available, it was prioritized over the ENCODE2 experiment. When there was the same type of experiments done by different labs, we prioritized using the following order determined by the total number of ChIP-seq experiments deposited on ENCODE: stanford, haib, broad, usc, uw, uta, uchicago, hms, yale. We removed epitope-tagged experiments if an endogenous antibody was available. After deduplication, there were 860 unique TF ChIP-seq experiments.
[bookmark: _Toc482107502][bookmark: _Toc487014793][bookmark: _Toc490126490] (TL, ) External data
We deeply integrated our ENCODE functional characterization data with data from external cohorts to interpret cancer genome. Specifically, we downloaded both expression and WGS data from external cohorts.
[bookmark: _Toc482107503][bookmark: _Toc487014794][bookmark: _Toc490126491](TL, ) Expression data from external Cohort
 All TCGA expression, methylation and mutation data were downloaded from GDAC firehose (http://gdac.broadinstitute.org) with data version of 2016_01_28. For cancer types with normal control samples profiled, the expression values of each gene are subtracted with the average value of all normal controls. For cancer types without any normal samples profiled, the expression profile of each gene is transformed to zero mean and unit deviation (see Figure S 18). The DNA methylation values are also normalized in the same way as RNA-seq data, according to the availability of normal control samples in each cancer type. For copy number alteration (CNA), GDAC firehose does not provide standardized data, and we downloaded the data matrix from cBioportal with data version of 2016_10_20 (http://www.cbioportal.org).[bookmark: _Ref474770054][bookmark: _Toc479775531][bookmark: _Toc487014795][bookmark: _Toc488066743][bookmark: _Toc490126341]Figure S 18 (TL, )  Schemetics of RNA-seq data processing

[bookmark: _Toc482107504][bookmark: _Toc487014796][bookmark: _Toc490126492](TL, )  WGS data
2709 WGS samples were collected for 5 cancer types (BRCA, LAML, LUAD, LIHC, UCEC).


[bookmark: _Toc482107514][bookmark: _Toc487014817][bookmark: _Toc490126493](TL, ) Details about BMR estimation
[bookmark: _Toc482107515][bookmark: _Toc487014818][bookmark: _Toc490126494] (TL, ) Variant calling
[bookmark: _Toc482107516][bookmark: _Toc487014819][bookmark: _Toc490126495](TL, ) Liver Germline and somatic variant calling  
We called germline single nucleotide variants (SNVs) for a set of 88 liver cancer samples (Table S 21) that were whole genome DNA sequenced at the Beijing Genomics Institute (BGI) Shenzhen for a mutation analysis published in Genome Research48. The authors made the raw sequence data available in FASTQ format from the European Nucleotide Archive (ENA) under accession ERP001196. We downloaded these files and conducted a germline variant calling procedure in accordance with the Broad Institute’s Best Practices for read-to-variant workflows (https://software.broadinstitute.org/gatk/best-practices/index.php). Read alignments were generated using the Burrows-Wheeler Aligner (BWA v0.7.15; http://bio-bwa.sourceforge.net/), using the BWA-MEM algorithm. After that, we proceeded with preprocessing for variant calling, including cleaning out duplicate reads using Picard tools (MarkDuplicates tools v2.6.0), and base recalibration with the Genome Analysis Tookit (GATK; v3.6.0). Variant calls for individual samples were derived with the GATK HaplotypeCaller, followed by joint genotyping with the GenotypeGVCFs tool. The final variant set was subjected to standard quality filtration in accordance with the standard configuration of the GATK VariantFiltration tool. Each step was performed on the Mt Sinai Minerva scientific compute cluster, and utilized hundreds of CPU cores per compute step. Table S 21 summarizes the distribution of germline variant calls per sample.
[bookmark: _Ref473798856][bookmark: _Toc479775580][bookmark: _Toc487014820][bookmark: _Toc490126463]Table S 21 (TL, ) List of cancer whole genome DNA sequence data obtained for variant calling
	Cancer type
	Number of samples
	Median # of var per sample
	Source

	Liver - germline
	88
	4,156,068
	BGI Shenzhen (Kan et al. 2013)

	Liver - somatic
	88
	13,647
	BGI Shenzhen (Kan et al. 2013)



[bookmark: _Toc314467815][bookmark: _Toc482107518][bookmark: _Toc487014823][bookmark: _Toc490126496] (TL, ) Local context effect significantly affect local mutation rate (JZ)
We observed that BMR is significantly associated with local context effect in all cancer types up to several orders, which largely contributes to the mutation rate heterogeneity. Details are given in Figure S 21. For example, the average pooled mutation rate ranges from 1.58e04 to 2.92e03 (18.35 fold). The observed mutation has been plotted in the following radial plots for each cancer type. In general, G/C positions are more prone to mutations as compared to A/T positions, but the local context effect within G/C positions still has a strong effect (2.40e04 and 2.40e04 vs. 1.21e03 and 1.20e03). In addition, we also observed that the local context effect varies significantly across multiple cancer types. Hence, it is important to separate cancer types during the BMR estimation process.[bookmark: _Ref477276926][bookmark: _Toc479775541][bookmark: _Toc487014824][bookmark: _Toc488066753][bookmark: _Toc490126342]Figure S 21 (TL,) Local context severely confounds BMR in multiple cancer types



[bookmark: _Toc482107519][bookmark: _Toc487014825][bookmark: _Toc490126497] (TL, ) Local mutation rates are highly correlated with many genomic features
Consistent with previous literature, we observed large mutational heterogeneity over the genome for all 3-mers in all cancer types.49 As seen in Figure S 22, the mutation rate changes significantly over different regions of the genome (large region of each violin bar) and over different local contexts.
[bookmark: _Ref474164663][bookmark: _Toc487014826][bookmark: _Toc479775542][bookmark: _Toc490126343][image: ../Figure/Feb06/supplementary/local.context.and.genome.variation.pdf]Figure S 22(TL,) Violin plot of estimated BMR over local context and genomic locations 

It is well-known that the somatic mutational process is affected by various external effects, such as replication timing and chromatin status. We also observed this phenomenon in many cancer types. For example, the normalized pooled mutation rates in the 1Mb bins are given in Figure S 23 chromosome 11. It correlated replication timing data quite well. On the contrary, it has a negative correlation with both RNA-seq and DHS signal in liver cancer. Hence, it is important to correct BMR against the confounding effects of these external genomic features.
[image: https://lh3.googleusercontent.com/BY6g2mxrqphG5diFZBoBYqVLwVI0FreAKtaTyqnwaEoQSjoNn0ZNlsqcpSyaVP_ipLixnuB2bMg75WQ1G0zd9GQVQ4-70AF7yFT0L1mMat_3t-UbV942RLWix8gOcS2T86Xs0xt7]We systematically explored the effect of multiple genomic features including replication timing, DHS, WGBS, RNA-seq and Hi-C and their correlation with the overall mutation rate in multiple cancer types is given in Figure S 24. For example, in breast cancer, the correlation between replication timing and mutation rate ranges from 0.47 to 0.55, while correlation from DHS signals ranges from 0.42 to 0.18. However, we observed an increased correlation of mutation rates to these features in liver cancer (0.59 to 0.74 for replication timing and 0.58 to 0.33 for DHS, details in Table S 22). Hence it is important to correct the effect of external features in a cancer specific way to achieve better burden analysis.[bookmark: _Ref474827240][bookmark: _Toc479775543][bookmark: _Toc487014827][bookmark: _Toc488066755][bookmark: _Toc490126344]Figure S 23 (TL, ) Example of external effects on local mutation rate

[bookmark: _Ref474168874][bookmark: _Toc479775582][bookmark: _Toc487014828][bookmark: _Toc490126464]Table S 22 (TL, ) Summary of correlation of mutation rate at 1mb bins with different external features in multiple cancer types
	
	
	BRCA
	CLL
	LUAD
	LIHC

	repTime
	Min
	0.467300058
	0.410292073
	0.589242196
	0.594308714

	repTime
	Median
	0.493598234
	0.4637348
	0.67495952
	0.642464943

	repTime
	Max
	0.547374543
	0.504968332
	0.715431489
	0.737831334

	RNA
	Min
	0.276898241
	0.284573043
	0.419458551
	0.397504844

	RNA
	Median
	0.126228292
	0.114417754
	0.181953795
	0.162453668

	RNA
	Max
	0.019998871
	0.019088747
	0.027760515
	0.021616959

	HiC
	Min
	0.258214534
	0.240053286
	0.355389238
	0.388864195

	HiC
	Median
	0.124167655
	0.047070425
	0.144698057
	0.114903485

	HiC
	Max
	0.190402416
	0.274050935
	0.283105375
	0.31333984

	WGBS
	Min
	0.391201031
	0.379756186
	0.560373539
	0.572058872

	WGBS
	Median
	0.28162047
	0.321745409
	0.442804565
	0.503776857

	WGBS
	Max
	0.250846402
	0.28621958
	0.35169477
	0.37209731

	DHS
	Min
	0.416168532
	0.406787562
	0.576209738
	0.578067199

	DHS
	Median
	0.321014839
	0.344702489
	0.480339053
	0.502492181

	DHS
	Max
	0.180644113
	0.262259514
	0.276360875
	0.333674803

	Histone
	Min
	0.525809902
	0.487246457
	0.703446634
	0.658923263

	Histone
	Median
	0.35312576
	0.376874169
	0.533489718
	0.517573323

	Histone
	Max
	0.567295147
	0.527731502
	0.74483745
	0.717959133


[bookmark: _Ref474167249][bookmark: _Toc479775544][bookmark: _Toc487014829]
[bookmark: _Toc490126345][image: ../Figure/Feb06/supplementary/cancer.type.feature.type.correlation.pdf]Figure S 24 (TL, ) Correlation of mutation rate and external features across multiple cancer types (shadow figure for Fig. 2B)


[bookmark: _Toc482107520][bookmark: _Toc487014830][bookmark: _Toc490126498] (TL, ) Background mutation rate estimation and P-value calculation
Here we proposed a regression based somatic mutation recurrence analysis in cancer. The schematic of this method is shown in Figure S 25.
[bookmark: _Ref474503709][bookmark: _Toc479775545][bookmark: _Toc487014831][bookmark: _Toc490126346]Figure S 25 (HL, ) Schematic of the recurrence analysis
[image: /Users/jingzhang/Documents/Manuscript/2016/ENCODECancer/Figure/Feb06/supplementary/recurrence.schematic.supplementary.pdf]
[bookmark: _Toc482107521][bookmark: _Toc487014832][bookmark: _Toc490126499](HL, ) Covariate data collection 
We collected uniformly processed and non-redundant set of confounding genomic features across different cell types from both ENCODE to build the master covariate matrix that was used to correct for the background mutation rate (BMR). To ensure that the covariate matrix is not affected by processing bias and artifacts, we manually curated the dataset processed by the latest uniform processing pipeline and de-duplicated signal tracks from either untreated or ethanol-treated experiments. To build a covariate matrix, we then averaged the signal over specified 1Mb bin size.
[bookmark: _Toc482107522][bookmark: _Toc487014833][bookmark: _Toc490126500](TL, ) Covariate table creation 
We trained our model using the master covatiate matrix. Different from the calibrated training data selection mentioned in Lawrence et al49, we divided the whole genome into bins with fixed length, such as 1mb, 100kb, 50kb, etc. Only autosomal chromosomes and chromosome X were included in our analysis to remove the gender imbalance in mutation data or covariates. 
Repetitive regions on human genome are known to generate artifacts in high throughput sequencing analysis mainly due to their low mappability. We downloaded the mappability consensus excludable table used in the ENCODE project from http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz. Any fixed length bins that overlap with this table would be removed from the training process. We also downloaded the gap regions of hg19 from the UCSC genome browser, which include gaps from the telomere, short_arm, heterochromatin, contig, and scaffold. The fixed length bins that intersect with these gap regions were also removed in our analysis.
All the bigWig files generated in step one were used to calculate the average signal using the bigWigAverageOverBed tool for each fixed length bin we generated above. In the end, we summarized all the covariates values in each bin into a covariate table, with 475 columns indicating different features and rows representing different training bins.
[bookmark: _Toc314467818][bookmark: _Toc482107523][bookmark: _Toc487014834][bookmark: _Toc490126501] (TL, ) PCA analysis of the covariate matrix
[image: ../Figure/Feb06/supplementary/feature.correlation.heatmap.pdf]It has been reported that many genomic signal tracks demonstrate noticeable correlations across features and tissues. A heatmap of the Pearson correlation of the 475 features from 229 cell types was given in Figure S 26. We observed strong correlations among the used features. For example, Pearson correlation of colors ranges from 0.874 to 0.998 at the 1Mb bins. 
[bookmark: _Ref474222871][bookmark: _Toc479775546][bookmark: _Toc487014835][bookmark: _Toc488066758][bookmark: _Toc490126347]Figure S 26 (TL, ) Heatmap of feature correlations

Hence we first centered and scaled the covariate matrix  and then performed PCA on it to obtain . Then the cumulative proportion of variance explained by the PCs was given in Figure S 27. As expected, the covariate table is highly redundant, as implied by the fact that the first PC may explain as much as 47.41% of variance, and the 2nd PC explains an additional 13.19%. Nonetheless, the various data tyoes to contribute some unique information since it takes up to 28 and 169 PCs to capture 90% and 99% of variance (details in Figure S 27).

[bookmark: _Toc487014836][image: ../Figure/Feb06/supplementary/feature.PCA.proportion.pdf][bookmark: _Ref477277120][bookmark: _Toc479775547][bookmark: _Toc487014837][bookmark: _Toc488066759][bookmark: _Toc490126348]Figure S 27 (TL, ) Summary of feature PCA analysis

We also calculated the Pearson correlation of PC  with mutation counts in cancer type  as . Then the absolute correlation value  were averaged over different cancer types as  to rank the PCs. The top 10 PCs with highest  were selected and boxplot for each of the PCs was given in Figure S 28.
[bookmark: _Ref479588037][bookmark: _Toc487014838][bookmark: _Toc479775548][bookmark: _Toc490126349]Figure S 28. TL, ) Boxplot of Pearson correlations of top PCs to mutation counts 
[image: ../Figure/Feb06/supplementary/feature.PCA.mut.correlation.boxplot.pdf]
[bookmark: _Toc482107524][bookmark: _Toc487014839][bookmark: _Toc490126502](TL, ) Training model details
First we divide the whole genome into bins with fixed length . In this stage,  is usually large, such as 1 Mb. Any bins overlapping either of the two blacklist regions are removed. Then, 475 features are extracted from both REMC and ENCODE, and the average signal in the bins is calculated. We let  denote the average signal strength for the  bin and  covariate, where  and .
Suppose there are  different diseases (or disease types) in the collected WGS data, and  unique samples, for example different patients, for each disease (or disease type such as liver cancer or lung cancer) . Let  and   denote the observed mutation count and rate for the  bin defined above for sample  in disease . In previous efforts, scientists assume that mutation rate  is constant across different regions of the human genome, samples, and diseases, so they have that   for . Hence  follows a Poisson distribution with the probability mass function (PMF) given in equation (2-1).

                                         (2-1)
However, somatic genomes are highly heterogeneous because mutation rates vary considerably among various diseases, samples, and regions of the same genome, severely violating the assumption in equation (2-1). As a result, fitting of  is usually very poor because overdispersion is often observed.50 Simply assuming a constant mutation rate will generate numerous false positives. Instead, in our model we assume that different  are random variables that follow a Gamma distribution with probability density function (PDF)

                                         (2-2), 
where  and . In equation (2-2),  and  are the shape and scale parameters respectively. Assume that  is the overall mutation rate from all samples in bin  of disease . Its distribution can be readily obtained through convolution as 

                             (2-3).
If we let  represent the total mutation counts in region  from all disease samples, , then the conditional distribution of  given  can be written as

                                                   (2-4).
By integrating (2-3) into (2-4), the marginal distribution of  can be denoted as a negative binomial distribution.51

                                (2-5a).
Equation (2-5a) is the PDF of a negative binomial distribution with  and . To better interpret (2-5a), we define  and . Then equation (2-5a) can be rewritten as (2-5b).

                      (2-5b)
The mean and variance of  from (2-5b) can be described as  and  respectively. Our model in equation (2-5b) is convenient due to its explicit interpretability. First, it assumes that the individual mutation rates are heterogeneous by modeling  as i.i.d. Gamma distributed random variables. Unlike the constant mutation rate assumption where , our model captures the extra variance of  due to population heterogeneity. Our model in (2-5b) also clearly separates the two main parameters  and  with physically interpretable meanings: the mean and overdispersion, respectively. Here a larger  indicates a more severe degree of overdispersion, which is usually due to larger differences in mutation rates.
After modeling  with a negative binomial distribution, we then estimate the local mutation rate by correcting the covariate matrix  described above. Again  denotes the average signal strength in the  bin and  covariate, where  and . Because the genomic features in the covariate matrix are highly correlated and may introduce multicollinearity if directly used in regression, we first apply principal component analysis (PCA) to matrix . We define  to be the covariate matrix after PCA and  as each element in . 
A generalized regression scheme is used here. Suppose  and  are two link functions. We then use linear combinations of covariate matrix  to predict the transformed mean parameter, , and overdispersion parameter, , as

                    (2-6).
Here we use a log link function for both  and , so the regression model in (6) is a negative binomial regression. Note that  contains 475 genomic features in all available tissues. In the following analysis, we use all features to run the regression in (2-6) to achieve better performance. The GAMLSS package in R is used to estimate the parameters in (2-6) as . Generally, there are biological reasons to explain how  changes with covariates. For example, single-stranded DNA in the later replicated regions usually suffers from accumulative damage resulting in larger . It is more difficult to interpret such a relationship with . Hence, we simplify equation (2-6) by assuming  is constant in our real data analysis. In order to separate the local context effect, we separate the 64 local 3 mers to train 642 parameters during the training process.
[bookmark: _Toc482107525][bookmark: _Toc487014840][bookmark: _Toc490126503](HL, ) Testing details
Suppose there are  regions to be tested. We use the local mutation rate to evaluate the mutation burden. For the  target region (), one way of calculating the covariates is to extend it into length  (illustrative figure given in Figure S 25). Then we calculate the average signal for feature  as  for this extended bin, and after PCA projection let  represent the value for the  PC.  The local mutation parameters  and  in the extended bin for the  target region can be calculated as

                               (2-7).
In real data analysis, the length of the  test region  is much shorter than the length of the training bins (up to 1Mb). Hence  needs to be adjusted by a factor of . Then  and the adjusted  can be used to calculate the disease specific P-value, . This above scheme is usually computationally expensive because there are typically millions of target regions to be tested. Therefore, we also propose an alternative approximation using fixed, optimized values for  and  in our analysis. In order to separate the local context effect, we separate the 64 3-mers and run individual regression models for each 3-mer.. 
The negative binomial model mentioned in equation (2-5) can effectively control the false positive rate when there is large overdispersion. However, the downside for (2-5) is that when there is little heterogeneity among patients, such that heterogeneity over different regions of the genome are completely removed by regressing against the external features, then estimation in (2-7) might fail. In other words, it cannot handle the non over-dispersed data well. In order to solve this problem, we first use Poisson regression which assumes equal mean and variance. Then we run a test using the method mentioned in Cameron et al52 for the following hypothesis: provided the regression function is correctly specified and ordinary least squares parameter estimates are consistent, whether variance is equal to the mean. Specifically, we assume , and the alternative hypothesis is . In particular, we tested whether . When this test for Poisson regression fails, we swich to negative binomial regression for better fitting. During the implementation stage, we used the AER package in R (the dispersiontest function) to run this test. We provided the summary of estimated overdispersion parameter in multiple cancer types in Figure S 29. It clearly shows that different cancer types and local 3mers have distinct overdispersion status. In CLL, the overdispersion parameters range from 0.8285 to 0.9784, indicating Poisson regression models for all 3mers are enough during the training process. However, in breast cancer, the overdispersion parameter ranges from 0.81 to 3.08 out of the 64 3mers need to use the negative binomial models to handle the extra variance.
[bookmark: _Ref474251227][bookmark: _Toc479775549][bookmark: _Toc487014841][bookmark: _Toc490126350]Figure S 29 (TL, ) Summary of estimated overdispersion parameter in multiple cancer types
[image: /Users/jingzhang/Documents/Research/ENCODECancer/figurePlot/Figure/Burden/Train/fitted/figure/train.dispersion.parameter.pdf]
[bookmark: _Ref474252479][bookmark: _Toc479775550][bookmark: _Toc487014842]The performance of the model is given in Figure S 210. We observed that in all cancer types, using more features significantly improves the BMR estimation precision. However, to avoid overfitting, we first run a regression using projected PCs on the feature matrix, and then all PCs with adjusted P-value greater than 0.05 are removed during the training process.
[bookmark: _Toc490126351]Figure S 210 (TL, ) Performance of BMR model training using different number of parameters.
[image: /Users/jingzhang/Documents/Manuscript/2016/ENCODECancer/Figure/Feb06/supplementary/Final.Performance.3mer.separate.pdf]
Sometimes it is necessary to analyze several related diseases (or disease types) to provide a combined P-value. One typical example is in pan-cancer analysis.  In the above section, we calculated the P-value for disease/disease type  as  for test region . Fisher’s method can be used to combine these P-values. Specifically, the test statistic is

                                     (2-8). 
Here  follows a centered chi-square distribution with  degrees of freedom, where  is the total number of diseases/disease types. The final P-value, , can be calculated from .
[bookmark: _Toc490126504](TL, ) BMR estimation using umatched data
As shown in Figure S 26, features across mulitple cell types are highly correlated. This charateristic enables us to estimate BMR of a potentially unmatched cancer type with acceptable accuracy. For example, ENCODE has very limited functional charateristic data for prostate cancer. However, the correlation between the observed and estimated variant counts per 1 Mb bin is as high as 0.80 from our model (Figure S 211). 
[bookmark: _Ref488065294][bookmark: _Toc490126352]Figure S 211. (TL, ) BMR estimation with unmatched data
[image: /Users/jingzhang/Documents/Research/ENCODECancer/figurePlot/burden/covEffect/code/PRAD.supplement/PRAD.figure.pdf]

[bookmark: _Toc482107505][bookmark: _Toc487014797][bookmark: _Toc490126505](TL, ) A focused compact annotation increases power in variant recurrence detection
In this section, we discussed in detail how the annotation quality and quantity would affect the statistical power of burden analysis.
[bookmark: _Toc490126506](TL, ) Power of individual burden test
Let  and  denote the length of test region and background mutation rate for this region. The probality that there is at least one mutation can be fomulated as
                                                       (3-1)
For the driver regions, the faction of mutations over population is  and miss detection rate during the variant calling process is . Then under the alternative hypothesis, the mutation rate should be 
                                                    (3-2)
Suppose the total number of test regions is , then the P value needed to claim significance would be 
                                                           (3-3)
Let  is the minimum number of samples needed under the null hypotheysis that has p value at . Then the power can be calculated as 
                                           (3-4)
If , , ,  and  (roughly the number of genes), then from the simulation in Figure S 31, it is obvious that longer regions needs larger number of sample to achieve similar power level. Hence it is better to maintain a minimum length of the functional regions with true functional impact.
[bookmark: _Toc490126507](TL, ) Power of mulitple burden tests
[image: ][image: ]We also fixed the length of the annotation and checked the effect of annotation numbers on burden tests. Since a large number of annotation will introduce huge penalty due to multiple test correction, it is better to confine tests on core annotations with high confidence  (Figure S 32).[bookmark: _Ref488654513][bookmark: _Toc490126353]Figure S 31 (TL, ) Power analysis of annotation length effect 

[bookmark: _Ref488654536][bookmark: _Toc490126354]Figure S 32 (TL,  ) Power analysis of annotation number effect


[bookmark: _Toc490126508](TL, ) An stepwise screening method to predict enhancers and their gene linkages 
In contrast to previous approaches to enhancer annotations (many of which use only histone modification and chromatin accessibility data37), we proposed an ensemble method to accurately pinpoint active enhancers and link them to protein coding genes. It composes three computational pipelines (CASPER, ESCAPE, and JEME) to integrate tens of data sets from six different experimental assays, including ChIP-seq, DNase-seq, STARR-seq (CapSTARR-seq), RNA-seq, ChIA-PET, and Hi-C for higher accuracy. The overall schematic has been summarized into Figure S 33.
[bookmark: _Ref477425688][bookmark: _Ref477425682][bookmark: _Toc479775532][bookmark: _Toc487014798][bookmark: _Toc490126355]Figure S 33 (HL, ) Overall schematic of enhancer and gene linkage
[image: /Users/jingzhang/Downloads/Enhancer_schema.pdf]
For the enhancer prediction part, we integrated prediction results from different methods and data source, as shown in Figure S 34. First, we proposed a computational method, called CASPER, to make enhancer predictions based on pattern recognitions of histone marks ( details in Figure S 35). The upper white panel of Figure S 34 shows an example of the signal tracks (DNase, H3K27ac, H3K4me1 and H3K3me3) of GM12878. Based on these signals and other experiment results, we have a collective data source including enhancers predicted from CASPER and ESCAPE, an enhancer-gene linkage map from JEME and Hi-C, cREs from Phase III encyclopedia and transcription factor (TF) binding sites (middle panel). We take intersections of predicted enhancers from two prediction approaches, as well as with JEME &Hi-C results. The resulting list is further refined by intersecting with cREs from the main encyclopedia paper. In the last step, we pruned the enhancers in the list to trim both ends that are not covered by any transcription factor binding motifs (TFBS). The final list is a set of precisely refined and high-confident enhancers.
[bookmark: _Ref489174764][bookmark: _Toc490126356][image: /Users/jingzhang/Downloads/figure_v3.pdf]Figure S 34. (TL, ) Integrated approach to generate high-confidence enhancers list

[bookmark: _Toc482107506][bookmark: _Toc487014799][bookmark: _Toc490126509] (TL, ) Enhancer prediction Pipeline based on ChromAtin Shape PattErn Recognizer (CASPER)
We first developed a framework to impute enhancer regions across the genome through aggregated signals of epigenetic features. The unprecedented large number of massively parallel reporter assays (MPRA) has demonstrated that regulatory regions are depleted of histone proteins while regions around it tend to contain histone proteins with certain post-translational modifications.38 This characteristic is revealed in many ChIP-seq experiments as enriched peak-trough-peak (double peak) signal at the distal regulatory regions for many activating histone marks. A supervised machine-learning model is well suited to identify this pattern.
For each histone modification, we aggregated the ChIP-seq signals around STARR-seq identified peak regions. The two maxima in each region are aligned, interpolated and smoothened before averaged to generate meta profile. An additional flipping step was applied to maintain the asymmetry of the two maxima since it might be associated with the directionality of transcription. The meta profile is then used to scan the whole genome to find matched patterns through a shape-matching filter. A 10-fold cross-validation is performed to assess the accuracy of prediction through this method. In predicting active STARR-seq peaks, H3K27ac is the most accurate feature for predicting active regulatory regions (AUROC=0.92). Other features including H3K4me1 (AUROC=0.90), H3K4me2 (AUROC=0.85) also achieved high performance.
To achieve higher accuracy, we further developed an ensemble method to combine the normalized pattern-matching result from several different epigenetic marks with linear support vector machine (SVM) (Figure S 35). This includes ChIP-seq signals for H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K9ac and DHS signals associated with active regulatory regions. The ChIP-seq data is available through ENCODE Consortia (https://www.encodeproject.org) and Roadmap Epigenomics (http://www.roadmapepigenomics.org). The integrated model performs better than each of the individual histone marks, and different integration methods perform similarly. We use linear SVM to assemble the signals to form a discriminant function, where the sign of the result value is used to predict whether a specific region is an enhancer. The resultant enhancers have been summarized in Table S 31.
[bookmark: _Ref473797896][bookmark: _Ref473797868][bookmark: _Toc479775578][bookmark: _Toc487014800][bookmark: _Toc490126465]Table S 31 (TL,) Number of enhancers predicted by histone-shape based method
	Cell Type
	GM2878
	HepG2
	K562
	MCF-7

	Number of Enhancers
	45,202
	61,005
	45,801
	59,827




[bookmark: _Ref473798058][bookmark: _Toc479775533][bookmark: _Toc487014801][bookmark: _Toc488066745][bookmark: _Toc490126357]Figure S 35 (TL, ) Schematic of shape-based enhancer prediction method

[bookmark: _Ref474770985][bookmark: _Toc479775534][bookmark: _Toc487014802][bookmark: _Toc488066746][bookmark: _Toc490126358]Figure S 35 (TL, ) Flowchart of capture STARR-seq target region selection procedure


[bookmark: _Toc482107507][bookmark: _Toc487014803][bookmark: _Toc490126510](TL, ) Enhancer prediction by EnhancerS Peak CAlling PipEline from STARR-seq (ESCAPE)
The whole-genome STARR-seq was performed using a protocol conceptually similar to the previously published STARR-seq technique that was done in the Drosophila melanogaster genome.39 The CapSTARR-seq is a variant of STARR-seq technique which combines STARR-seq with genome capturing technology.40 In brief, the genomic DNA from each cell line was fragmented into ~500 bp by sonication and built into plasmid library, which was named as screening library. The screening library was subjected for next generation sequencing. We verified the sequence complexity and genome coverage of screening libraries, which were then transfected into GM12878, K562 or MCF-7 cells by electroporation. After 24 hours of transfection, the plasmid-specific mRNA was purified, reverse transcribed and PCR amplified. The PCR products, which are the so-called STARR-seq libraries, were subjected to sequencing. Both screening library and STARR-seq libraries were sequenced as 100 bp paired-end on the Illumina HiSeq 2500/4000 platforms. The general workflow of the MCF-7 CapSTARR-seq is similar to the whole-genome STARR-seq, however, we captured ~10,000 DNase I hypersensitivity sites (a total length of 9.7 Mb) from fragmented genomic DNA to build the screening library. Compared to the published STARR-seq work, we'd like to note the following innovation and improvement: (1) We significantly increased the complexity of the screening libraries to ensure comprehensive coverage to the human genome; (2) We significantly increased the electroporation scale and efficiency to maximize the size of screening library that got into the cells; (3) We introduced an extra multiplexing step to minimize the bias introduced by PCR duplicates. For the capture based assay for MCF-7 cell line, a total of 10,825 target regions consisting of 9,825 candidate enhancer regions and 1,000 negative control regions were selected tested for regulatory potential. Candidate enhancer regions were selected based on DHS peaks excluding both 1kb upstream and downstream of TSS. Negative control regions were selected from 500 randomly selected regions and 500 non-E2-responsive DHS regions. Details of the selection procedure can be found in Figure S 111. (L. Ma et al for GM12878 and K562 whole-genome STARR-seq; S. Yu et al for MCF-7 CapSTARR-seq, in preparation). Candidate enhancer regions were primed and inserted into 3’ UTR. Schematics of the experimental procedure can be found in Figure S 36.
To uniformly process the data from whole genome and capture-based STARR-seq assays, (TL, )we developed a new analysis pipeline named ESCAPE (Figure S 37). The pipeline is tailored for optimally processing the output from STARR-seq experiments. The output from an STARR-seq experiment is two datasets for each cell line. First is screen library that contains the sequencing of plasmids from which the enrichment is performed. This screen library serves as a control in the STARR-seq analysis. Second is the actual STARR-seq enriched sequencing data that contains the actual enhancer signal. [bookmark: _Ref474771537][bookmark: _Toc479775535][bookmark: _Toc487014804][bookmark: _Toc488066747][bookmark: _Toc490126359]Figure S 36 (TL, ) Capture STARR-seq experiment design

We have removed low-quality reads and mapped them using BWA version 0.7.12.41 We have used the reference genome from 1000 Genomes Project’s decoy genome.42 ESCAPE then removes the reads with mapping quality lower than 20 and removes PCR duplicates and estimates fragment length distribution using cross-correlation between the strands (Figure S 38). Then the STARR-seq signal tracks are generated to perform peak calling. The STARR-seq signal shows lower fold change characteristics compared to ENCODE ChIP-seq datasets (Figure S 38).
[bookmark: _Ref474773053][bookmark: _Ref479770239][bookmark: _Toc479775536][bookmark: _Toc487014805][bookmark: _Toc490126360][image: C:\Users\Arif\Box Sync\Papers\ENCODE_Cancer_Feb_2017\ENCODE_Cancer_EnhancerSeq_Page_2.png]Figure S 38 (TL, ) Schematic of ESCAPE pipeline

For peak calling, ESCAPE uses the following strategy: First, the peak candidates are identified. For the whole genome assay, ESCAPE uses a multiscale decomposition based peak calling strategy.43 For this, we have decomposed the signal using smoothing filters with lengths varying between 100 and 2000 base pairs. The filtering can be summarized with following formula:
                  (3-1)
where  is the signal level at scale decomposition . The smoothing window length is . Then we identified the local minima in the smoothed signal profiles and used these as possible enriched regions. For this, ESCAPE first estimates the derivative at each point: 
                                               (3-2)
where  is the derivative of the smoothed signal . The local extrema are found as the points where the derivative flips its sign:
                                               (3-3)
                                               (3-4)
where  and  are the sets of positions of minima and maxima of , respectively. The scale specific candidate enriched regions of  are identified as the regions between the consecutive minima. The multiscale decomposition approach identifies enriched regions at different length scales that correspond to punctate features like enhancers. Then, ESCAPE computes the fold change on each peak candidate as the ratio of total signal in the STARR-seq signal and screening library signal. We refer to this as :
                                                     (3-5)
where  represents the value of screening library signal profile at position . For capture based assay, ESCAPE uses a more focused analysis to identify candidate peak regions. For each capture region, ESCAPE selects a bins size that balances the peak calling sensitivity and specificity. To set a threshold for the fold change to select candidate peaks, we exchanged screening library and STARR-seq and we computed the fold change on the candidate peaks, which we refer to as :
                                                   (3-6)
These fold change scores serve as a random distribution of fold change scores. We use this distribution for selecting a fold change threshold. For a  threshold fc, we estimated the false discovery rate as the ratio of number of peaks that for which  > fc and the number of peaks for which  > fc. We set the FDR threshold at 0.1% and filtered the peaks that do not satisfy the  threshold selected using this FDR threshold. For capture based assay, ESCAPE uses the candidate enriched regions with top 10%  values.
[bookmark: _Ref474773199][bookmark: _Toc479775537][bookmark: _Toc487014806][bookmark: _Toc490126361][image: NCODE_Cancer_EnhancerSeq_Page_2.png]Figure S 39. (TL, ) Whole genome STARR-seq signal enrichment properties[bookmark: _Toc479775538][bookmark: _Toc487014807][bookmark: _Toc490126362]Figure S 39 (TL, ) Capture STARR-seq experiment properties

[bookmark: _Ref474761747][bookmark: _Toc482107508][bookmark: _Toc487014808][bookmark: _Toc490126511](TL, ) Enhancer Target prediction
 (TL, ) Enhancer Gene linkage prediction using JEME
Enhancer targets were predicted using JEME (Joint Effect of Multiple Enhancers, Cao et al., under review), which involves two main steps (Figure S 311). In the first step, the transcript levels around each transcription start site (TSS) in 49 ENCODE and Roadmap Epigenomics cell lines (Table S 32) were modeled based on histone modification data at nearby enhancers without requiring any known enhancer-target pairs as examples. Specifically, for each enhancer feature  the expression level  of a TSS is modeled as , where the summation is over all enhancers  within 1Mbp from the TSS, and  is the value of feature  of enhancer . The coefficients  of the enhancers are learned by LASSO, which minimizes the regression error over all samples while selecting a small number of enhancers to have non-zero coefficients. The features considered include H3K4me1, H3K27ac and H3K27me3 (A separate model involving only the latter two features was built when constructing the enhancer-target network in MCF-7 since H3K4me1 data were unavailable).
In the second step, single-enhancer error terms were first computed. Specifically, an error term is computed to check how much the expression  of the TSS in sample k can be explained by considering each feature  of each enhancer , i.e.,, where  is the value of feature  of enhancer  in sample  and  and  are the coefficients learnt in the first step. These error terms were then combined with genomic distance and cell-line-specific data (i.e. the levels of histone modifications across the enhancer, the TSS and the window between them in sample) to predict the enhancers that regulate a TSS in a particular cell line using a Random Forest model. The parameter values of these second-level models were learned from published ChIA-PET data from K562 and MCF-7 cell lines. A 5-fold cross-validation procedure was used to evaluate the accuracy of the predicted enhancer-target pairs. The model was then applied to those samples without ChIA-PET data.


[bookmark: _Ref474765422][bookmark: _Toc479775579][bookmark: _Toc487014809][bookmark: _Toc490126466]Table S 32 (TL, ) The 49 ENCODE and Roadmap Epigenomics cell lines used to construct enhancer-target networks by JEME
	Data source
	Cell lines

	ENCODE
	GM12878

	ENCODE
	HepG2

	ENCODE
	K562

	ENCODE
	MCF-7

	ENCODE
	A549

	ENCODE
	HeLa-S3

	ENCODE
	HMEC

	ENCODE
	HSMM

	ENCODE
	HUVEC

	ENCODE
	NHEK

	ENCODE
	NHLF

	REMC
	H1 Cells

	REMC
	H1 BMP4 Derived Mesendoderm Cultured Cells

	REMC
	H1 BMP4 Derived Trophoblast Cultured Cells

	REMC
	H1 Derived Mesenchymal Stem Cells

	REMC
	H1 Derived Neuronal Progenitor Cultured Cells

	REMC
	hESC Derived CD184+ Endoderm Cultured Cells

	REMC
	hESC Derived CD56+ Ectoderm Cultured Cells

	REMC
	hESC Derived CD56+ Mesoderm Cultured Cells

	REMC
	HUES64 Cells

	REMC
	Primary T helper memory cells from peripheral blood 2

	REMC
	Primary T helper naive cells from peripheral blood

	REMC
	Primary T CD8+ naive cells from peripheral blood

	REMC
	Primary hematopoietic stem cells G-CSF-mobilized Female

	REMC
	Foreskin Fibroblast Primary Cells skin01

	REMC
	Foreskin Fibroblast Primary Cells skin02

	REMC
	Foreskin Keratinocyte Primary Cells skin03

	REMC
	Foreskin Melanocyte Primary Cells skin01

	REMC
	Foreskin Melanocyte Primary Cells skin03

	REMC
	Primary mononuclear cells from peripheral blood

	REMC
	Aorta

	REMC
	Liver

	REMC
	Brain Hippocampus Middle

	REMC
	Esophagus

	REMC
	Fetal Intestine Large

	REMC
	Fetal Intestine Small

	REMC
	Pancreatic Islets

	REMC
	Gastric

	REMC
	Left Ventricle

	REMC
	Lung

	REMC
	Ovary

	REMC
	Pancreas

	REMC
	Psoas Muscle

	REMC
	Right Atrium

	REMC
	Right Ventricle

	REMC
	Sigmoid Colon

	REMC
	Small Intestine

	REMC
	Thymus

	REMC
	Spleen




[bookmark: _Ref489273715][bookmark: _Toc490126363][image: ]Figure S 311. (TL, ) Schematic of JEME

(TL, ) Enhancer gene linkage pruning using Hi-C data
Enhancer target predictions are further filtered by using Hi-C data. Contact maps of individual chromosomes (in 5kb bins) for both K562 and GM12878 cell lines were obtained from Rao et al.44MCF-7 contact maps (40kb) were obtained from Barutcu et al.45 Element  in a contact map represents the frequency of interactions between genomic loci  and . For all possible  , we used the tool Fit-Hi-C to estimate the statistical significance of the contact frequency based on the coverage of the loci as well as their genomic distance46 and to keep the interactions with q-value<0.1. We then used the list of significant loci to filter the enhancer-target predictions. Only enhancer-gene pairs in which enhancer and gene are respectively belong to a pair of significantly interacting loci are kept for further analysis.
[bookmark: _Toc482107509][bookmark: _Toc487014811][bookmark: _Toc490126512] (TL, ) Extended gene neighborhood generation
Here we generated the extended gene neighborhoods by combing the coding region with the key non-coding proximal and distal regulatory elements together for a joint mutation burdening quantification. Details of the schematic are given in Figure S 312.
[bookmark: _Ref474773486][bookmark: _Toc479775540][bookmark: _Toc487014812][bookmark: _Toc490126364]Figure S 312 (HL,, shadow figure for Fig. 2 C) Schematic of extended gene definition
[image: ]

[bookmark: _Toc482107526][bookmark: _Toc487014843][bookmark: _Toc490126513] (TL, ) P-value summaries
To check the distribution of P-values vs. the theoretical ones, the Q-Q plots were given in Figure S 313 to Figure S 315.
[bookmark: _Ref474337658][bookmark: _Toc479775551][bookmark: _Toc487014844][bookmark: _Toc490126365][image: /Users/jingzhang/Documents/Manuscript/2016/ENCODECancer/Figure/Feb06/supplementary/CLL.Q-Q.plot.pdf]Figure S 313 (TL, ) Q-Q plots of P-values for CLL.

[bookmark: _Toc479775552][bookmark: _Toc487014845][bookmark: _Toc490126366]Figure S 314 (TL, ) Q-Q plots of P-values for BRCA
[image: /Users/jingzhang/Documents/Manuscript/2016/ENCODECancer/Figure/Feb06/supplementary/BRCA.Q-Q.plot.pdf]
[bookmark: _Ref474341193][bookmark: _Toc479775553][bookmark: _Toc487014846][bookmark: _Toc490126367]Figure S 315 (TL, ) Q-Q plots of P-values for LIHC
[image: /Users/jingzhang/Documents/Manuscript/2016/ENCODECancer/Figure/Feb06/supplementary/LIHC.Q-Q.plot.pdf]
[bookmark: _Toc482107530][bookmark: _Toc487014852][bookmark: _Toc490126514] (TL, ) Details about expression aggregation analysis
[bookmark: _Toc482107531][bookmark: _Toc487014853][bookmark: _Toc490126515](TL, ) Expression pattern of TF and RBPs across cancer types.
We plotted the expression values of TF and RBPs across different cancer types to show the difference in expression in different cancer types.[bookmark: _Toc479775568][bookmark: _Toc487014854][bookmark: _Toc488066769][bookmark: _Toc490126368]Figure S 41 (TL, )  Expression patterns of transcription factors across cancer types



[bookmark: _Toc482107532][bookmark: _Toc487014855][bookmark: _Toc490126516] (TL, ) TCGA expression data processing
All TCGA expression, methylation and mutation data were downloaded from GDAC firehose (http://gdac.broadinstitute.org) with data version of 2016_01_28. For cancer types with normal control samples profiled, the expression values of each gene are substracted with the average value of all normal controls. For cancer types without any normal samples profiled, the expression profile of each gene is transformed to zero mean and unit deviation. The DNA methylation values are also normalized in the same way as RNASeq data, according to the availability of normal control samples in each cancer type. For copy number alteration (CNA), GDAC firehose does not provide standardized data, therefore we downloaded the data matrix from cBioportal with data version of 2016_10_20 (http://www.cbioportal.org).[bookmark: _Ref473810470][bookmark: _Toc479775569][bookmark: _Toc487014856][bookmark: _Toc488066770][bookmark: _Toc490126369]Figure S 42 (TL, )  Schematic of RNA-seq normalization



[bookmark: _Ref479586627][bookmark: _Toc482107533][bookmark: _Toc487014857][bookmark: _Toc490126517] (TL, ) Probabilistic Regulatory network construction from ChIPSeq and eCLIP data
For regulatory analysis, we only considered transcription factors (TF), chromatin regulators (CR), and RNA binding proteins (RBP). In total, there are 978 TF/CR ChIPSeq profiles and 159 RBP eCLIP profiles downloaded from ENCODE DCC as of January 4th, 2017 (https://www.encodeproject.org).
All ChIP-seq and eCLIP peak scores are linearly scaled into range (0,1). The regulatory score between TF peaks and gene promoters were built with “connect_host” commands from RABIT package (Regression Analysis with Background InTegration, http://rabit.dfci.harvard.edu) following an exponential decay model (Figure S 33 a). A regulatory score between RBPs and genes were built through counting eCLIP peaks within gene 3’UTR regions (Figure S 33 b). The following steps were made to construct the network. a) For ChIP-seq data, A regulatory potential score is calculated between each pair of ChIP-seq peak and gene TSS by multiplying the ChIP-seq intensity score with an exponential decay score exp(-A*Distance) of their distance between. The coefficient A is set as log(2)/10K, so that a binding peak 10K bps away from gene TSS will decay by 50%. For each gene TSS, if there are several peaks of a TF nearby, we merged their regulatory potential scores by noisy-or: (b) For eCLIP data, only binding peaks over gene 3’UTR regions were considered for possible regulatory role of transcript stability. For each gene 3’UTR region, if there are several peaks of a RBP, we merged their regulatory potential scores by noisy-or operation. All regulatory potential scores stay within range (0,1).[bookmark: _Ref475016668][bookmark: _Toc479775570][bookmark: _Toc487014858][bookmark: _Toc488066771][bookmark: _Toc490126370]Figure S 43. (TL, ) Regulatory network construction



ChIPSeq and eCLIP profiles were excluded from further analysis if the total sum of regulatory scores across all human genes is less than 100. All general TFs including Pol2 and Pol3 were excluded from further analysis. For certain TF, there exist many ChIP-seq profiles profiled in different conditions. We run a hierarchical clustering among all of its ChIP-seq profiles and cut the hierarchical tree at correlation distance of 0.2. Only profiles in the largest cluster are used for further analysis. The final size of regulatory networks constructed are shown in Table S 41. For each data type, column “Profile” represents the number of experimental profiles (ChIP-seq or eCLIP) that passed our quality controls. Column “Regulator” represents the number of regulators (TF, CR or RBP) analyzed. Column “Condition” represents the number of experimental conditions included in profiles. Column “Target” represents the total number of human genes profiled as targets of analyzed regulators.
[bookmark: _Ref475016936][bookmark: _Toc479775585][bookmark: _Toc487014859][bookmark: _Toc490126467]Table S 41. (TL, ) Statistics of regulatory networks.
	
	Profile
	Regulator
	Condition
	Target

	ChIPSeq
	762
	496
	44
	21,348

	eCLIP
	159
	112
	2
	14,593



To systematically search for TFs that drive tumor-specific gene expression patterns, we used a previously developed integration framework RABIT (Regression Analysis with Background InTegration, http://rabit.dfci.harvard.edu). In the RABIT framework, for a given TF ChIP-seq binding profile, candidate target genes are identified by weighting the number of binding sites by their distance to the transcription start site (TSS) of each gene. For a given eCLIP RBP binding profile, candidate genes are identified through searching the binding sites within the gene 3’UTR regions. RABIT uses three steps to identify TFs (or RBPs) that drive tumor-specific gene expression patterns at both the individual tumor level and the whole cancer type level. In Step one, RABIT screens for TFs that significantly affect the gene expression patterns in each tumor, and selects the most relevant ChIP-seq (or eCLIP) profile if multiple profiles exist for the same regulator. In Step two, RABIT further selected a subset of TFs among those screened in Step one to achieve an optimized model error. In Step three, RABIT investigates how well the public ChIP-seq profiles can capture the active TF targets in each cancer type, and clean up insignificant TFs. The final output of RABIT framework is a set of TFs or RBPs that shape the tumor-specific expression patterns at individual tumor level in each cancer type. 
Based on ENCODE ChIPSeq data and TCGA profiles, we applied RABIT framework to identify TFs whose target genes are differentially regulated in cancer. The fractions of patients with TF targets differentially regulated are shown. Only TFs with targets differentially regulated in over 40% patients in at least two cancer types are included, and results were summarized into Figure S 44. We further extracted those TFs with stronger signals to shown in Figure S 44. Except the well-known MYC targets showing consistent up-regulation pattern across multiple cancer types, we also found novel TFs such as ZNF687 to be strongly up-regulated in breast and prostate cancer (star in Figure S 44). Also, the breast tumors were further classified into subtypes according to PAM50 classification and ER status to show the scores predicted by RABIT for each subtype by boxplots. We further checked in each TCGA cancer type, the fractions of patients detected with different types of ZNF687 alterations (Figure S 45 b).[bookmark: _Ref477428340][bookmark: _Toc479775571][bookmark: _Toc487014860][bookmark: _Toc488066772][bookmark: _Toc490126371]Figure S 44 (TL,, shadow figure for Fig. 4) Heatmap of TF activities in multiple cancer types





[bookmark: _Ref477429042][bookmark: _Toc479775572][bookmark: _Toc487014861][bookmark: _Toc488066773][bookmark: _Toc490126372]Figure S 45 (TL,) The potential role of ZNF687 in cancer

SUB1 was also predicted to be significantly associated with expression changes in multiple tumor types. Here we have listed the full predictions in all cancer types for SUB1. In each cancer type, the association between SUB1 expression and SUB1 regulatory activity predicted by RABIT was tested through t-test in linear regression. Only significant associations above FDR threshold 0.05 are shown in Table S 42. 
For the SUB1 survival plot in Fig. 4, the association between SUB1 regulatory activity computed for each TCGA tumor for each cancer type studied in TCGA and overall survival was tested through two-sided Ward test in Cox-PH regression. In the KM-plot, all patients with SUB1 regulatory activity larger than 2 were categorized as high and the rest were categorized as low.
[bookmark: _Ref477429557][bookmark: _Toc479775586][bookmark: _Toc487014862][bookmark: _Toc490126468]Table S 42 (TL,) Correlation between SUB1 expression and target activity
	Cancer
	Coef
	Stderr
	t-value
	p-value

	THCA
	4.79
	0.46
	10.46
	9.03E-23

	OV
	4.47
	0.61
	7.37
	1.53E-12

	LUAD
	2.87
	0.46
	6.22
	3.25E-09

	PRAD
	2.9
	0.48
	6.02
	4.56E-09

	HNSC
	2.61
	0.46
	5.72
	2.73E-08

	KIRP
	3.6
	0.63
	5.73
	5.66E-08

	GBM
	2.93
	0.54
	5.47
	2.60E-07

	LIHC
	3.22
	0.64
	5.02
	1.18E-06

	BLCA
	3.21
	0.66
	4.83
	3.91E-06

	LUSC
	2.8
	0.66
	4.25
	6.39E-05

	KIRC
	1.91
	0.5
	3.83
	1.62E-04

	STAD
	2.16
	0.57
	3.76
	2.14E-04

	ESCA
	1.67
	0.54
	3.09
	2.34E-03

	UCEC
	1.47
	0.52
	2.84
	5.28E-03

	KICH
	1.64
	0.58
	2.8
	6.71E-03


[bookmark: _Toc482107534][bookmark: _Toc487014863][bookmark: _Toc490126518](TL,) Details about TF network rewiring analysis
[bookmark: _Toc482107511][bookmark: _Toc487014814][bookmark: _Toc490126519](TL, ) TF network
We defined the TF network directly from the TF-gene interactions based on ENCODE uniformly processed ChIP-seq peak calls. We first defined TF-gene regulatory network in each cell type by searching for TF to gene linkages based on their proximities to the TSS. In addition, we also used target identification from profiles (TIP) method that quantitatively measures the regulatory relationships between TFs and target genes to define a subset of the full TF-gene network.47 We also provide a more generalized network by reconciling networks from multiple cancer types and applied it in a pan-cancer analysis. All networks were summarized in the supplementary datasheet. For more details, please refer to the section 5.3.2 S. 
[bookmark: _Toc482107512][bookmark: _Toc487014815][bookmark: _Toc490126520](TL, ) RBP network
We defined the RBP network based on the RBP-gene interactions from eCLIP peak calls. eCLIP peak scores between RBPs and genes were built through counting eCLIP peaks within gene’s 3’UTR regions and then linearly scaled into range (0,1). For more details, please refer to the section 4.4 S. To provide a strict and lenient RBP network, we use 0.9 and 0.1 as the threshold for interaction cutoffs. RBP networks are summerized in the supplementary datasheet.	Comment by Lee, Donghoon: This links to section S4.3. I am not sure how to modify the cross-reference.
[bookmark: _Toc482107513][bookmark: _Toc487014816][bookmark: _Toc490126521] (TL, ) Reconcile with the main ENCODE encyclopedia
Both promoter and enhancer annotations from EN-CODEC were carefully consolidated with the main ENCODE Encyclopedia resources. The ENCODE Encyclopedia comprises of three levels, two integrative levels of annotations and the ground level raw data. The ground level includes peaks and quantifications produced by uniform processing pipelines for individual data types. The integrative level contains annotations produced by integrating multiple data types. The core of the integrative level is the Registry of candidate Regulatory Elements (cREs). The registry contains approximately ~1.31M human cREs and each cRE has a cell-type non-specific accession number, which then can be browsed from SCREEN (Search Candidate Regulatory Elements by ENCODE, http://screen.umassmed.edu/).
Annotations from EN-CODEC were merged against the Registry of candidate Regulatory Elements (cREs). We assigned cell type non-specific cRE accession numbers to ESCAPE and CASPER integrated enhancer annotations when the region had more than 1bp overlap. When there were more than one accession numbers associated with the annotation, we assigned multiple accession numbers to the element. Overall, there was 99% overlap between integrated enhancer annotations and cREs with each element being mapped to 2.5 cRE accessions on average.
For cases without an overlap, we assigned special accession numbers EH37EXXXXXXX-C where XXXXXXX are replaced with numbers starting from 0000001.
To access the cRE using accession number, one can use the URL http://screen.umassmed.edu/search/?q={accession}&assembly=hg19# where {accession} is replaced with the cRE accession number. From SCREEN, one can look up H3K4me3, H3K27ac, CTCF, and DNase Z-scores and signal profiles across all available ENCODE cell types.
[bookmark: _Toc482107535][bookmark: _Toc487014864][bookmark: _Toc490126522] (TL,) Rewiring analysis based on direct counts
[bookmark: _Toc482107536][bookmark: _Toc487014865][bookmark: _Toc490126523](HL,)TF-gene linkage
We evaluated the rewiring of TF to gene linkages between normal and cancerous cells. To define TF rewiring between cell types, we first defined TF-gene regulatory network in each cell type using simple count based target gene linkage. We used two different methods that examine TF to gene linkages based on their proximities to the TSS. For the TSS-based method, we simply used 2,500bp upstream and downstream of transcription start site (TSS) based on Gencode v19 annotation as a boundary for the proximal regulatory region. On average, 33.5% of TF ChIP-seq peaks fell into promoter region. We defined a target gene linkage if TF ChIP-seq peak was found within the boundary. However, we discovered, in Gencode annotation, there were numbers of genes that have more than 50 alternative TSS, which gave these genes unfair advantages of having more target gene linkages than others since their proximal regulatory regions can span up to 250kbp. Therefore, we selected one canonical TSS for each gene based on the total number of aggregated ENCODE TF ChIP-seq peaks. While this method is far from perfect, we believe this is the best method to capture the high-level TF network rewiring and quantify epigenetics changes around TSS while minimizing artifacts when counting all TSSs from all possible alternative transcripts.
In addition to TSS-based TF-gene linkages, we used target identification from profiles (TIP) method that quantitatively measures the regulatory relationships between TFs and target genes to define a subset of the full TF-gene network. For each TF, TIP model builds a characteristic, averaged profile of binding around the TSS and then uses this to weight the sites associated with a given gene, providing a continuous-valued 'regulatory' score relating each TF and potential target.47 We used false discovery rate of 0.1 for cutoff. Since TIP uses narrower promoter definition than TSS-based method, we defined the TIP-based network as a subnetwork of the TSS-based network.
[bookmark: _Ref479587112][bookmark: _Toc482107537][bookmark: _Toc487014866][bookmark: _Toc490126524](HL,) Full regulatory network, merged network, and network rewiring
Both promoter-based linkages and enhancer target based linkages were merged into one to build a complete TF-gene network. For more information about enhancer target based linkages, please refer to section 3.2.3 S. Two versions of full regulatory networks were constructed; one larger network by concatenating TSS-based network and enhancer-based network and another subnetwork by concatenating TIP-based network and enhancer-based network. In addition, we built a merged network by combining all available ENCODE tissue types.
Rewiring of edges between TF and target genes were compared in normal and tumor cells as shown in Figure S 51. If a target gene linkage was found in normal but lost in tumor, the edge was marked as loss edge. Similarly, if a target gene linkage was found only in tumor, it was labeled gain edge, and for edges found in both, they were labeled common or retained edges
[bookmark: _Toc482107538][bookmark: _Toc487014867][bookmark: _Toc490126525](TL,) Rewiring score
To quantify rewiring events, we first calculated rewiring score for each regulators (TFs). The fraction of the number of gain, loss, and common edges to the number of fully connected network edges, where all available TF nodes are fully connected with all available gene targets in the whole network was used to calculate the raw rewiring score.
[bookmark: _Ref474761791][bookmark: _Toc479775554][bookmark: _Toc487014868][bookmark: _Toc488066774][bookmark: _Toc490126373]Figure S 51. (HL,) Network rewiring schematics
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The rewiring score, rScore, after taking normalization over the maximum rScore, was used to rank the TF from the gainer to loser.
[bookmark: _Toc482107539][bookmark: _Toc487014869][bookmark: _Toc490126526](TL,) Clustering of rewired TFs
Based on the fraction of gained, lost, and retained edges with respect to the total number of edges for each TF, rewired TFs were clustered into three groups using Kmeans clustering. Hartigan-Wong algorithm with 10 iterations were used a K-means algorithm by Hartigan.53 Figure S 52 shows the clustering result for rewired TFs between K562 and GM12878. NFE2 and RCOR1 were identified as one of the strongest members of the gained group, CTCF was identified as a member of the common group, and YBX1 was identified as a member of loss group.
[bookmark: _Ref474761993][bookmark: _Toc479775555][bookmark: _Toc487014870][bookmark: _Toc490126374][image: ../../../../Downloads/image.png]Figure S 52 (TL,) Kmeans clustering of rewired TFs in K562 and GM12878


[bookmark: _Toc482107540][bookmark: _Toc487014871][bookmark: _Toc490126527] (TL,) Rewiring analysis based on mixed membership algorithm 
We used mixed membership algorithm to investigate the rewiring changes between GM12878 and K562 cell lines (Figure S 53). TF-target matrix (M x V) is converted from enhancer and TSS regulatory network, where M is the number of TF and V is the number of unique target genes for all TFs. Each row represents a target gene of a TF i=1,2,…, M. The regulatory pattern of each TF is comprised of K latent communities. Each community includes contributions from N target gene and N varies for different TF.
The target gene of TF  and  means target,  means non-target. The observation denotes TF, target gene  with status .  Similarly  is the community distribution of each target gene  for TF  with status .  denotes the probability of target gene  belong community , which is parameter of multinomial distribution.  each and denote the distribution of communities for TF . , where  is the super-parameter of .
When inferring the latent gene community model, we are most interested in the communities’ parameter , the Dirichlet parameter  and the latent community distribution of TF. So, the key is to find the posterior distribution of latent variables.
Variational EM algorithm (implemented using mixedMem R package) is used to infer the  and  as described in Blei et al54 However, computational benefits of EM lead to optimization uncertain and make it easily converge to local maxima. We have no prior knowledge for the  and , which is impossible to use near plausible value to find a reasonable optimum. To hack this, we repeat multiple times (100) and use the median of rewiring changes from all the non-early stops simulation to represent the most optimal regulatory changes of TF. One example of the  distribution was given in Figure S 44.[bookmark: _Ref473799936][bookmark: _Toc479775556][bookmark: _Toc487014872][bookmark: _Toc488066776][bookmark: _Toc490126375]Figure S 53 (TL,) Schematic of gene community based rewiring analysis

[image: /Users/jz/Downloads/enhtss.xiv/enhtss.122.dsbin.txt_1__k4_v1_dbernoulli_diffclass4tf.pdf]
[bookmark: _Ref477277332][bookmark: _Toc479775557][bookmark: _Toc487014873][bookmark: _Toc488066777][bookmark: _Toc490126376]Figure S 54. (TL,) Example of  distribution difference in tumor and normal cell lines

The rewiring of TF regulation is defined by the changes of distribution in K gene communities using , where  is the distribution of communities for TF 

[bookmark: _Toc482107541][bookmark: _Toc487014874][bookmark: _Toc490126528] (TL,) Rewiring analysis associated with H1-hESC 
Rewired edges of tumor-normal TF network were compared to H1-hESC TF network to evaluate if the rewiring is in the direction favoring toward or moving away from stem cell-like transformation. In doing so, the target genes of gain and loss edges were sub-divided into target genes in the same direction as H1 or not (Figure S 55). 
[bookmark: _Ref479773990][bookmark: _Toc479775558][bookmark: _Toc487014875][bookmark: _Toc490126377]Figure S 55 (TL,) Comparison of rewiring direction with respect to H1-hESC
[image: ]
For K562-GM12878 network as an example, there were 25 TFs that were common among K562, GM12878, and H1-hESC. The following table (Table S 51) summarizes the rewired edges target genes in the same direction and overall evaluation of whether the rewiring is resembling H1 or not. About one third of MXI1 edges were rewiring in the same direction of H1, while rewired edges of REST were the most distant from H1.
[bookmark: _Ref479774127][bookmark: _Toc479775583][bookmark: _Toc487014876][bookmark: _Toc490126469]Table S 51 (TL,) Comparison of rewired edges between K562-GM12878 network with H1-hESC
	TF
	Toward H1 direction
	Against H1 direction
	Overall

	MXI1
	2478
	1033
	1445

	ZNF143
	2491
	1131
	1360

	CHD2
	2015
	891
	1124

	SUZ12
	1325
	232
	1093

	SRF
	1541
	451
	1090

	RFX5
	1353
	360
	993

	YY1
	1914
	1023
	891

	USF2
	1157
	682
	475

	SIX5
	716
	249
	467

	RAD21
	1193
	1019
	174

	CTCF
	1221
	1060
	161

	EZH2
	337
	335
	2

	USF1
	1053
	1058
	-5

	SP1
	1249
	1475
	-226

	MAFK
	663
	1724
	-1061

	CHD1
	982
	2147
	-1165

	ATF3
	883
	2243
	-1360

	EGR1
	985
	2418
	-1433

	CEBPB
	1167
	2660
	-1493

	GABPA
	930
	2535
	-1605

	MAX
	1055
	2707
	-1652

	JUND
	1248
	4028
	-2780

	MYC
	917
	3788
	-2871

	NRF1
	313
	3978
	-3665

	REST
	832
	4868
	-4036


[bookmark: _Toc490126529](TL,) Rewiring of TF across tumor types
Rewiring of several key TFs in leukemia (K562) were evaluated across lung (A549), liver (HepG2), and breast (MCF-7) cancer models.  In some extreme cases, the overall direction of rewiring was reversed. For BHLHE40 in CML as an example, the direction of rewiring is mostly towards gaining patterns, whereas in lung adenocarcinoma, the edges were dominantly lost. For both JUND and MYC, the pattern of gain edges were consistently observed in liver or breast cancer samples.

[bookmark: _Toc490126378]Figure S 56 (TL,) Rewiring of TF across tumor types
[image: /Users/Donghoon/Google Drive/Gerstein/ENCODE/EC_FIGURES/EC_SF_rewiring_crossCancer.pdf]

[bookmark: _Toc482107542][bookmark: _Toc487014877][bookmark: _Toc490126530] (TL,) Patient survival analysis based on TF activities
To prioritize TF based on clinical values, patient survival analysis was performed on activity scores of TFs. This section was largely divided into two sections: first, we systemically surveyed TF activities on AML datasets and second, we focused on a specific TF’s activity (MYC) to look at its target genes in both cancer and normal counterpart. TFs were prioritized based on their prognostic potential by performing survival analysis using TF activity scores as the primary predictor. This section is comprised of two primary analyses: 1. We systematically interrogated TF activity in several AML datasets and 2. Perform detailed analysis of MYC activity using MYC target genes specific to either cancer or non-cancer cell lines derived from the same tissue.
[bookmark: _Toc482107543][bookmark: _Toc487014878][bookmark: _Toc490126531](TL,) Systematic survival analysis of TFs on AML cohorts
In this analysis, we systematically calculated TF activity in 6 different AML datasets using the ENCODE ChIP-seq data. 292 ChIP-seq experiments from K562 (231 TFs) and 120 ChIP-seq experiments from GM12878 (101 TFs) were used to generate TF binding weight profiles from the TIP output. Specifically, the binding score of a TF to each gene (outputted by the TIP algorithm) was z-transformed and a one-sided z-test was carried out to generate p-values corresponding to each TF-gene binding interaction. P-values were -log10-transformed and trimmed at -10 or 10. Weight profiles were re-scaled by subtracting each value in a TF weight profile by the minimum and dividing by the range so that all values fell between 0 and 1. These weight profiles were used as input into the BASE algorithm.55 The BASE algorithm takes in a single sorted (decreasing) patient’s gene expression profile and calculates a running sum statistic by moving the down the profile and weighting each gene by its corresponding weight taken from the TF weight profile. This generates a foreground function. Similarly, a background function can be generated by repeating the process by multiplying by 1-weight instead of multiplying the gene by its weight. The maximum deviation between these two functions represents the TF activity score. This score is high when the highly-expressed genes in a patient’s profile also tend to be bound tightly by the TF (as determined by the TF weight profile). It calculates TF activity scores for AML patient samples derived from the following gene expression datasets.
[bookmark: _Toc479775584][bookmark: _Toc487014879][bookmark: _Toc490126470]Table S 52 (TL,) Gene expression dataset of AML patients
	Source
	Accession
	Author
	Cohort

	GEO
	GSE37642 (GPL_96)
	Herold
	n=422

	NCI caArray
	willm-0019
	Wilson
	n=170

	GEO
	GSE14468
	Wouters
	n=526



Survival analysis was performed for each TF to identify those that were significantly associated with AML patient mortality. Namely, the TF’s iRASs (activity scores) across patient samples were used as the independent variable in a Cox proportional hazards model. A hazard ratio <1 indicates that a TF’s activity is associated with favorable prognosis and a hazard ratio of >1 indicates that a TF’s activity is associated with unfavorable prognosis in AML patient samples. Since a separate model was fit to each TF’s iRASs, p-values corresponding to the hazard ratios were adjusted for multiple hypothesis testing by using the Benjamini-Hochberg correction procedure. 
In the results, we report the HR, P-value, and Adjusted P-value for each TF and their association with patient survival in each of the 3 AML gene expression datasets. The column labeled “number_datasets_significant_P005” indicates the number of datasets in which the TF’s activity was observed to be significantly associated with AML patient prognosis at P<0.05. In particular, EZH2, STAT1, and NR2C2 TFs were found to be significantly associated with prognosis in all 3 datasets. 15 other TFs were found to be significant in 2 datasets. Notably, IKZF1, a well-known oncogene in hematopoetic and lumphoid cancers, was found to be significantly associated with prognosis in 2 atasets with p-value of 9.7E-4 and 1.9E-2 in Herold and Wouters set, respectively. For more details, please refer to the supplementary datasheet for a complete list of TFs associated with patient prognosis.
[bookmark: _Toc482107544][bookmark: _Toc487014880][bookmark: _Toc490126532](HL,) TF specific survival analysis
For this analysis, we focused on the METABRIC breast cancer cohort56, which contains comprehensive survival information and gene expression profiles for 2,509 breast cancer patients. Using this dataset, we investigated the association between TF activity and disease-specific survival (DSS). Presumably, DSS provides stronger evidence compared to overall survival (OS) when evaluating whether some variable (TF activity) is associated with mortality from the actual disease of interest. In some cases, cancer patients die from some other co-morbid condition or the cause of death is unclear. Unlike OS where any deaths are considered “events” in a survival analysis, DSS considers only deaths caused by cancer. In most cases, evaluating overall survival provides greater statistical power but may not be as accurate as disease-specific survival. Since the METABRIC dataset provides detailed survival information which includes DSS, we used this metric over OS. Please note that all target genes were defined as those with p<0.01 from the TF TIP profile.
[bookmark: _Toc482107545][bookmark: _Toc487014881][bookmark: _Toc490126533] (TL,) Survival analysis of MYC in breast cancer cohort:
 (TL,) TF-level analysis (cell-line specific):
To determine if MYC activity was associated with breast cancer patients’ survival, we utilized three separate MYC target gene sets to interrogate patient gene expression profiles derived from the METABRIC breast cancer gene expression compendia (n=1992). 
First, based on ChIP-seq signal profiles, target genes of MYC were grouped into three categories; MCF-7 specific, MCF-10A specific, and common targets of the two cell lines. MYC activity as well as target genes from each of the three gene categories were calculated in each METABRIC breast cancer patient sample using BASE algorithm \cite{ PMID:23885756 }. Second, we extracted time-to-event (death from breast cancer) information from the patients’ metadata and correlated disease-specific patient survival with MYC activity score using univariate Cox regression models (proportional hazards). 
An individual regression model was built for each MYC activity score corresponding to the three different gene sets. A positive association indicated that patients with high MYC activity exhibited longer survival compared to patients with low MYC activity and coversely, a negative association indicated that high MYC activity is associated with shorter patient survival time.

[bookmark: _Toc479775559][bookmark: _Toc487014882][bookmark: _Toc490126379]Figure S 57 (TL,) Survival analysis on MYC’s common target genes between MCF-7 and MCF-10A
[image: /Users/Donghoon/Google Drive/Gerstein/ENCODE/170208_CC_Matt_survival_results_gerstein/plot_redo/METABRIC_MCF-7_MCF-10A_MYC_KM_plot.pdf]
[bookmark: _Toc479775560][bookmark: _Toc487014883][bookmark: _Toc490126380][image: /Users/Donghoon/Google Drive/Gerstein/ENCODE/170208_CC_Matt_survival_results_gerstein/plot_redo/METABRIC_MCF-7_MYC_KM_plot.pdf]Figure S 58 (TL,) Survival analysis on MYC’s MCF-7 specific target genes


[bookmark: _Toc479775561][bookmark: _Toc487014884][bookmark: _Toc490126381]Figure S 59 (TL,)Survival analysis on MYC’s MCF-10A specific target genes
[image: /Users/Donghoon/Google Drive/Gerstein/ENCODE/170208_CC_Matt_survival_results_gerstein/plot_redo/METABRIC_MCF-10A_MYC_KM_plot.pdf][bookmark: _Toc479775562][bookmark: _Toc487014885][bookmark: _Toc488066782][bookmark: _Toc490126382]Figure S 59 (TL,) Survival analysis on MYC’s target gene expression levels in three replicates
[image: /Users/Donghoon/Google Drive/Gerstein/ENCODE/170208_CC_Matt_survival_results_gerstein/plot_redo/METABRIC_MCF.7_MYC_NA_uta_ENCSR000DMJ_KM.pdf][image: /Users/Donghoon/Google Drive/Gerstein/ENCODE/170208_CC_Matt_survival_results_gerstein/plot_redo/METABRIC_MCF.7_MYC_NA_uta_ENCSR000DMM_KM.pdf]
[image: /Users/Donghoon/Google Drive/Gerstein/ENCODE/170208_CC_Matt_survival_results_gerstein/plot_redo/METABRIC_MCF.7_MYC_NA_uta_ENCSR000DMQ_KM.pdf]

(HL,) TF-level analysis (MCF-7)
MYC activity survival analysis was also carried out focusing on the entire MYC binding profile in MCF-7 cell lines. Briefly, the p-values outputted by the TIP algorithm were transformed and used as weights as performed in the AML TF activity analysis. MYC activity levels were then used as the independent variable in a Cox regression model. This analysis was performed for three ENCODE replicates.
[bookmark: _Toc482107546][bookmark: _Toc487014886][bookmark: _Toc490126534](TL,) Association of MYC and patient severity in chronic myeloid leukemia
(TL,) TF-level analysis
For the CML analysis, target genes of MYC were categorized as K562-specific or GM12878-specific.  MYC activity was calculated in each CML patient sample belonging to the GSE4170 dataset using target genes from each of the three gene categories. MYC activity scores were then compared between three different severity levels (chronic, accelerated phase, and blast crisis) using ANOVA.
[bookmark: _Toc479775563][bookmark: _Toc487014887][bookmark: _Toc488066783][bookmark: _Toc490126383]Figure S 510 . (TL,) MYC activity scores were then compared between three different severity levels using ANOVA

[bookmark: _Toc482107547][bookmark: _Toc487014888][bookmark: _Toc490126535] (TL,) Target gene analysis
To evaluate the effect and extent of TF-gene network rewiring, target gene’s expression and epigenetic changes were evaluated for genes that have gained and lost edges between normal and tumor samples. For expression, we used RESM quantification of ENCODE DCC uniformly processed long polyA RNA-seq and averaged TPM values over all available replicates. For DNase-seq, histone ChIP-seq, and methylation features, we further processed from fold enrichment signal tracks as follows.  We averaged the fold enrichment signal across 200bp upstream and downstream of the unique TSS, the same canonical TSS site used define proximal TF-gene linkage. For all expression, DNase-seq, histone ChIP-seq, and methylation feature was expressed as a log2 ratio between tumor to normal samples. To avoid division by zero error, a pseudo-count of 0.0001 was added to each feature.
[bookmark: _Toc482107548][bookmark: _Toc487014889][bookmark: _Toc490126536] (TL, ) Co-binding analysis
A score for each transcription factor pair (i,j) is calculated based on the intersection of their binding sites. Let TFi has ni binding sites, each with a length of li,t . Using the intersect function of bedtools, we found ni,j intersecting binding sites, each with length lk between TFi and TFj and calculated the co-binding score between TFi and and TFj as;TFi
TFj
[bookmark: _Toc479775564][bookmark: _Toc487014890][bookmark: _Toc488066784][bookmark: _Toc490126384]Figure S 511. (TL, ) Illustration of the binding sites and their length on both TFi and TFj. Red and blue rectangles denote the binding sites of TFi and TFj, respectively. Blue shades depict the intersection of binding sites of TFi and TFj. 

                                                        (3-2)  

Please note that c(i,j)≠c(j,i), as the denominator is the total length of binding sites of TFi. We calculated the co-binding scores for each transcription factor pair in both GM12878 and K562 cell lines. We then calculated the differences between the cell lines by subtracting the co-binding scores. 
We found that among all common transcription factors of GM12878 and K562 cell lines, ZNF274 has a larger binding score in K562 cell line compared to in GM12878 cell line. ZNF274 has the highest difference in the co-binding score with 54 out of 68 transcription factor partners, with an average difference of 0.61. The average difference for co-binding scores for all transcription factor pairs is 0.02. This shows that co-binding of ZNF274 increased significantly in K562 cell lines.              
[bookmark: _Toc479775565][bookmark: _Toc487014891][bookmark: _Toc490126385]Figure S 513 (TL, ) Co-binding scores c(i,j) of the transcription factors both in GM12878 and K562 cell lines. Rows represent TFi  and columns represent TFj. Red color indicates high co-binding score, where blue color indicates low co-binding scores.
[image: Macintosh HD:Users:gamzegursoy:Desktop:Screen Shot 2017-02-16 at 1.02.42 PM.png]
[bookmark: _Toc479775566][bookmark: _Toc487014892][bookmark: _Toc490126386][image: Macintosh HD:Users:gamzegursoy:Desktop:Screen Shot 2017-02-16 at 1.12.08 PM.png]Figure S 514. (TL, ) Difference of co-binding scores c(i,j) of the transcription factors between K562 and GM12878 cell lines. Rows represent TFi  and columns represent TFj. ZNF274, which has consistently higher co-binding scores with other TFs in K562 cell line compared to GM12878 is highlighted.
[bookmark: _Toc482107549][bookmark: _Toc487014893][bookmark: _Toc490126537] (TL,) Variant prioritization
The description of the regulatory network and mutation recurrence analysis provide a way to prioritize key genomic features associated with cancer. Here we proposed a step-wise scheme to prioritize the SNVs for small scale validations. First, we start by searching for key regulators that frequently rewired, locate in network hubs or on top of the network hierarchy, or significantly drive expression changes in cancer. We then prioritize functional elements that are associated with top regulators, undergo large regulatory and chromatin changes, or (most importantly) are highly mutated in tumors. Finally, on a nucleotide level, we can pinpoint impactful SNVs for small-scale functional characterization by their ability to disrupt or create specific binding sites, or which occur in positions of particularly high conservation or chromatin changes.
[bookmark: _Toc482107550][bookmark: _Toc487014894][bookmark: _Toc490126538](TL, ) Motif analysis using MotifTools (D-score)
To prioritize the variant within high-confidence enhancer sets, we first searched for recurrent non-coding variants or multiple non-coding variants occurring in a known TF motif. However, we could not find any somatic variants that are either recurrent or recurrent within a TF motif (Figure S 61).
[bookmark: _Ref473800153][bookmark: _Toc479775573][bookmark: _Toc487014895][bookmark: _Toc490126387]Figure S 61 (TL, ) Variant prioritization scheme based on STARR-seq

[image: ]
Alternatively, we prioritized somatic variants based on its motif breaking power, or D-score, where D stands for disruptive-ness or deleterious-ness. Motif disruption score was calculated based on the difference between sequence specificities of reference to alternative sequence.


                                (6-1)
= 

A positive D-score denotes a variant that decreases the likelihood that a TF will bind the motif (motif-break), and negative D-score denotes a variant that increases the likelihood that a TF to bind the motif (motif-gain). For assessing D-score, uniform nucleotide background was assumed (A:C:G:T=1:1:1:1), and the p-value threshold of 1e-3 was used. For position weight matrix (PWM), JASPAR TF profiles (2016 core non-redundant vertebrates, http://jaspar.genereg.net/html/DOWNLOAD/JASPAR_CORE/pfm/nonredundant/pfm_vertebrates.txt) were used, and variants that affect multiple TF binding profiles were averaged over all D-scores. More details about the tool and code can be found at https://github.com/hoondy/MotifTools.
[bookmark: _1mpcxy2mivd3][bookmark: _hkwwpyfenknn][bookmark: gqbdnixgjocp]Somatic variants were further prioritized using conservation score (high positive GERP score).
[image: ][bookmark: _Toc479775574][bookmark: _Toc487014896][bookmark: _Toc490126388]Figure S 62 (TL, ) Schematic of Motiftool output

	SAMPLE
	CHR
	POS
	REF
	ALT
	TEST_START
	TEST_END
	NOTE

	Sample01
	chr16
	85604242
	C
	G
	85603992
	85604491
	issue with plasmid isolation

	Sample02
	chr21
	27541982
	G
	A
	27541732
	27542231
	

	Sample03
	chr8
	21541726
	A
	G
	21541476
	21541975
	issue with plasmid isolation

	Sample04
	chr17
	38474408
	C
	G
	38474158
	38474657
	

	Sample05
	chr20
	43971343
	G
	C
	43971093
	43971592
	

	Sample06
	chr7
	1598567
	C
	T
	1598317
	1598816
	

	Sample07
	chr20
	58563412
	C
	T
	58563162
	58563661
	

	Sample08
	chr7
	150759483
	C
	G
	150759233
	150759732
	

	Sample09
	chr7
	5596005
	T
	G
	5595755
	5596254
	

	Sample10
	chr6
	134700462
	G
	T
	134700212
	134700711
	



[bookmark: _Toc479775587][bookmark: _Toc487014897][bookmark: _Toc490126471]Table S 61(TL,) Validated mutations in MCF-7 and luciferase assay tested region


[bookmark: _Toc482107551][bookmark: _Toc487014898][bookmark: _Toc490126539] (TL,) Experiment Details about SNV validation
Each regulatory region (both wild and mutant types) was separately synthesized. Enhancer regions were designed in such a fashion where based on the candidate SNV site, 250bp upstream and 250bp downstream was included for each enhancer region. These regions were then cloned into the pGL4.23[luc2/minP] vector (Promega, Cat# E841A). Each candidate region was placed upstream of the minP promoter to determine the effect of each putative enhancer region on luciferase expression. 100ng of each candidate construct and 100ng of Nano-luc control was co-transfected into MCF-7 cells (5,000 cells per well in DMEM media containing 10% FBS and 1% Penicillin-Streptomycin antibiotic) using the Lipofectamine 3000 reagent (Thermo Fisher, Cat# L3000001) according to manufacturer’s instructions. Cells were incubated for 48 hrs before reading the luciferase signal using Promega Nano-Glo luciferase kit (Promega, Cat# N1521) according to manufacturer’s instructions.

[image: /Users/jingzhang/Documents/Manuscript/2016/ENCODECancer/Figure/Feb06/supplementary/Luciferase schematic.pdf][bookmark: _Toc479775575][bookmark: _Toc487014899][bookmark: _Toc490126389]Figure S 63. (TL, Schematic of SNV validation 

The raw data of the experiment have been listed in Table S 62 and Table S 63.
[bookmark: _Ref474765021][bookmark: _Toc479775588][bookmark: _Toc487014900][bookmark: _Toc490126472]Table S 62. (TL,) Details of SNV replication technical replicate 1
	
	Normal Rep 1
	Normal Rep 2
	Normal Rep 3
	Mutant Rep 1
	Mutant Rep 2
	Mutant Rep 3

	Background
	831
	388
	416
	2623
	1296
	1065

	2
	7698
	5193
	6893
	161889
	132344
	179837

	4
	587863
	778963
	603304
	465322
	408546
	460135

	5
	10281
	16083
	17192
	40103
	63770
	48912

	6
	39090
	20019
	23419
	7614
	6760
	4959

	7
	15039
	18873
	13468
	57945
	47666
	59931

	8
	117702
	115358
	150245
	189131
	295907
	247173

	9
	26775
	30804
	34042
	58424
	104433
	27587

	10
	21705
	22249
	17162
	107077
	31005
	76174

	Empty
	61423
	87225
	46835
	774
	789
	1111

	Background
	562
	1461
	748
	4582
	967
	473

	Background
	238
	500
	395
	857
	635
	921




[bookmark: _Ref474765030][bookmark: _Toc479775589][bookmark: _Toc487014901][bookmark: _Toc490126473]Table S 63 (TL,) Details of SNV replication technical replicate 2
	
	Mutant Rep 1
	Mutant Rep 2
	Mutant Rep 3
	Normal Rep 1
	Normal Rep 2
	Normal Rep 3

	Background
	11852
	13823
	14402
	15111
	13245
	9858

	2
	1922952
	1854116
	1882977
	2326518
	1637299
	1927383

	4
	1969924
	1947206
	2088052
	1606057
	1133593
	1246025

	5
	1396532
	1408962
	1879464
	2110566
	1890350
	1594218

	6
	1756884
	1798060
	1859447
	1825321
	1597249
	1658538

	7
	1884514
	2197614
	2393865
	2124074
	1385636
	1888050

	8
	1695866
	1711603
	1488882
	2405882
	1487463
	1516048

	9
	1715909
	1943040
	1916404
	2058790
	1385673
	1241105

	10
	1771446
	1498757
	2030086
	1736458
	985080
	1237019

	Empty
	2575562
	2699389
	2494020
	22537
	10758
	6625

	Background
	12437
	14855
	12235
	7338
	4629
	2613

	Background
	3835
	4041
	4182
	2990
	1698
	1009



[bookmark: _Toc490126540](TL,) Details about siRNA RNA-Seq experiments
MCF-7 cells were seeded at an initial density of 2 x 105 cells at basal media conditions (DMEM media supplemented with 10% FBS and 1% penicillin/streptomycin). After 24 hours, cells were transfected with siRNA control (Santa Cruz, Cat#: sc-37007) or siRNA targeting MYC (Santa Cruz, Cat# sc-29226) using the Viafect reagent (Promega, Cat#: E4981) in biological triplicate according to manufacturer’s instructions. Cells were harvested 72 hours later using Trizol Reagent (Thermo Fisher, Cat#: 15596026) and RNA was isolated using the Direct-zol RNA Miniprep Plus kit (Zymo Research, Cat#: R2072). RNA-seq libraries were prepared using the TruSeq Stranded Total RNA Library Prep Kit (Illumina, Cat#: RS-122-2201). RNA-seq library quality was assessed using Bioanalyzer and Qubit analysis before subjected to deep sequencing on the HiSeq 4000.
We used RNA-STAR (version 2.3.0) to map the reads to hg19 genome with gencode v19 as annotation input for junction mapping. Defaut settings were used for the read mapping. After mapping, we used Cufflinks (version 2.0.2) for the gene and transcription level quantifications for both knockdown and control experiments.


[bookmark: _Toc487014902][bookmark: _Toc488652832][bookmark: _Toc490126541](TL, ) EN-CODEC resource accessibility 

All of EN-CODEC resources are available to download as flat files or tarballs from our website http://encodec.encodeproject.org. All resource files follow the uniform naming convention as follows:

EC-XXX-YYY.fileDescription

[bookmark: _Toc487211016][bookmark: _Toc490126474]Table S 71. (TL, ) Naming convention - primary category
	XXX
	description

	001
	Data Provision

	002
	Annotation

	003
	Processed Data (Analysis)

	004
	Experimental Validation

	005
	Software



[bookmark: _Toc487211017][bookmark: _Toc490126475]Table S 72 (TL, ) Naming convention - secondary category
	YYY
	description

	MET
	Meta information (data summary)

	CRE
	Cis-regulatory elements (enhancer, promoter)

	DBP
	DNA-binding proteins (TF, histone) related

	RBP
	RNA-binding proteins (RBP) related

	BMR
	Background mutatation rate (BMR) related

	NET
	Network related

	EXT
	Extended gene

	COH
	Cohort

	ETC
	Others



[bookmark: _Toc490126542](TL, ) Data Provision
[bookmark: _Toc490126543](TL, ) Deduplicated ENCODE assays
List of all EN-CODEC experiments (inc. external data)
· EC-001-MET.encodec_all_experiments.csv
TF ChIP-seq data summary (Oct 2017 freeze)
· EC-001-MET.encodec_Oct17_TF_ChIP-seq_data.csv
Deduplicated ChIP-seq list (Oct 2017 freeze)
· EC-001-MET.encodec_Oct17_deduplicated_ChIP-seq_list.csv
Decuplicated ChIP-seq matrix (Oct 2017 freeze)
· EC-001-MET.encodec_Oct17_deduplicated_ChIP-seq_matrix.csv
ENCODE key cell line ChIP-seq summary
· EC-001-MET.encode_key_cell_line_ChIP-seq_data.csv
[bookmark: _Toc490126544](TL, ) Variant calls of liver cancer patients
· EC-001-COH.LIHC-Germline.txt
· EC-001-COH.LIHC-Somatic.txt
[bookmark: _Toc490126545](TL, ) Normalized cancer patient expression data
· EC-001-COH.TCGA_data_2016_01_28.tar.gz

[bookmark: _Toc488066503][bookmark: _Toc490126546] (TL, ) Annotation
[bookmark: _Toc490126547](TL, ) ENCODE cancer annotations
ENCODE cancer sample summary
· EC-002-MET.encode_cancer_cell_type_summary.csv
· EC-002-MET.encode_cancer_cell_line_summary.csv
[bookmark: _Toc488066504][bookmark: _Toc490126548](TL, ) TF and RBP annotations
K562 vs GM12878 common TF summary
· EC-002-MET.encodec_KG_common_TF_summary.csv
K562 vs GM12878 common TF classification
· EC-002-MET.encodec_KG_common_TF_class.csv
TF annotations
· EC-002-DBP.TF_annotation.txt
RBP annotations
· EC-002-RBP-RBP_annotation.txt
[bookmark: _Toc488066506][bookmark: _Toc490126549] (TL, ) Extended Gene 
List of all extended gene definitions in major cell types
· EC-002-EXT.merge.post.extendedGene.K562.txt
· EC-002-EXT.merge.post.extendedGene.MCF-7.txt
· EC-002-EXT.merge.post.extendedGene.HepG2.txt

[bookmark: _Toc488066507][bookmark: _Toc490126550](TL, ) Processed Data (Analysis)
[bookmark: _Toc488066505][bookmark: _Toc490126551](TL, ) Cis-regulatory element related
(TL, ) CASPER
List of all CASPER results in major cell types
· EC-003-CRE.CASPER_K562.bed
· EC-003-CRE.CASPER_HepG2.bed
· EC-003-CRE.CASPER_GM12878.bed
· EC-003-CRE.CASPER_MCF-7.bed
· EC-003-CRE.CASPER_A549.bed
· EC-003-CRE.CASPER_HeLa-S3.bed
· EC-003-CRE.CASPER_H1-hESC.bed
· EC-003-CRE.CASPER-merged_K562.bed
· EC-003-CRE.CASPER-merged_HepG2.bed
· EC-003-CRE.CASPER-merged_GM12878.bed
· EC-003-CRE.CASPER-merged_MCF-7.bed
· EC-003-CRE.CASPER-merged_A549.bed
· EC-003-CRE.CASPER-merged_HeLa-S3.bed
· EC-003-CRE.CASPER-merged_H1-hESC.bed
(TL, ) ESCAPE
List of all ESCAPE results in major cell types
· EC-003-CRE.ESCAPE_K562.bed
· EC-003-CRE.ESCAPE_GM12878.bed
· EC-003-CRE.ESCAPE_MCF-7.bed

(TL, ) JEME (enhancer target gene prediction)
List of all JEME results of CASPER predictions in major cell types
· EC-003-CRE.JEME_of_CASPER_K562.bed
· EC-003-CRE.JEME_of_CASPER_HepG2.bed
· EC-003-CRE.JEME_of_CASPER_GM12878.bed
· EC-003-CRE.JEME_of_CASPER_MCF-7.bed
· EC-003-CRE.JEME_of_CASPER_A549.bed
· EC-003-CRE.JEME_of_CASPER_HeLa-S3.bed
· EC-003-CRE.JEME_of_CASPER_H1-hESC.bed
(TL, ) CRE integration and compact annotation
Integrative enhancer annotation with the encyclopedia cRE accession
· EC-003-CRE.CASPERxESCAPE_GM12878.bed
· EC-003-CRE.CASPERxESCAPE_K562.bed
List of all Hi-C filtered JEME predictions in major cell types
· EC-003-CRE.JEME_of_CASPER_K562_FitHiC.bed
· EC-003-CRE.JEME_of_CASPER_GM12878_FitHiC.bed
· EC-003-CRE.CASPERxESCAPExJEME-targetGene_FitHiC_GM12878_merged.bed
· EC-003-CRE.CASPERxESCAPExJEME-targetGene_FitHiC_K562_merged.bed
Integrative “compact” enhancer annotation
· EC-003-CRE.hg19-cRExCASPERxJEME_Hi-C_GM12878_merged.bed
· EC-003-CRE.hg19-cRExCASPERxJEME_Hi-C_K562_merged.bed
[bookmark: _Toc488066508][bookmark: _Toc490126552](TL, ) BMR related
(TL, ) Covariate matrix
· EC-003-BMR.covariate_region_1mb.txt 
· EC-003-BMR.covariate_region_100kb.txt
· EC-003-BMR.blacklist_region.txt
· EC-003-BMR.feature_details.txt
(TL, ) BMR estimation
· EC-003-BMR.LiverCan_mu_nb.txt
· EC-003-BMR.LiverCan_theta_nb.txt
· EC-003-BMR.LiverCan_mu_pois.txt
· EC-003-BMR.LiverCan_dispersion.txt
· EC-003-BMR.BreastCan_mu_nb.txt
· EC-003-BMR.BreastCan_theta_nb.txt
· EC-003-BMR.BreastCan_mu_pois.txt
· EC-003-BMR.BreastCan_dispersion.txt
· EC-003-BMR.BloodCan_mu_nb.txt
· EC-003-BMR.BloodCan_theta_nb.txt
· EC-003-BMR.BloodCan_mu_pois.txt
· EC-003-BMR.BloodCan_dispersion.txt
· EC-003-BMR.LungCan_mu_nb.txt
· EC-003-BMR.LungCan_theta_nb.txt
· EC-003-BMR.LungCan_mu_pois.txt
· EC-003-BMR.LungCan_dispersion.txt
· EC-003-BMR.README.txt
 (TL, ) P-values for extended genes
· EC-003-EXT.pval_K562.tar.gz 
· EC-003-EXT.pval_MCF-7.txt
· EC-003-EXT.pval_HepG2.txt
· EC-003-EXT.pval_A549.txt
[bookmark: _Toc488066509][bookmark: _Toc490126553] (TL, ) Network related
(TL, ) Cell-type specific network 
Proximal TIP-based network
· EC-003-NET.ENCODE_TIP_Profiles_693.txt
· EC-003-NET.edgeList_TIP_GM12878.tsv
· EC-003-NET.edgeList_TIP_K562.tsv
Proximal TSS-based network, using all TSS annotations
· EC-003-NET.edgeList_TSS_GM12878.tsv
· EC-003-NET.edgeList_TSS_K562.tsv
Proximal TSS-based network, using 1 TSS annotation per gene
· EC-003-NET.edgeList_uniqTSS2500_A549.tsv
· EC-003-NET.edgeList_uniqTSS2500_GM12878.tsv
· EC-003-NET.edgeList_uniqTSS2500_H1-hESC.tsv
· EC-003-NET.edgeList_uniqTSS2500_HeLa-S3.tsv
· EC-003-NET.edgeList_uniqTSS2500_HepG2.tsv
· EC-003-NET.edgeList_uniqTSS2500_IMR-90.tsv
· EC-003-NET.edgeList_uniqTSS2500_K562.tsv
· EC-003-NET.edgeList_uniqTSS2500_MCF-10A.tsv
· EC-003-NET.edgeList_uniqTSS2500_MCF-7.tsv
· EC-003-NET.edgeList_uniqTSS2500_liver.tsv
· EC-003-NET.edgeList_uniqTSS2500_lung.tsv
Distal enhancer-based network
· EC-003-NET.edgeList_ENH_GM12878.tsv
· EC-003-NET.edgeList_ENH_K562.tsv
Probability-based network
· EC-003-NET.probNet_README.txt
· EC-003-NET.probNet_TF.txt
· EC-003-NET.probNet_RBP.txt
 (TL, ) Reconciled merged network
Proximal TSS-based merged network
· EC-003-NET.mergedNet_uniqTSS2500_ALL.tsv
Proximal TIP-based merged network
· EC-003-NET.mergedNet_TIP_FDR_0.1.tsv
 (TL, ) Network hierachy 
· EC-003-NET.hierarchy_mergedNet_README.txt
· EC-003-NET.hierarchy_mergedNet_TFss.merged.TIP.network.txt
· EC-003-NET.hierarchy_mergedNet_tval.mean.across.patients.txt
· EC-003-NET.hierarchy_cellTypeSpecNet_README.txt
· EC-003-NET.hierarchy_cellTypeSpecNet_GM12878.tfcom.ss.txt
· EC-003-NET.hierarchy_cellTypeSpecNet_K562.tfcom.ss.txt
· EC-003-NET.hierarchy_cellTypeSpecNet_node.properties.txt
[bookmark: _Toc488066510][bookmark: _Toc490126554](TL, ) TF & RBP regulatory score in multiple cancer types
· EC-003-DBP.regulatoryScore_README.txt
· EC-003-DBP.regulatoryScore.tar.gz
· EC-003-RBP_regulatoryScore.tar.gz
[bookmark: _Toc488066511][bookmark: _Toc490126555] (TL, ) Network rewiring and rewiring index
K562 vs GM12878 proximal-distal combined TF-GENE network rewiring
· EC-003-NET.KG_TIP_ENH_mnet.csv
· EC-003-NET.KG_TSS_ENH_mnet.csv
K562 vs GM12878 proximal-distal combined TF-TF network rewiring
· EC-003-NET.KG_TIP_ENH_tfnet.csv
· EC-003-NET.KG_TSS_ENH_tfnet.csv
TF attributes
· EC-003-NET.KG_TIP_ENH_TFattrib.csv
· EC-003-NET.KG_TSS_ENH_TFattrib.csv
GENE attributes
· EC-003-NET.KG_TIP_ENH_GENEattrib.csv
· EC-003-NET.KG_TSS_ENH_GENEattrib.csv
K562 vs GM12878 network rewiring index
· EC-003-NET.KG_rewiringIndex_TIP+ENH.csv
· EC-003-NET.KG_rewiringIndex_TSS+ENH.csv
· EC-003-NET.KG_rewiringIndex-geneCommunity_TFrand_mixedM_median_cubicroot.txt
· EC-003-NET.KG_rewiringIndex-geneCommunity_TFrand_mixedM_median.txt

[bookmark: _Toc488066512][bookmark: _Toc490126556] (TL, ) Experimental Validation
[bookmark: _Toc488066513][bookmark: _Toc490126557](TL, ) Luciferase assay related
Details about the validataion regions and the results
· EC-004-ETC_luciferaseAssay-input.txt
· EC-004-ETC_luciferaseAssay-output.txt
[bookmark: _Toc488066514][bookmark: _Toc490126558] (TL, ) MYC knockdown experiments
Details about the knockdown experiments
· EC-004-DBP.README.txt
· EC-004-DBP.MYC-KD_geneFPKM_target.txt
· EC-004-DBP.MYC-KD_geneFPKM_knockdown.txt

[bookmark: _Toc488066518][bookmark: _Toc490126559](TL, ) Code Release
· EC-005-MET.README.txt
· EC-005-BMR.BMR_related.tar.gz
· EC-005-CRE.ESCAPE_related.tar.gz
· EC-005-NET.Rewiring_directConnection_related.tar.gz
· EC-005-NET.Rewiring_geneCommunity_related.tar.gz
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