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Abstract:  
Recent large-scale studies have identified multiple genetic risk factors for mental illness and 
indicate a complex, polygenic, and pleiotropic genetic architecture for neuropsychiatric disease. 
However, little is known about how genetic variants yield brain dysfunction or pathology. We 
use transcriptomic profiling as an unbiased, quantitative readout of molecular phenotypes across 
5 major psychiatric disorders, including autism (ASD), schizophrenia (SCZ), bipolar disorder 
(BD), depression (MDD), and alcoholism (AAD), compared with carefully matched controls. 
We identify a clear pattern of shared and distinct gene-expression perturbations across these 
conditions, identifying neuronal gene co-expression modules downregulated across ASD, SCZ, 
and BD, and astrocyte related modules most prominently upregulated in ASD and SCZ. 
Remarkably, the degree of sharing of transcriptional dysregulation was strongly related to 
polygenic (SNP-based) overlap across disorders, indicating a significant genetic component. 
These findings provide a systems-level view of the neurobiological architecture of major 
neuropsychiatric illness and demonstrate pathways of molecular convergence and specificity.  
  

One Sentence Summary: Autism, schizophrenia, and bipolar disorder share global gene 
expression patterns, characterized by astrocyte activation and disrupted synaptic processes.  
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Main Text:  

Decades of neuropathological investigation have failed to identify a consistent 
neurobiological underpinning of mental illness. Lack of consistent neurobiological findings is 
often attributed to disease heterogeneity and comorbidity, small sample sizes, limited availability 
of disease-relevant tissue, and difficulty disentangling the causality of any observed changes. 
However, the significant heritability of nearly all psychiatric diseases (46% as a class) indicates 
that genetics will ultimately provide crucial insight into disease mechanisms (1). Indeed, recent 
large genome-wide association (GWA) and exome sequencing studies have robustly identified 
genetic risk factors, which indicate that the genetic architecture is highly polygenic, with 
contributions rom many common variants of small effect, as well as rare variants with greater 
penetrance (2-4).  

Understanding the functional relevance of genetic risk variants, however, remains poorly 
understood, as few common variants lie within coding regions of the genome and most cannot be 
functionally linked to a specific gene. This picture is further complicated by significant 
pleiotropy, variable expressivity and incomplete penetrance (3, 5-7). It is now well-established 
that individual rare variants, such as copy-number variation at 22q11.2 or 16p11.2, can 
substantially increase risk for multiple disorders including ASD (autism spectrum disorder), 
schizophrenia (SCZ), and intellectual disability (ID) (7). In addition, recent work by the 
Psychiatric Genomics Consortium (PGC) found significant genetic correlation among SCZ, 
Bipolar Disorder (BD), and Major Depressive Disorder (MDD), as well as SCZ and ASD using 
SNP-based co-heritability estimates, indicating shared common genetic variation, as well as 
shared functional pathways implicated across disorders (5, 8). There is also evidence, however, 
for some distinct, non-overlapping common genetic risk profiles between SCZ and BD (9). As 
such, a critical remaining question is how polygenic and pleiotropic genetic variants integrate 
with environmental and epigenetic risk factors in the brain to yield overlapping risk, as well as 
causing clinically distinct disorders.  

We have previously shown that the human brain transcriptome is a highly conserved, 
robust and hierarchically organized system that can be used as a functional readout of convergent 
molecular pathology integrating genetic and non-genetic risk factors for heterogeneous 
neurodevelopmental disorders, such as ASD (10-12). Here, we leverage this approach to 
determine whether disease-related transcriptomic signatures are shared across major 
neuropsychiatric disorders with distinct symptoms and trajectories and whether these patterns 
reflect common genetic risk factors. This approach is unbiased and relies on carefully correcting 
for biological and technical covariates, and independent replication, assessing a transcriptomic 
search space with good coverage, and providing an organizing framework based on gene 
networks and disease associated genetic variation for the observed changes. 

We performed a combined analysis of available gene-expression microarray studies of 
cerebral cortex across five major neuropsychiatric disorders (10, 13-20). A total of 715 brain 
samples were included from subjects with ASD (n=33), SCZ (n=141), BD (n= 75), MDD (n=68 
samples), alcohol abuse disorder (AAD, n=17), and matched non-psychiatric controls (n=381) 
(see Methods). Inflammatory bowel disease (IBD, n=67) was included as a non-neural 
comparison (21). These disorders are highly prevalent (ranging from 0.6% to 17%) and 
disabling, collectively accounting for 43% of global disease burden associated with neurological, 
psychiatric, and substance abuse disorders (22). Individual datasets underwent identical, strict 
quality control and normalization procedures (Figure 1; Methods), including re-balancing to 
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remove any confound between diagnosis and biological (e.g., age, sex) or technical (e.g., post-
mortem interval, pH, RIN, batch, 3’ bias) covariates. Probes were re-annotated using a 
standardized nomenclature (Ensembl v75; Methods), and experimental batch effects were 
corrected both within and between studies (23). 

Differential gene expression (DGE) signatures were computed as log2 fold-change (log2-
FC) values for each case/control comparison using a linear regression framework in limma, 
accounting for all available covariates (24). A random-effects meta-analytic approach (restricted 
maximum-likelihood estimates) was taken to compute disease-specific DGE signatures for each 
disease (25). Spearman’s correlation of disease DGE signatures revealed a significant, global 
transcriptome overlap among ASD, schizophrenia, and bipolar disorder as well as among 
schizophrenia, bipolar disorder, and depression (Figure 2A; all rho ≥ 0.2, P < 10-15, Bonferroni 
corrected). The slopes of linear regressions between ASD, BD, and MDD vs SCZ were 1.51, 
0.75, and 0.20, indicating a gradient of transcriptomic severity with ASD > SCZ > BD > MDD 
(Figure S1). Interestingly, ASD and IBD shared an overlap with rho 0.15 (P < 10-15), likely due 
to common inflammatory changes (26; see also below). The lack of (or negative) overlap 
between chronic alcoholism and other disorders suggests that similarities are less likely due to 
comorbid substance abuse, poor overall general health, or general brain-related post-mortem 
artifacts.  

Disease-specific DGE signatures included in Table S1 provide benchmarks for 
determining the relevance of model organisms, in vitro systems (e.g., iPSC), or drug effects for 
matching in vivo human disease relevant transcriptomes (27, 28). We note that the most 
concordantly downregulated genes (Figure S2) include the cortical interneuron markers 
parvalbumin (PVALB) and somatostatin (SST), corticotrophin releasing hormone (CRH), 
inducible nerve growth factor (VGF), the presynaptic vesicle membrane protein synaptogyrin 
(SYNGR3), and the neurogenic transcription factor NEUROD6. Genes most upregulated across 
disease included both dimers of calprotectin (S100A8 and S100A9). To investigate the potential 
contribution of psychiatric medication, disease-specific transcriptome signatures were compared 
with gene expression changes in non-human primates treated with acute or chronic antipsychotic 
medications that are commonly used in schizophrenia, showing significant negative overlap 
(Figure S3), indicating that the observed patterns were not caused by these medications.   

To validate that these transcriptomic phenotypes were reproducible, we used independent 
RNAseq datasets for replication, which although smaller than the microarray datasets, were 
available for 3 out of the 5 disorders. The first consisted of 100 bp paired end ribosomal depleted 
reads from prefrontal cortex samples of schizophrenia (n=275), bipolar (n=47), and matched 
controls (n=262) as part of the CommonMind Consortium (commonmind.org). A second dataset 
consisted of 100bp single end reads from frontal and occipital tissue from subjects with ASD 
(n=32) and matched controls (n=40) (29). Reads were aligned and mapped according to a 
standardized workflow (Methods) and underwent conditional quantile normalization to correct 
for biases introduced due to read depth, gene-length, and GC content. Differential expression 
was assessed using a multiple linear regression framework using all available covariates 
including multiple RNAseq alignment and mapping statistics to control for technical variation. 
Comparison of DGE signatures across disorders revealed very similar results to microarray 
analyses, with strong overlap among ASD, SCZ, and BD (see Figure 2B).  

Co-Expression Networks Refine Axes of Psychiatric Pathophysiology. To characterize 
the biological pathways overlapping across disorders, we performed weighted gene co-
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expression network analysis (WGCNA) on the entire set of (covariate-regressed and batch-
corrected; Methods) cases and controls.  We used robust WGCNA (30-32) to avoid the 
influence of potential outlier samples or studies. Modules were identified using unsupervised 
hierarchical clustering based on topological overlap of signed networks and annotated based on 
enrichment of gene ontology pathways, as well as markers of specific cell-types, development 
time-points, and regional identity within the central nervous system (Figure 3, S4). Several 
disease-associated modules were highly enriched for markers of specific CNS cell types 
including neurons, astrocytes, microglia and endothelial cells. Cross-disorder (CD) modules 
were assigned colors and numbers as identifiers. The gene expression levels of a module are 
represented by the module eigengene, which is defined as the first principle component of the 
standardized expression values (11). Differential eigengene expression was quantified in two 
complementary ways – linear regression of module eigengene with disease, and overlap between 
up or down-regulated gene lists for each disorder (FDR < 0.05) and each module.  

Module CD4 (yellow) was enriched for astrocyte markers and significantly upregulated in 
ASD (FDR-corrected P=9.5×10-6; Methods), BD (FDR-corrected P=0.0029), and SCZ (FDR-
corrected P=6.5×10-7; Figure 3C), consistent with previous reports of astrocyte activation in 
schizophrenia (33) and ASD (34). Pathways enriched among the genes contained within this 
module included glial cell differentiation as well as organic acid, fatty-acid, and lipid 
metabolism. The most highly connected genes within this module, or hub genes, included the 
gap junction protein GJA1 (e.g., connexin-43), PLTP, a critical component of the blood-brain 
barrier, and SPON1, encoding an extracellular matrix protein, which was recently identified as a 
genome-wide significant regulator of brain structure and connectivity (35). 

In contrast, module CD11 (greenyellow) was enriched for microglial markers and was 
significantly upregulated only in ASD (FDR-corrected P=7.5×10-14). Hubs include major 
components of the complement system (C1QA, C1QB), canonical microglial markers (HLA-DRA 
and AIF-1), and TYROBP, a key regulator of late-onset Alzheimer’s disease neuropathology (36, 
37). Results agree with convergent evidence for neuroimmune/inflammatory dysfunction in ASD 
(38), as well as emerging understanding of the importance of microglia in the regulation of 
synaptic development and function (39). Of note, microglial activation has been previously 
reported in SCZ and, to lesser extent, in BD. However, these studies have been small and often 
fail to account for important covariates, leading to mixed results (40). Furthermore, recent work 
has demonstrated that PET imaging ligands used as in vivo markers for activated microglia also 
cross-react with activated astrocytes (41). These results suggest that microglial activation is not 
present to the same magnitude in SCZ and BD as is seen in ASD, or at the level of astrocyte 
upregulation that is observed across all three disorders.   

Module CD2 (blue) was upregulated only in MDD (FDR-corrected P=0.011) and did not 
show strong cell-type enrichment. Pathways enriched in this module included G-protein coupled 
receptors, cytokine-cytokine interactions, and glucocorticoid metabolic process. Hub genes 
include LHX3, a transcription factor critical for pituitary development and hormone signaling 
(42), and FOXA2, an insulin target that regulates levels of orexin and melanin-concentrating 
hormone (MCH) and is a critical regulator of serotoninergic and dopaminergic neurogenesis 
(43). Notable genes in this module also included the neuropeptide oxytocin (OXT), both 
melatonin receptors (MTNR1A, MTNR1B), thyrotropin-releasing hormone and its receptor (TRH, 
TRHR), the ACTH receptor (MC2R), the orexin receptor HCRTR1, several serotonin receptors 
(5HTR-1B, 5HTR-1D, 5HTR-3A), and dopamine receptors (DRD2, DRD3). Together, these 
genes indicate a link between inflammation, dysregulation of the hypothalamic-pituitary axis, 
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and monoaminergic neurmodulation, supporting current models of MDD pathophysiology (44). 
Furthermore, these pathways provide specific molecular connections to symptomatic 
disturbances in sleep-wake regulation, appetite, and energy balance that are observed in patients 
with depression. 

Two modules containing neuronal markers (CD1, turquoise; CD13, salmon) were 
significantly down-regulated in ASD (CD1: FDR-corrected P=6.5×10-8; CD13: FDR-corrected 
2.6×10-7), and SCZ (CD1: FDR-corrected P=5.2×10-4; CD13: FDR-corrected P=7.2×10-3). These 
modules significantly overlapped with downregulated genes in BD (CD1: OR 7.4, FDR-
corrected P=5×10-11; CD13: OR 5.5, FDR-corrected P=0.043), although the eigengene-BD 
correlation was not significant (CD1: FDR-corrected P=0.074; CD13: FDR-corrected P=0.106). 
Although the same genes were dysregulated across the three disorders, ASD showed the most 
extreme changes within these shared modules, suggesting a more severe molecular phenotype, 
and perhaps related to its earlier clinical onset. CD13 was enriched for gene ontology pathways 
including synapse, neuron, and calcium mediated signalling. Notable genes in this shared module 
included the RNA splicing regulator RBFOX, as well as the calcium binding protein parvalbumin 
(PVALB) and several GABAA-receptor subunits. Pathways associated with CD1 included 
synaptic transmission, voltage gated cation channel, and cholinergic synapse. CD1 module hub 
genes included CAMK2B, an important regulator of synaptic plasticity, and DNM1, a GTPase 
that plays an important role in synaptic vesicle recycling and is linked to epileptic 
encephalopathy. CD1 also included multiple GABAB receptor subunits, as well as genes 
involved in syndromic forms of ASD (mTOR, TSC1, TSC2, MECP2).  

Two remaining modules, CD5 (green) and CD10 (purple), also showed neuronal enrichment 
with functional annotation most driven by mitochondrial processes. CD5 was downregulated in 
AAD (FDR-corrected P=1.1×10-6), ASD (FDR-corrected P=0.0023), and SCZ (FDR-corrected 
P=0.029), and included the inhibitory interneuron marker calbindin, both of the rate-limiting 
enzymes required for GABA synthesis (GAD1, GAD2), as well as several GABAA, glycine, and 
glutamate receptors. CD10 was downregulated in ASD (FDR-corrected P=4.7×10-8), SCZ (FDR-
corrected P=3.5×10-4), and BD (FDR-corrected P=0.023), and characterized by pathways 
including oxidative phosphorylation and respiratory electron transport chain. Hub genes include 
ATP6V0D, a proton pump important for CNS patterning, as well as the peptide hormone and 
interneuron marker CCK as well as its receptor CCKBR.  These results provide further evidence 
for the link between energetic balance, synaptic transmission, and psychiatric disease (45). 

The transcriptome represents a brain phenotype that may either reflect causal factors, or the 
consequences of the disorder. To assess the relationship of transcriptional alterations to causal 
genetic factors, we next asked whether overlapping transcriptome patterns across disorders are 
related to shared genetic aetiologies, as measured by SNP-based polygenic correlation from a 
recent cross disorder analysis of GWAS studies performed by the PGC (5). Remarkably, 
common genetic correlation between psychiatric disorders was significantly associated with 
transcriptome similarity across the same disease pairs (Figure 2B; Spearman’s �=0.70, 95% 
confidence interval [0.25–0.90], P=0.007), indicating that the effect of common variants 
associated with disease is also captured in cortical gene-expression patterns 

To further determine which shared and distinct cross-disorder biological processes were 
related to genetic risk factors, we investigated enrichment of both common and rare disease-
associated variants within dysregulated modules. Recent estimates suggest that common genetic 
variation may account for up to 50% of the heritability associated with these disorders (47, 48). 
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We used MAGMA, a multiple regression framework for gene-based analysis that explicitly 
accounts for linkage disequilibrium between SNPs (49), to generate aggregate gene-level 
significance values from the most recent GWAS studies of schizophrenia, bipolar, ASD, 
alcoholism, depression, and inflammatory bowel disease, the latter as a non-neural comparison 
(2, 50-54). We quantified the relationship between a gene’s module membership (kME), a 
relative measure of centrality or hubness, and GWAS-derived gene significance for each module 
using Spearman’s correlation. The most significant signal comes from the latest schizophrenia 
GWAS, the most highly powered of such studies, which demonstrates significant enrichment of 
risk genes within all four down-regulated neuronal modules (Figure 4A; CD1, CD5, CD10, 
CD13 all FDR-corrected P-values < 10-14). In aggregate, these modules account for 3.3% of the 
variance in GWAS signal in schizophrenia, which is small, but of biological significance. 
Enrichment within three of these neuronal modules was also observed for the most recent PGC 
bipolar GWAS (CD1: FDR-corrected P=6.8×10-6; CD10: FDR-corrected P=0.043; CD13: FDR-
corrected P=0.027; Figure 4A). No significant enrichment was found for ASD or alcoholism 
GWAS results, which may reflect lower power due to their relatively small sample sizes. Finally, 
none of the microglial or astrocyte specific modules showed polygenic GWAS enrichment, 
suggesting a non-genetic etiology underlying these processes, as previously suggested in ASD 
(10).  

There has been some suggestion that rare, de novo genetic variants associated with 
psychiatric disease disrupt different molecular pathways than common variants. For example, 
rare CNVs tend to be associated with reduced intelligence measures even in subjects without 
psychiatric diagnoses (55) whereas sub-threshold accumulation of common genetic variants 
tends to be associated with improved cognitive outcomes (56, 57). We assessed for overlap 
between modules and genes containing non-synonymous or silent de novo mutations compiled 
from recent exome-sequencing studies of ASD, SCZ, and unaffected controls (Figure 4B) (3, 
58-64). Remarkably, the CD1 neuronal module was enriched for non-synonymous rare variants 
identified in ASD (OR 1.58, FDR-corrected P=0.03) and SCZ cases (OR 1.74, FDR-corrected 
P=0.011), but not in unaffected siblings or controls. No enrichment was found for silent 
mutations, which serve as a control comparison. A similar pattern was seen for genes within 
regions affected by recurrent copy-number variation in ASD (OR 2.42, FDR-corrected P=0.025) 
and SCZ (OR 2.34, FDR-corrected P=0.032). These results point to a convergence of common 
and rare genetic risk factors acting to downregulate a specific group of co-regulated genes 
involved in synaptic transmission across multiple neurodevelopmental psychiatric disorders.  

To complement this analysis, and further extend it to common variation, we used LD score 
regression (65) to partition disease heritability (Methods; Figure 4D) into the specific 
contribution from SNPs located within genes from each module. The neuronal module CD1 
again showed significant enrichment within both SCZ (enrichment 2.48 fold, FDR-corrected 
P<10-13) and BP (enrichment 3.9 fold, FDR-corrected P<0.004) GWAS, accounting for ~10% of 
SNP-based heritability within each dataset despite only containing 3% of the SNPs. This 
illustrates how biologically meaningful co-expression modules can be used to understand how a 
complex pattern of many common variants, each of low effect size, can be integrated with 
network analysis to implicate specific biological roles for common variant risk across 
neuropsychiatric disorders.  

In conclusion, these data provide a systematic, quantitative, and genome-wide 
characterization of the molecular alterations in the cerebral cortex of five major neuropsychiatric 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/040022doi: bioRxiv preprint first posted online Feb. 18, 2016; 

http://dx.doi.org/10.1101/040022


 

 

disorders. We demonstrate how such analysis provides a framework for understanding the 
common, downstream molecular signalling pathways underlying major neuropsychiatric illness 
and for interpreting gene variants implicated in disease risk. We observe a gradient of synaptic 
gene down-regulation, with ASD > SZ > BD. BD and SCZ appear most similar in terms of 
synaptic dysfunction and astroglial activation and are most differentiated by subtle 
downregulation in microglial and endothelial modules. ASD shows the most pronounced up-
regulation of a microglia signature, which is minimal in SCZ or BD. Based on these data, we 
hypothesize that a more severe synaptic phenotype, as well as the presence of microglial 
activation, is responsible for the earlier onset of symptoms in ASD, compared with the other 
disorders, consistent with an emerging understanding of the critical non-inflammatory role for 
microglia in regulation of synaptic connectivity during neurodevelopment (39, 66). MDD shows 
neither the synaptic nor astroglial pathology observed in SCZ, BD. In contrast, in MDD, a 
striking dysregulation of HPA-axis and hormonal signalling not seen in the other disorders is 
observed. These results provide the first systematic, transcriptomic framework for understanding 
the pathophysiology of neuropsychiatric disease, placing disorder-related alterations in gene 
expression in the context of shared and distinct genetic effects. 
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Figure 1. A) Model of psychiatric disease pathogenesis. B) Cross disorder transcriptome 
analysis pipeline (see Methods). Cortical gene expression datasets were compiled from cases of 
ASD (n=33 samples), schizophrenia (n=141), bipolar disorder (n=75), depression (n=65), 
alcoholism (n=17), and matched non-psychiatric controls (n=381).  Datasets underwent identical, 
strict quality control and normalization procedures, including outlier removal and rebalancing to 
remove any group x covariate confound. Probes were mapped to a standardized nomenclature 
(Ensembl v75; hg19) and collapsed to the gene level. Differential gene expression was calculated 
using all available biological (disorder, sex, age) and technical (PMI, pH, RIN, batch, 3’ bias) 
covariates.  Network analysis (WGCNA) was performed on covariate-regressed data. Gene co-
expression modules were assessed for disease association, cell-type specificity, functional 
pathways, and enrichment for GWAS signals. 
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Fig. 2. Cortical gene expression patterns overlap across distinct psychiatric disorders and 
share common genetic risk. A) Rank order of transcriptome similarity for all disease pairs, as 
measured by spearman’s correlation of differential expression log2 fold-change values. 
Significant overlap is observed between ASD, SCZ, and BD as well as between SCZ, BD, and 
MDD (all � � 0.2, 
 � 10���, Bonferroni corrected). Inset, differential expression values are 
plotted for significant (ASD-SCZ) and non-significant (ASD-AAD) disease pairs. Chronic 
alcoholism shows no positive overlap with any other disorder. B) Overlapping gene expression 
patterns across disease are strongly correlated with shared common genetic variation, as 
measured by SNP-based co-heritability (5). A similar pattern is observed for microarray-based 
(discovery) and RNA-seq (replication) datasets. ** P < 0.01, *** P < 10-15 (Bonferroni 
corrected). 
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Fig 3. Network analysis identifies modules of coexpressed genes dysregulated across disease 
in distinct combinations. A) Network dendrogram is based on co-expression topological 
overlap of genes across disorders. Color bars show correlation of gene expression with disease 
status, biological, and technical covariates. B) Multidimensional scaling plot demonstrates 
relationship between modules and clustering by cell-type relationship. C) Module eigengene 
differential expression is perturbed across disease states. Plots show beta values from linear 
regression beta values of module eigengene with disease status. Upregulated modules reflect G-
protein coupled receptors in MDD, microglia in ASD, and astrocytes in ASD, SCZ, and BD. 
Downregulated modules reflect neuronal/synaptic and mitochondrial processes across multiple 
disorders. FDR-corrected p-values are highlighted (#P<0.1, *P<0.05, **P<0.01, ***P<0.001). 
D) The top twenty hub genes are plotted for modules most disrupted in disease. See Table S1 for 
a complete list of genes’ module membership. Edges are weighted by the strength of correlation 
between genes. Modules are characterized by (E) Gene Ontology enrichment (top two pathways 
shown for each module) and (F) cell-type specificity, based on RNA-seq of purified cell 
populations from healthy human brain samples (67).  
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Fig 4. Neuronal modules downregulated in ASD, SCZ, and BD are enriched for common 
and rare genetic risk factors. A) Significant enrichment is observed for SCZ- and BD-
associated common variants from GWAS among neuron/synapse & mitochondrial modules (P-
values are FDR-corrected). Gene-level significance values were calculated from GWAS 
summary statistics (2, 50-54) using magma (49). For each module, spearman’s correlations were 
used to assess the relationship between gene module membership (kME) and GWAS 
significance (-log10P-value). B) The CD1 (turquoise) neuronal module shows significant 
enrichment for non-synonymous de novo variants identified in recent whole exome sequencing 
studies (3, 58-64). No enrichment is seen in unaffected controls or siblings, nor was enrichment 
seen in genes affected by silent mutations. CD1 is also enriched for genes affected by recurrent 
copy-number variation in ASD and SCZ (see Table S4). The number (n) of genes affected by 
different classes of variation are shown in parentheses. Significance was calculated using logistic 
regression, accounting for gene-length as a covariate. P-values are FDR corrected. C) Total SNP-
based heritability (liability-scale) calculated from GWA studies in (A). D) Proportion of 
heritability for each disorder that can be attributed to each module. Significance (*p<0.05, 
**p<0.01, ***p<0.001, FDR-corrected) is based on enrichment statistics comparing the 
proportion of SNP heritability within the module divided by the proportion of total SNPs 
represented. The CD1 (turquoise) module shows significant enrichment in SCZ and BD, 
accounting for ~10% of heritability within each dataset despite only containing ~3% of the 
SNPs. 
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