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SIGNIFICANCE  
Structural variations (SVs), such as deletions, duplications, insertions, inversions, copy number variations and 
translocations, are genetic variations and structurally diverse ranging from simple events to complex 
rearrangements. SVs affect far more bases than single-nucleotide polymorphisms (SNPs) combined. SVs can 
markedly affect phenotype in many ways, including modification of open reading frames, production of 
alternatively spliced mRNAs, alterations of transcription factor (TF) binding sites, and structural gains or losses 
within the regulatory regions. Consortium efforts such as the 1000 Genomes Project (1000GP) estimate that a 
typical genome contains 2.1–2.5 thousand SVs, affecting ~20 million bases, or ~5–6 times that of SNPs1,2. In the 
1000GP, we also found that a typical genome contains ~150 LoF variants and discovered significant depletion of 
SVs (including deletions, duplications, inversions and multiallelic copy number variations) in coding sequences, 
untranslated regions, and introns of genes as compared to a random background model, implying strong 
purifying selection. Furthermore, some studies have shown that the complexity of SVs’ breakpoints are much 
higher than estimated which suggests that SVs are widespread in human genomes and are appreciably more 
difficult to discover than previously thought3. 

SVs are common, larger in size, and more structurally diverse than SNPs, and they are likely to profoundly 
shape the regulation of many human phenotypes and disease states. SVs have long been associated with 
complex diseases. Their effect could derive, for example, from gene dosage, or by disruption coding regions4. 
The cause of a complex disease could derive either from the SV alone or in combination with other genetic or 
environmental factors5. SVs have been described as associated not only with sporadic Mendelian traits and 
disease susceptibility, but also with complex diseases such as mental disorders (autism6–8, schizophrenia9–12 
and mental retardation13–15), asthma16–20 and cardiovascular disorder21–24, the last of which is the focus of this 
proposal. 

Cardiovascular disease (CVD) is a public health concern affecting over 80,000,000 people and accounting 
nearly 801,000 deaths in the United States that is about 1 in 3 deaths. Globally, CVD is also the leading cause 
of death, accounting 17.9 million or 32.1% of all global deaths in 201525–27. CVD is a class of complex 
pathologies of the heart and blood vessels and the most prevalent manifestations include coronary heart 
disease (e.g. heart attack), cerebrovascular disease (e.g. stroke), heart failure, cardiac arrhythmia, and heart 
valve problems. Most cardiovascular disease affects older adults. In the United States, 11% of people between 
20 and 40 have CVD, 37% between 40 and 60, 71% of people between 60 and 80, and 85% of people over 80 
have CVD. However, genetic factors may develop cardiovascular diseases in people who are less than 55 
years-old and people having parents affected in CVDs increase their risk by 3 fold. Thus, this proposal mainly 
focuses on genetic structural variations in CVD. 

Pedigree linkage studies28 and genome-wide association studies (GWASs)29–33 have shown that these diseases 
are influenced by inherited genetic variations and hundreds of loci associated with cardiovascular pathologies 
are identified. However, due to the complexity of cardiovascular disease, our knowledge of genetic contributions 
to CVD is still poor. The sensitivity for detecting the primary genetic defect is still approximately 50%. This elicits 
the importance of the use of next-generation sequencing and the essence of deciphering structural variations 
(SVs) to conquer the considerable proportion of the missing heritability of CVD34–38. 

Investigating SVs, could therefore hold the key to a deeper, more mechanistic understanding of the genetic 
basis of CVD. At present, most studies do not capture the spectrum of SVs present in genomes, so this 
complexity is not adequately accounted for in disease association studies. To the best of our knowledge, only a 
hotspot of short insertion-deletion polymorphisms in NCX121 and few copy number variations23,24 are reported in 
relation to CVD. Furthermore, the functional impact of SVs, especially in non-coding regions39, has not been 
investigated systematically. Surmounting these issues depends on stable computational methodologies for 1) 
mining whole genome sequencing datasets for SV discovery at high resolution and large scale, 2) functionally 
interpreting their origins and phenotypic effects, and 3) establishing associations between specific SVs and 
disease. A pipeline characterized with these three features has been developed by the team. 

Here, we propose to apply our pipeline to understand the genetic basis of cardiovascular disease through 
computationally driven discovery, functional validation, and characterization of CVD-associated SVs within the 
CVD related cohorts being sequenced as part of the TOPMED program. Our SV detection pipeline embedded 
several SV-calling algorithms is able for a high-resolution SV discovery and for a comprehensive profile of all 
types of SVs. The pipeline will be applied on the four studies, San Antonio Family Studies (SAFS CVD), 
Framingham Heart Study (FHS), Jackson Heart Study (JHS), and Cardiovascular Health Study (CHS) in the 



TOPMED program, which in total will be ~15,000 sequenced genomes (Aim 1). To examine the functional 
impact of the identified SVs, we will apply our method to an integration of RNA-seq data for functional annotation 
of variants and characterization of associated biological processes (Aim 2). Finally, we will use SVs from Aim 1 
and their impact scores from Aim 2 to discern genotype-phenotype associations for disease-based SV 
association studies (Aim 3). Our deliverables will be the largest library of validated SVs discovered in a 
combined cohort of ~15,000 cardiovascular disease patients and related individuals, together with an 
unprecedented platform of cloud-based pipelines for comprehensive, high-resolution, and large-scale SV 
analysis. 

Scientists participating in the proposed project are leaders in SV discovery and analysis. The three PIs, Charles 
Lee, Ph.D., Mark Gerstein, Ph.D. and Li Ding, Ph.D., have a history of productive scientific collaboration and 
bring complementary experience in SV detection (Lee), functional interpretation (Gerstein) and large-scale data 
analysis (all), particularly association analysis (Ding). Each also brings significant experience in leading 
(1000GP SV group, Lee; modENCODE AWG, Gerstein; ENCODE networks group, Gerstein; PsychENCODE 
AWG, Gerstein; exRNA AWG, Gerstein) and participating in (1000GP, Lee/Gerstein/Ding; ENCODE, Gerstein; 
ICGC, Gerstein/Ding; TCGA, Ding; CPTAC, Ding; KBase, Gerstein; GSP (Genome Sequencing Program), 
Gerstein) large-scale sequencing consortia. Under Dr. Lee’s leadership, the 1000GP SV project identified SV 
events in 2,504 healthy genomes and helped define the methodologies for identifying and characterizing SVs 
from “lower depth” (mean depth = 7.4X) whole genome sequencing (WGS) datasets. Dr. Travis Hinson, co-
Investigator, brings a wealth of knowledge about cardiovascular disease. 	He will serve as an integral member of 
the investigative team providing the essential clinical perspective and disease context to the characterization 
of SVs discovered in the TOPMED datasets and the association analyses of SVs to cardiovascular diseases. 

 
INNOVATION  
The originality of this proposal lies in the integration of cutting-edge computational methodologies—pioneered by 
the group—into a comprehensive, cloud-ready platform for novel SV discovery, characterization, and 
association with cardiovascular disease biology across the large assembled cohort of CVD patients and related 
individuals. Our proposed detection and genotyping strategy will meet the need for power and resolution for 
investigating association between SVs (that span a large size spectrum) and phenotypes, surpassing previous 
standard approaches employed in current SV association studies. The key innovations of our approach lie in its 
characteristics of: 1) Scalability: Our cutting-edge SV detection and integration tools will provide the capability to 
perform high-resolution discovery and classification of SVs, and identify well-powered genotype-phenotype 
associations in a disease context. 2) Integration: Our approach will integrate identified SVs with RNA-seq data 
and other functional data from coding and non-coding regions of the genome to provide scores for functional 
impact. 3) Extended functionality: CVD has multiple and different manifestations so tools for mechanistic 
interpretation of SVs across different manifestations will allow us to make better inferences about each CVD 
manifestation associated SVs. 4) Sensitivity: Association tests that integrate weighting methods for various 
biological considerations, such as allele frequency and impact score, will enable a generalized linear model to 
capture subtle association signals often missed by conventional approaches. This systematic survey of SVs 
will yield the largest database of validated SVs associated with cardiovascular disease, together with an 
unparalleled system for high-dimensional, high-resolution studies of SV architecture and function. 

RESEARCH STRATEGY: 
Specific Aim 1. Identifying complex structural variations on large-scale CVD-related genomes. 
Rationale. To drive the discovery phase of thousands genomes in the TOPMED program, we will apply our SV 
detection pipeline, Structural Variation Engine (SVE), consisting of eight employed state-of-the-art SV-calling 
algorithms and fusorSV (manuscript in preparation, Figure 1). The eight SV-calling algorithms are 
BreakDancer40, BreakSeq41, cnMOPS42, CNVnator43, Delly44, GenomeStrip45, Hydra-Multi46, and Lumpy47, and 
each of them has its advantages and weaknesses for certain types of SV detection. To properly keep advantage 
and mitigate weaknesses of each SV-calling algorithm, we developed fusorSV to merge results from the eight 
SV-calling algorithm. fusorSV is an open source framework that takes a data mining approach by incorporating 
knowledge of the strengths of various existing SV callers (discovered using a truth set), and uses this knowledge 
to perform discovery on a novel cohort of genomes. The pipeline has multiple entrance points and for this 
project we will start at given BAM files. According to the reports from the TOPMED Informatics Research Center 
(IRC, http://nhlbi.sph.umich.edu/report/), we anticipate to receive quality controlled GRCh38 sequence alignment 
files for each sample. The pipeline will be applied to the entire set of CVD-related individuals being sequenced 



by SAFS CVD, FHS, JHS, and CHS in the TOPMED 
program. The approximate sample size is ~15,000 
which brings a great challenges of the pipeline’s 
robustness and stability. Raw SV calls, described in 
VCFs, will be generated by each employed SV-calling 
algorithm and fusorSV will consolidate VCFs based on 
the pre-calculated model. The pre-calculated model is 
trained on high-coverage samples from the 1000GP. 
Afterwards, by using breakpoint assembly methods, we 
will perform in silico validation (Figure 2) of the SV 
events and use the assembled contigs to investigate 
the inherent complexity prevalent at breakpoints, as 
well as mechanisms of SV formation. Ultimately, these 
studies will deliver the most comprehensive library 
of complex SVs discovered in people affected by 
cardiovascular disease and will enable us to make 
novel biological inferences at the population level. 

Preliminary data. A toolbox of methods for structural 
variation discovery. As part of the 1000GP SV project, 
we have provided the research community with an 
unprecedented set of germline SVs from 2,504 normal 
human genomes that have been sequenced at low 
depth and have developed a large collection of complementary tools and methods, including: 1) Read-depth–
based tools. We developed CNVnator for copy number variant (CNV) discovery and genotyping from individual 
and trio-sequencing datasets. It utilizes a mean-shift approach, GC correction, and bandwidth partitioning to 
identify a wide range of CNV events. CNVnator can detect CNVs and provide genotype information on a 
population level, and also detects atypical CNVs including de novo and multi-allelic events. 2) Paired-end–
based tools. Meerkat48, Hydra-Multi, PEMer49 and BreakDancer cluster abnormally mapped paired-end reads to 
identify loci with a signature for an SV event. Meerkat remaps soft clipped and unmapped reads to generate 
clusters to identify breakpoints. Pindel-C50,51 utilizes a pattern-growth approach to detect large deletions and 
insertions, including complex events, from WGS data. These methods have each already been successfully 
applied to hundreds of cancer genomes48,52. 3) Split-read-alignment–based tools. We have also developed 
SRM53,SRIC54, and Tangram55,56 for the high-resolution identification of SV events from WGS datasets. These 
tools specifically aim to provide single-nucleotide resolution of breakpoints—an invaluable feature that enables 
functional interpretation of the biology of these SV events. Tangram is a tool utilizing both paired-end and split-
read approaches for mobile element insertion detection. 
Breakpoint assembly tools for in silico validation. Pinpointing SV breakpoints with single-nucleotide resolution is 
essential to produce accurate individual genotypes in clinical samples. In our detection pipeline, we have 
already developed algorithms for identifying breakpoints at nucleotide resolution, thereby allowing us to validate 
SV breakpoints “in silico”. Primary short-read mappers, such as BWA57, BOWTIE58, and MOSAIK59, do not 
usually map reads crossing SV breakpoints, and thus assembling those reads for SV breakpoints becomes a 
solution for SV in silico validation (Figure 2). As previously studies, we used assembly-based methods like 
SGA60 or TIGRA-SV61 for generating sequence contigs at SV breakpoints that improves breakpoint resolutions 
from 58.5% to 64.8%52. We also developed AGE62, which performs sequence alignment at regions flanking SVs 
while considering large deletion and insertion blocks, which cannot be handled by conventional sequence 
alignment algorithms.  
Ensemble approach to SV discovery. SVE (Figure 1, manuscript in preparation) consisting of eight employed 
state-of-the-art SV-calling algorithms and fusorSV is a stable pipeline and designed for large-scale complex SV 
analysis on the cloud or on traditional high-performance compute clusters. fusorSV takes a data mining 
approach by incorporating knowledge of the strengths of various existing SV callers, and uses this knowledge to 
perform discovery on a novel cohort of genomes. The pipeline has been tested on a dataset from 1000GP with 
27 deep-coverage samples. Using the annotated SVs from the 1000GP Phase 3, we built a model using 18 
samples and applied the model to the other 9 samples for SV discovery ab initio. This step was repeated 1000 
times with random selection for the 18 learning samples and the 9 test samples. Figure 3 shows the 
performance of fusorSV as compared to some other popular SV-calling algorithms that were integrated in SVE. 

Figure 1. Structural Variation Engine. The overall work includes 
1) Alignment, 2) SV calling and 3) VCF Consolidation. There are 
multiple entrance points of the pipeline to make the flexibility for 
users to process data. 



As it can be seen, fusorSV outperforms all the 
SV callers by optimizing both precision and 
recall on the 1000GP Phase 3 callset. 
Precision and recall are defined as 𝑝𝑟𝑒𝑐 =
	 '()*_,-./'/0*
'()*_,-./'/0*1234.*_,-./'/0*

 and 𝑟𝑒𝑐𝑎𝑙𝑙 =
'()*_,-./'/0*

'()*_,-./'/0*1234.*_7*83'/0*
, respectively. 

True_positive is all retrieved calls by each SV-
calling algorithm that overlap with calls 
reported by the 1000GP while false_positive is 
a set of calls that are reported by the algorithm 
but not by the 1000GP and false_negative then 
means calls reported by the 1000GP but not by 
the algorithm. Even with a strict metric such as 
the Jaccard Similarity score63, fusorSV 
outperforms all other SV callers for SV 
discovery in the test set. Furthermore, fusorSV 
identified 562 (~10%) novel SV calls from the 
cohort of 27 genomes that were not reported 
by the 1000GP. We performed in vitro 
validation on a subset of SVs from this cohort 
and achieved a positive validation rate of 
74.3% (78 positively validated SVs out of 105 

tested SVs). 
Research Plan. We plan to deploy and apply SVE on the cloud to identify and classify SVs across WGS 
datasets from the identified projects of the TOPMED program. We will deliver 1) integrated and comprehensive 
identification of a broad spectrum of SV types and 2) breakpoint resolution identification based on TIGRA-SV or 
similar assembly-based SV-calling algorithms.  

Sample selection. Data storage and computing resource are required for SV discovery on the entirety of CVD-
related genomes in the TOPMED program. We have identified four CVD related studies in the program, San 
Antonio Family Studies (SAFS CVD), Framingham Heart Study (FHS), Jackson Heart Study (JHS), and 
Cardiovascular Health Study (CHS). Combined, these cohorts plan to generate sequence from ~15,000 CVD 
patients and related individuals. We appreciate the enormity of the proposed analysis, and to ensure efficient 
use of resources, the entire dataset would be analyzed in multiple phases as described below. 

Pipeline for population-level structural variant discovery. During phase 3 of the 1000GP SV project, we used an 
ensemble of eight algorithms for SV discovery. A callset of an individual was generated by each SV-calling 
algorithm and then merged into a single release of the sample by fusorSV. The proposed pipeline (Figure 1) for 
SV discovery will extend this work with the following salient features: 1) Standard steps for quality control, 
duplicate removal, and alignment for all selected samples if necessary (a quality-controlled GRCh38 sequence 
alignment file for each sample is actually expected from the TOPMED program); 2) A separate  result and an 
ensemble of SV-calling algorithms including BreakDancer40, BreakSeq41, cnMOPS42, CNVnator43, Delly44, 
GenomeStrip45, Hydra-Multi46, and Lumpy47 for CVD genomes. This ensures that a particular algorithm does not 
bias the discovered SV set and increases our power to detect true SV events by asking for evidence by multiple 
methods; 3) In silico 
validation for discovered set 
of SV sites using a library of 
known common variants; 4) 
Complex SV identification 
using assembly-based tools 
for assessing breakpoints at 
nucleotide resolution. 

The SV calling will be 
performed in two phases: 
Phase 1—Calibration (Tasks 
1 in Figure 4): We will launch 
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Figure 2. Breakpoint assembly for in silico validation. The top half of the 
figure shows a deletion SV event predicted by the read pairs spanning 
the event. All read pairs in the breakpoint locus are used for targeted de 
novo assembly and the resulting contig is aligned back to the genome. 

Figure 3. fusorSV cross fold validation using 1000GP samples. The 3 panels plot precision 
(y-axis) versus recall (x-axis) for Deletions, Duplications and Inversions. 
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a test within a selected cohort with about 100 CVD-related samples from the TOPMED program. The goal of the 
Calibration phase is to deploy the calibrated pipeline on the Google Cloud Platform and to test it for efficiency 
and eventual scale up in the next discovery phase. Based on the data access and the computational strategies 
descripted in the TOPMED program, we will explore parallelization where the tools already support this 
capability. According to the reports from the TOPMED Informatics Research Center (IRC, 
http://nhlbi.sph.umich.edu/report/), we anticipate to receive quality controlled GRCh38 sequence alignment files 
for each sample. The computational intensive steps in the SVE discovery pipeline that would be primary 
candidates for optimization are 1) SV classification by the eight SV-calling algorithms, 2) SV events 
consolidation, and most importantly 3) clustering of aberrant reads for SV breakpoint assembling. Phase 2—
Discovery (Task 2): The optimized system from Task 1 will be applied on the entire set of ~15,000 individuals 
sequenced as part of the four selected CVD related cohorts. We have done extensive preliminary analysis of the 
SVE detection pipeline on our own computing infrastructure at the Jackson Laboratory (JAX) to get an estimated 
amount of computing resources needed for the entire proposed computation. Preliminary results suggest that 
we need ~12 hours of CPU time per average 30X coverage whole genome sequence sample. Using a standard 
Google instance (n1-standard-16) with enough cores (16) and enough RAM (60GB) at an estimated cost of 
~$28,080. The temporary storage required for BAM files is about 100GB per sample. Considering the stability of 
our pipeline, we aim to keep sample BAM files for 2 weeks estimated to be $5,120 for the project. We also 
estimate the cost of VCF storage (1GB per sample) to be $2,460. The total estimated cost of $35,660 for 
computing and storage is allocated across Years 1 and 2.  
  
 
 

Aim Task Year 1 Year 2 

A
im

 1
 Identify structural variations on large-scale CVD-related genomes         

    Task 1: Deploy and optimize SVE detection pipeline on cloud platform          
    Task 2: Perform SV discovery on the entire cohort on cloud platform         

A
im

 2
 Analyze the functional impact of structural variations         

    Task 1: Deploy and calibrate SVIM on cloud platform using detected SVs, integrated RNA-Seq         
    Task 2: Process and annotate all discovered SVs using the SVIM pipeline         

A
im

 3
 Association of structural variants with burden in CVD cohorts         

    Task 1: Deploy and optimize SV2Pheno on cloud platform         
    Task 2: Perform associate studies with the discovered SVs and build models of CVD association         

 

Calibration of method using known sites. Hundreds of sites across the human genome are polymorphic in a 
large fraction of the population64,65. Phase 3 of the 1000GP SV project2 showed that a significant fraction of SVs 
(35%) occurs at a high frequency in the population (variant allele frequency ³ 0.2%). For those common SVs, we 
will create a catalog of structural variation polymorphic sites across the genome and use them as validation sites 
for our SV-calling methods. 

Validation of SV sites using in silico assembly–based methods. We demonstrated above that SVs can be 
validated in silico using targeted de novo assembly–based methods (TIGRA-SV or SGA). The same 
methodology was integrated into the SVE detection pipeline and will be used to process every discovered SV 
site for validation. 

Complex SV identification. Complex SVs are a class of rearrangements of simple SVs, such as deletions, 
duplications, insertions, inversions, and copy number variations. Due to the limitation of the SV-calling 
algorithms, some types of SVs may be caught by certain SV-calling algorithms that never generate other types 
of SVs. We will use the two methods for complex SV identification. The first method will identifies SV clusters 
present in the same genomic region that have similar allele frequencies and copy number ratios. This will help to 
select SV that are part of the same complex SV event. The second method involves inspecting the mapping 
patterns of various parts of the assembled contig at the SV site. This would allow us to identify mislabeled SVs 
and SVs with more complexity than annotated by the individual SV-calling method. 

Data access strategies: Total storage of the discovery cohort is expected to require ~1.5 PB. To manage the 
data corpus and computing requirements, we propose to use the Google Cloud Platform which will be available 
to all members of our team. JAX is currently expanding capabilities in cloud-based data analysis to address 
issues, including access to increased compute power, co-localization of novel and reference datasets and 

Figure 4. Project timeline  



reproducibility of analysis pipelines. JAX staff have adapted multiple pipelines for the cloud platform and 
evaluated the suitability of the cloud-based archival storage for genomics datasets. Dr. Ding’s group has 
developed GenomeVIP, a secure, HIPAA-compliant, web-driven variant discovery and annotation platform 
through which multiple independent analysis tools can be applied to a given dataset. As it can call upon both 
local high-performance computing (HPC) and cloud resources, GenomeVIP is a tool that we may initially use to 
assist with variant discovery and to download results to local disks for subsequent analyses. 

JAX is partnering and collaborating with commercial genomics cloud service providers (CSPs) on several 
important projects and has recently recruited cloud computing experts as part of the Research IT department. 
These activities are independent of this proposal and would aid us in providing the experience necessary for 
successful completion of various aspects of this project. 

Expected results. This aim will yield a comprehensive catalog of validated SVs from CVD-related genomes in 
the TOPMED program that lay the foundation for subsequent functional interpretation and association studies 
(Aims 2 and 3). It will also help answer questions about SV formation and population-level associations of SVs 
across the various cardiovascular disease studies in the program. By making the SVE detection pipeline 
available as a community resource and demonstrating the correctness and comprehensiveness of the SV 
results, we expect this work to propel future genome-level SV analyses for the entirety of the TOPMED program 
and other large consortia. 

Pitfalls and alternative approaches. A major challenge for this aim is the diversity of data that are being 
collected and of the variable availability of orthogonal data (genomic, transcriptomic, proteomic, etc.) across the 
various selected cohorts. In response, we will leverage the extensive experience of the team to handle complex 
datasets (see Preliminary data section) and design SVE to robustly handle diverse and complex datasets of the 
types that might be generated by the TOPMED Program. Another challenge of which we are mindful is the 
enormity of the proposed computation. The assembled team has extensive experience both in dealing with very 
large datasets and in developing a multi-phase strategy for the proposed computation that will make efficient 
use of resources. We are aware that fusorSV’s sensitivity and specificity values presented are moderate for 
proper genome wide associations, but we hypothesize that these are due to a small sample size, twenty seven 
genomes. Our preliminary results from a cohort of 100 simulated samples suggest that the discovery false 
discovery rate improves several folds, given enough number of datasets. 

 
Specific Aim 2. Scoring the functional impact of structural variations. 
Rationale. There is still little known about the functional impact of SVs at a genome-wide level. SVs are 
disproportionately observed in the non-coding part of the genome; hence, a comprehensive assessment of the 
functional impact of SVs will likely require the integration of large-scale data resources such as ENCODE, 
1000GP and GTEx. To functionally prioritize SVs in preparation for disease association studies, we propose to 
use SV Impact (SVIM), an analysis tool that integrates myriad datasets- including existing annotations, allelic 
activity from RNA-seq, and eQTLs from RNA-seq. 

Preliminary data. Tools for assessing functional impact of genomic variation in genes and pseudogenes. We 
developed Variant Annotation Tool (VAT) to annotate the impact of protein sequence mutations66. VAT provides 
transcript-specific annotations of point mutations and insertions/deletions (indels) according to synonymous, 
missense, nonsense, or splice-site-disrupting changes. We observed that genes tolerant of loss-of-function 
(LoF) mutations are under the weakest selection. In 1000GP Phase 3, we found that a typical genome contains 
~150 LoF variants and discovered significant depletion of SVs (including deletions, duplications, inversions and 
multiallelic CNVs) in coding sequences, untranslated regions, and introns of genes as compared to a random 
background model, implying strong purifying selection. 

Tools for evaluating functional impact of variation in non-coding (nc) RNAs and regulatory regions. We have 
developed tools to specifically analyze ncRNAs. Our incRNA pipeline combines sequence, structural, and 
expression features to classify newly discovered, transcriptionally active regions into RNA biotypes, such as 
miRNA, snRNA, tRNA and rRNA67. Our ncVar pipeline further analyzes genetic variants across biotypes and 
subregions of ncRNAs, e.g., showing that miRNAs with more predicted targets show higher sensitivity to 
mutation in the human population68. 

To better understand nc regulatory regions, we developed tools to analyze ChIP-Seq data to identify genomic 
elements and interpret their regulatory potential. PeakSeq identifies regions bound by TFs and chemically 
modified histones69; it has been widely used in consortium projects such as ENCODE70. The second generation 
of PeakSeq is a newly developed tool that uses multiscale decomposition to help identify enriched regions in 



cases where strict peaks are not apparent and robustly calls both broad and punctate peaks71. Peak calls and 
ChIP-Seq signal data can also be used to model gene expression and annotate target genes. We have 
developed methods that use both supervised and unsupervised machine-learning techniques to identify these 
regulatory regions (such as enhancers) and predict gene expression from ChIP-Seq data72–75. To investigate the 
evolutionary importance of these regions, we have analyzed patterns of single nucleotide variation within 
functional nc regions, along with their coding targets68,75,76. We used metrics such as diversity and fraction of 
rare variants to characterize selection pressure on various classes and subclasses of functional annotations68. 
We have also defined variants that are disruptive to a TF-binding motif in a regulatory region70. 

Tools for helping annotate functional impact based on network. We found that functionally significant and highly 
conserved genes tend to be more central in various biological networks77 and are positioned at the top of 
regulatory networks76. Further studies showed relationships between selection and protein network topology 
(e.g., quantifying selection in hubs relative to proteins on the network periphery77,78). Incorporating multiple 
network and evolutionary properties, we developed NetSNP77 to quantify the indispensability of genes. This 
method shows strong potential for interpreting the impact of variants involved in Mendelian diseases and in 
complex disorders probed by GWAS. We constructed regulatory networks for data from the ENCODE and 
modENCODE projects, identifying functional modules and network hierarchy76. To quantify the degree of 
hierarchy for a given hierarchical network, we defined a metric called hierarchical score maximization (HSM79).  

FunSeq: Tools for integrated functional prioritization. We recently developed a prioritization pipeline called 
FunSeq80,81 that identifies annotations under strong selective pressure as determined using genomes from many 
individuals from diverse populations. FunSeq links each nc mutations to target genes and prioritizes based on 
scaled network connectivity. FunSeq identifies deleterious variants in many nc functional elements, including TF 
binding sites, enhancer elements, and regions of open chromatin corresponding to DNase I hypersensitive sites 
and detects their disruptiveness in TF-binding sites (both LoF and gain-of-function events). Due to the 
complexity of cardiovascular disease and multiple manifestations of CVD, we may classify SVs by 
manifestations and recalibrate the functional networks. 

Mutational mechanisms of structural variants. The sequence content of SVs, especially around breakpoints, 
carries important information about origin and functional impact. Using datasets from the 1000GP, we studied 
the distinct features of SVs originating from different mechanisms80,82. We performed SV mechanism 
annotations for the 1000GP Phase 3 deletions using BreakSeq41, categorizing 29,774 deletions by their creation 
mechanisms. Among these, non-homology-based rearrangement  proved to be the most prevalent mechanism 
(~73% of all categorized deletions)2. These results inform us on the molecular mechanisms underlying SV 
formation and also indicate differences in functional impacts of different SV types. 

Tools for uniform processing of RNA-seq data. We have considerable expertise in analyzing RNA-Seq data, 
including experience in developing and configuring pipelines for the processing of RNA-seq data, especially for 
long RNA-seq data for ENCODE, long and short RNA-seq data for the PsychENCODE83 and Brainspan project, 
and a custom pipeline developed for the analysis of small exRNA-seq data for the Extracellular RNA 
Communication Consortium (ERCC). We have already developed an efficient in-house data processing 
workflow for RNA-seq data that includes data organization, format conversion, and quality assessment. 
RSeqTools84 is a modular tool developed for the processing of RNA-seq data and generating either transcript, 
gene, or exon level quantifications. We also developed IQSeq85 which calculates the relative and absolute 
abundance of contributing transcript isoforms to a gene from RNA-seq data using a fast algorithm based on the 
Fisher information matrix. Another tool we developed called FusionSeq86 detects fusion transcript in RNA-seq 
data, which can be important biomarker for diseases such as cancer and neurological diseases. 

Tools for allele activity and eQTL detection. We have also developed tools specifically for linking gene 
expression variation to genotype, including our Allele-Seq pipeline, which quantifies allele-specific gene 
expression by mapping reads onto a diploid personal genome built from called genetic variants, including SNPs, 
short indels, and structural variants87. We recently applied this pipeline on a population scale to RNA-Seq data 
from the 1000 Genomes Project and used this analysis to create AlleleDB, a database of genomic regions with 
high allelic activity88. Our expertise in eQTLs is demonstrated in our novel study on successfully utilizing 
expression-variant correlations to construct predicted genotypes. These predicted genotypes were then 
matched with known genotypes from a given dataset in order to demonstrate how the information security of the 
given dataset may be compromised89. 



Research plan. To enable identification of SVs with high 
functional impact, we will use an extension of 
FunSeq/FunSeq2 within called SVIM (Structural Variation 
IMpact) (Figure 6). We will evaluate the impact score for 
each SV, taking into account the functional annotation of the 
affected genomic region and the fraction of functional 
elements (i.e., genes, ncRNAs, nc regulatory elements). We 
will also upweight SVs based on ubiquitous activity, allelic 
activity and eQTLs. The impact score will also depend upon 
SV type (i.e., deletion, duplication, inversion or 
translocation). 

For a given SV belonging to a particular SV type, we will use 
break point resolution coordinates to estimate the fraction of 
bases overlapping functional elements. Based on this 
fraction, we will categorize SVs into three classes (touch, 
cut, and engulf). Each overlapping class will have a different 
weight (Fsvtype, class). We will divide genomic elements into 
three categories (coding region, nc region, TF binding site) 
and assign relative scores to them (Scoding, Snon-coding, STFBS), 
which will vary for different SV types. Relative scores F and 
S will be defined for class and functional elements 
analogous to the FunSeq2 tool81. 
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, where 𝑖  is a functional element ∈

	𝑝𝑟𝑜𝑡𝑒𝑖𝑛	𝑐𝑜𝑑𝑖𝑛𝑔, 𝑛𝑜𝑛𝑐𝑜𝑑𝑖𝑛𝑔	𝑅𝑁𝐴, 𝑛𝑜𝑛𝑐𝑜𝑛𝑑𝑖𝑛𝑔	𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦, 𝑎𝑙𝑙𝑒𝑙𝑖𝑐	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑒𝑄𝑇𝐿 ; 𝑘  is a overlapping 
classification ∈ 	𝑐𝑢𝑡 	0.1 ≤ 𝑓 < 0.8 , 𝑡𝑜𝑢𝑐ℎ 𝑓	 < 0.1 , 𝑒𝑛𝑔𝑢𝑙𝑓 	𝑓	 ≥ 0.8 , and 𝑓  is the fraction of functional 
element overlapping the SV; 𝑗  is the type of SV ; 𝛿	 ∈ 	0,1 ; and 𝑙  is a feature ∈
	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑢𝑏𝑖𝑞𝑢𝑖𝑡𝑜𝑢𝑠	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑎𝑙𝑙𝑒𝑙𝑖𝑐	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑒𝑄𝑇𝐿𝑠 ; 

SVs will be assigned an impact score by taking the sum over the product between weights of overlapping 
classes and scores of overlapping functional elements. The score (ISorig) will also be upweighted based on 
activity of the affected region. The upweight factor is comprised of the product of four factors: i.e., allelic activity, 
eQTLs, network connectivity and ubiquitous activity. Significance level of an Impact score (ISorig) will be 
estimated by running 1,000 Monte Carlo simulations generated by randomly shuffling the location of SVs. 

Evaluating effect of structural variants on protein-coding genes. We will analyze loss of function (LoF) variants 
with mis-mapping, functional, evolutionary and network features of protein coding genes overlapping with SVs. 
We will first identify LoFs due to whole gene deletion, as well as putative LoF-causing mutations as those that 
induce premature stop codons, frameshifted open reading frames, or that we predict to produce truncated 
proteins due to deletion of RNA splice sites or either predicted or verified changes in splicing pattern from RNA-
Seq data (see above). We will quantify the confidence of these LoFs using features such as whether they are in 
highly duplicated regions and the number of paralogs. For functional features, we will incorporate protein 
structures. For evolutionary properties, we will quantify the conservation of LoF variants, as well as truncated 
sequences. For network features, we will quantify the distance between genes with LoF variants and known 
disease-causing genes. 

Prioritizing non-coding transcripts from structural variant data. To prioritize the effects of SVs in ncRNAs, we will 
focus on overlaps with regulatory elements and other functional regions. To perform this analysis, we will define 
categories of RNA regions that display human population-level conservation, and combine these features to 
generate RNA element scores. Note that we may further classify SVs by manifestations of CVD. We will mine 
RNA interactions between proteins (e.g., CLIP-Seq) and miRNAs (e.g., TargetScan) to create a compendium of 
biochemical interactions with RNA90–94. We will further investigate RNA secondary structure, looking for 
structured regions that are highly sensitive to mutation. For these regions, we will assess deleteriousness of 
mutations by differences in predicted free energy or structure ensembles78 relative to wild type. We have found 
annotations of all of the above types—biochemical interactions, regulatory motifs, and structured regions—that 
are enriched for rare variants in the human population and will use these sensitive RNA regions to score and 

Figure 5. Overview of the functional prioritization and 
annotation pipeline 



prioritize potential deleterious SVs in ncRNA. Large SVs will ultimately be scored based on the highest scoring 
subregion disrupted (or created) by the SV. 

Prioritizing non-coding regulatory elements from structural variant data. Unlike protein-coding genes and 
ncRNAs, TF binding motifs are relatively small in size. Thus, we are going to analyze duplications that occur 
close to these motifs and analyze where these duplications lead to the breakage of existing or creation of new 
motifs. In the prioritization scheme, we will also penalize changes in distance between motifs and newly created 
motifs if they occur close to an existing TF motif. We will use TF binding nc elements by leveraging better 
enhancer definitions provided by the Epigenome Roadmap95–97 and ENCODE and also include new datasets. 

Further variant prioritization based on networks, tissue specificity, eQTLs and allelic activity. After performing 
annotation-based assessment of identified SVs, the following functional features will be used for prioritization. 
1) Network connectivity. We will update and use well established gene networks based on regulatory, 
phosphorylation signaling, metabolic, and protein-protein interaction data. We will integrate novel datasets from 
ENCODE and Epigenome RoadMap, update regulatory networks, and integrate new datasets from conservation 
and protein-protein interaction. We will then examine the network topological properties of the genomic elements 
affected by identified SVs. Variants disrupting regulatory elements with high connectivity—network hubs and 
bottlenecks—will be upweighted based on their scaled centrality scores. 
2) Ubiquitous activity. We will evaluate the impact of SVs in an epigenetic context to identify tissue-specific 
phenotypic effects that are strongly influenced by SVs. We will prioritize SVs impacting genes, ncRNAs, and TF 
binding sites active in multiple tissues. 
3) Allelic activity. We will use our existing AlleleSeq pipeline to annotate the transcripts produced at SV 
regions87. We will use this tool to create personal diploid genomes for each TopMed individual, and then will 
adapt our pipeline to perform RNA-Seq quantification specifically at SV regions. We will prioritize SVs that lead 
to strongly allelic expression. We will also prioritize SVs that overlap our database of strongly allelic regions 
throughout the genome, based on AlleleDB, our resource of such regions identified through allele-specific RNA-
Seq analysis from over 300 individuals generated by the GEUVADIS consortium88. 
4) eQTL association. We will link SVs to the genes that they affect by performing genome-wide searches for 
eQTLs. Relative to SNVs, large SVs may be more manageable candidates in the search for distal eQTLs. We 
will use a framework similar to published earlier89 in the search for SV-induced eQTLs. SV-induced eQTLs will 
be identified by performing genome-wide searches for CVD patterns in which the presence or absence of the 
SVs (from Aim 1) strongly correlate with the expression levels of a battery of genes throughout the genome. 
Specifically, we will use Matrix eQTL for eQTL identification98. We will perform multiple testing correction and will 
filter the list of putative eQTLs in order to achieve a false discovery rate of less than 5%. The SV-gene 
expression correlations reported by Matrix eQTL will be used as the strength-of-association measures between 
expression levels and genotypes. Of particular interest will be those genes previously implicated in CVD-
associated pathways and network modules. SV-induced eQTLs with strong expression correlations that are 
associated with central network elements and known CVD-associated genes will be upweighted. 

Expected results. We expect to estimate the impact scores of the SVs produced in Aim 1 using SVIM, will yield 
a prioritized set of SVs in Aim 2 that we can forward to Aim 3 (genotype and association) for further classification 
of their association to disease or a specific phenotype. We plan to make the prioritization results broadly 
available; therefore, the impact score produced by SVIM will be incorporated into a standard Variant Call Format 
(VCF). SVIM will be cloud-ready and will be available to the TOPMED consortium through a Docker image and a 
Common Workflow Language (CWL) file. Docker and CWL are standards for distributing computational 
pipelines, which will make SVIM amenable for compute cluster, local machine, and cloud execution. 

Pitfalls and alternative approaches. We anticipate the main challenges being (i) possibly an overwhelming 
number of SV discovered in Aim 1 and (ii) the lack of standard format and increasing number and updates of 
annotation datasets. In order to overcome (i), we plan to gradually process the results into specific types of SVs. 
SVIM will also be based on the data context to optimally prioritize from WGS datasets. The overall 
modularization offers a flexible framework for users to incorporate the ever-increasing amounts of genomic data 
to both rebuild the underlying data context and prioritize case-specific variants. Regarding (ii), we will carefully 
engineer SVIM to be computationally efficient and to able to support the large-scale computing proposed for this 
aim. To build the data context, we will standardize large-scale publicly available data resources, such as SVs 
from the 1000 GP2, conservation data from Bejerano et al.99 and Cooper et al.100, functional genomics data from 
ENCODE70 and Roadmap Epigenomics Mapping Consortium101.   
 



Specific Aim 3. Association of structural variants with burden in CVD cohorts.  
Rationale. Many high-impact SVs are expected to be relatively rare. To discover these important SVs, we have 
already developed a new association pipeline suitable for finding them and establishing their phenotype 
associations. We anticipate that building a reference database of structural variants in healthy individuals (Aim 
1) will be essential for this goal.   
Preliminary Results. Power analysis for sample selection and association. An important aspect will be 
performing full SV analysis for the entire discovery cohort of 15,000 individuals. The size of this discovery cohort 
sets the lower bound for minor allele frequency in genome wide associations we will examine. There is no 
general theory of discovery power currently used in SV algorithms, so we extended an existing statistical model 
of coverage102 to estimate the discovery sample size. Bernoulli probabilities for two standard SV discovery 
methods, split reads and discordant read pairs, can be derived using probability theory considering read length, 
average and variance of insert length, SV length, etc. and subsequent incorporation of a detection rule, e.g. “³3 
split or discordant reads”. Detection in each sample is binomial in the number of observations and discovery 
within sample set is likewise binomial in the detection and Minor Allele Frequency (MAF) probabilities.  

Anticipated parameters for the WGS data to be generated for this project are 30X coverage per genome, 
average insert size of 400bp-600bp (20% coefficient of variation), 150bp reads, event detection based on ³3 
split reads or ³5 discordant read pairs, and observation in at least 3 samples to constitute “discovery”. The 
model predicts that split-read detection will predominate for simple SVs, as well as for complex events in which 
one sequence is replaced by another. Because split-reads depend only upon local alignment, power is 
essentially independent of the size of events (unlike for discordant read pairs), meaning it is primarily a function 
of sample size and MAF. Figure 6a shows power at MAF ³ 0.1% is essentially 100% for 10K samples. It drops 
rapidly for lower MAFs, whose events are unlikely to be discovered in this study. Mosaicism is a potentially 
confounding factor, for example in blood samples where an event is not present in all cells. Figure 6b shows 
that power is not significantly impacted even for the 10K samples until mosaicism is quite significant.  

The second aspect of “power” is variant-disease association. The issues are well-known103, enabling the 
following “baseline” estimates of association power. General consensus recommends “collapsing” variants for 
low MAF in order to aggregate effects for increasing power. Analysis of the widely-used Li & Leal method for 10 
collapsed variants at 4:1 risk ratio (Figure 6c) shows that groupings of 1% MAF variants having high (~50%) 
penetrance will require 15Ksamples for 50% power when Bonferroni-corrected. Power drops rapidly for lower 
MAF, penetrance, risk ratio, and sample size. Based on the analysis presented (Figure 6d), it is likely we will 
discover more variants than those for which solid associations can be established. 

Association pipeline implementation and experience in discovering significant associations. We have developed 
a prototype pipeline incorporating extensive sample and variant level quality control (e.g, coverage, variant 
frequency and distribution), population stratification, pedigree segregation, etc. for population/family-based 
association analysis. It supports popular aggregation tests, including burden tests such as the Combined 
Multivariate Collapsing (CMC)103, Exclusive Frequency Test (EFT)104, Total Frequency Test (TFT)104, and Cohort 
Allele Sum Test (CAST)105, and variant component tests such as the Sequence Kernel Association Test 
(SKAT)106. We have already used it to discover associations by tailoring it to hypothesized genetic architectures 
of individual diseases. For example, assuming tumor suppressors are enriched for rare deleterious truncations, 
we grouped events by gene and used TFT to associate 13 genes with germline susceptibility in a >4,000 case 
cancer cohort107.  

Research Plan. SVs are characterized by size, type, penetrance, and multiple alleles. A critical step for 
association analysis of SVs is meaningful classification/annotation. By building on infrastructure and tools 
mentioned above, we will extend SV2Pheno to infer SV-phenotype associations (Fig. 7). It will use the impact 
scores for each SV (Aim 2) for integrated analysis of SNVs, indels, and SVs. 

Extend SV2Pheno pipeline including improved burden tests considering impact score and annotation 
classification of various complex structure variants for CVD cohorts. We envision substantial extension of this 
pipeline in two major ways to address the ambitious goals of this proposal: 1) We plan to hybridize the pipeline 
with more recent methods that better account for non-contributing variants108. Likewise, annotation and 
functional prediction can help identify irrelevant variants, which can subsequently be removed from analysis. 
The pipeline will also process the information from the ENCODE & Epigenetics Roadmap analysis mentioned in 
Aim 2. 2) Variants are known to be associated with various diseases109–111, but almost certainly contribute non-
uniformly; assigning appropriate weights will be necessary to wring-out maximum power. Aggregation tests can 
be expressed in general by the linear regression equation 𝑌 = 𝛼 + 𝛽 ⋅ Σ𝑤/𝑔/ 	+ 𝜀, where (left-to-right) is observed 



trait, intercept, collective effect 
coefficient, weight of variant i, tally of 
variant i (0, 1, or 2), and normally 
distributed error residual. Assignment of 
weights will be based on a novel 
combination of four considerations: the 
Madsen-Browning equation112 to account 
for allele frequency, consideration of 
“direction” (negative association) using 
e.g. aspects of the Pan-Shen 
approach113, incorporation of our impact 
score (Aim 2) to account for biological 
strength, and RNA-seq data. The last 
aspect will weight expression impact, but 
must be implemented carefully because 
of variations in sample quality. Here, we 
will apply the method of Liu et al.114, 
which essentially adds an extra 
adjustment to modulate contribution of 
higher-variability samples. In principle, 
this more sophisticated approach should 
capture signals that have been too subtle 
for earlier tests115. 

Since we anticipate that a high fraction of 
SVs will reside in non-coding regions, we 
will aggregate variants using a 
hierarchical approach based on three 
levels: 
Level 1. Prototypical Event level 
association analysis. As the precise 
genomic region for a given SV may vary across samples, we will represent each set of similar SV events as a 
single prototypical SV event. The criterion constituting such events is given by the “80% reciprocal overlap” 
rule61. For large insertions and inter-chromosomal translations, we will require the breakpoints to be within 1kb of 
one another. We will then assess the significance of the associations using impact scores generated in Aim 2. 
Level 2. Functional Unit (Gene CDS/promoter/enhancer) level association analysis. We annotate the 
prototypical SV events from Level 1 to identify any specific transcriptional regions (e.g., exons/CDS and cis-
regulatory elements such as insulators, enhancers, and promoters) and gene(s). SVs in a given gene will be 
grouped as a single, effective functional unit based on annotation from Aim 2 (Figure 7). We will then perform 
an association analysis on these functional units. In cases where multiple SV events may be affiliated with a 
given functional unit, we need a weighting scheme to combine the impact scores of the contributing SVs. This 
approach may reveal novel connections between non-coding functional regions and phenotypes.  
Level 3. Combined Functional Unit level analysis. We will annotate the functional units in the previous step to 
identify known affiliated higher-order units (e.g., protein complexes and gene pathways) by recruiting various 
resources, including databases relating to gene-phenotype relationships (e.g., OMIM), gene pathways (e.g., 
KEGG, Reactome), gene ontology (e.g., GO database). The SVs affecting a given higher-order unit will be 
grouped as a single super-unit. We will again perform association analysis, considering the SV impact scores 
(Aim 2). This approach has the potential to discover novel combinations of SV-containing functional units. 
We will apply this tiered approach and association analysis (Figure 7) to analyze all samples passing our 
extensive coverage and variant calling QC from various cohorts to identify promising candidate SVs associated 
with the cardiovascular disease phenotype. 
 

Integrate various types of variants for association analysis. The most powerful analysis will come by combining 
information from SNVs, indels, and SVs for association analysis. Traditionally, weights in burden tests account 
for variants with different MAFs, but favoring those having lower MAFs106,112. Bioinformatic information, such as 
PolyPhen scores for SNVs, and SV impact scores from Aim 2 will inform these weights. To the best of our 
knowledge, no previous approaches have aggregated variants of different types. Here, we propose two methods 

Figure 6. Power analysis for sample selection and association. a) Power vs sample 
size for selected MAFs from 0.01% to 1%. Events are assumed heterozygous and 
completely represented in the sample (no mosaicism). Curves are universal in that 
simple insertions and deletions, as well as complex indels, collapse and power is 
independent of indel size, since the “split reads” discovery mode dominates. b) 
Power vs “mosaic factor” (unity meaning event present in all cells; 0.5 meaning 
event present in half the cells, etc.) for selected samples sizes from 1K to 10K. All 
data plotted at 1% MAF. Split-read discovery again dominates and curves are 
universal. c) Association power for 10 collapsed variants (even numbers of cases 
and controls), each of 1% MAF and penetrance from 1% to 50%, at both single 
gene (α = 5%) and Bonferroni-corrected for 20K genes, as well as a 4:1 risk ratio 
for the Li and Leal (2008) collapsing strategy. d) Curves of constant power for 10K 
cases/10K controls, with other parameters the same as in c). 



for such integration: 1) We hypothesize that SVs 
would have stronger functional impacts than 
missense SNVs, on average, and we will extend 
our weighing scheme based on the size and 
genetic architecture of various variant types 
using the framework of previous weighting 
schemes. SNV, indel, and SV will be jointly 
calculated in a single burden analysis; 2) We 
hypothesize that alterations from functional 
regions, regardless of size, contribute to 
phenotype. Therefore, alternatively, we plan use 
SNV/indel and SV for independent burden 
analyses and combine the P-values from these 
independent tests. 
 

Association between SNVs/indels and SVs. 
Under the null hypothesis that variation occurs 
randomly, it should be possible to correlate the 
numbers of SNVs/indels versus the number of 
SVs, the slope being indicative of differences in 
rates of occurrence, and also to check such 
correlation against established rates. We will 
perform association analysis for individual outlier 
cases in which SV census is significantly lower 
or higher than expected. It is possible that such 
outliers might harbor common germline 
alterations leading to genomic instability by affecting DNA repair pathways. 
 

Expected results. This aim will culminate in the SV2Pheno association pipeline and its tools for systematically 
discovering SVs associated with the cardiovascular disease phenotype. We expect to have increased statistical 
power to discover rare, novel SVs associated with phenotypes previously missed due to smaller sample size. 
We further anticipate revealing genetic changes associated with increased frequency of SVs genome-wide. The 
initial version of SV2Pheno will be distributed for broader community use, including on the cloud. 
 

Pitfalls and alternative approaches. Our preliminary analysis indicates that we are well powered to detect SVs 
with MAFs around 0.5% to 1% using >10,000 cases. Although it is very likely that we will discover more SVs 
than we can establish associations for (discussed above), there are still some issues of selection of appropriate 
samples from the selected cohorts. There are several strategies for selecting datasets for discovery: 1) from one 
homogenous cohort; 2) from one CCDG center across multiple cohorts; 3) from multiple cohorts generated by 
multiple TOPMED centers. Regardless of choice, we will maintain high standards regarding coverage, read 
length, insert size, mapping rate, % mismatch etc. (rejecting samples when they don’t meet our standards) to 
ensure accurate, representative detection of SVs across populations. To reduce the number of hypotheses to be 
tested, we can alternatively focus on SVs from regions indicated to have association with cardiovascular disease 
from previous studies using SNPs and Indels.  
 

 
  

Figure 7. SV2Pheno Association Analysis Pipeline. The overall work flow 
includes QC, population stratification from Aim 1, functional classification 
and impact score generation from Aim 2 and single event test and burden 
analysis from Aim 3. 
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