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Abstract 

Epigenetic modifications confer stable transcriptional patterns in the brain, and both 

normal and abnormal brain function involve specialized brain regions, yet little is known 

about brain region-specific epigenetic differences. Here, we compared prefrontal cortex, 

anterior cingulate gyrus, hippocampus and nucleus accumbens from 6 individuals, 

performing whole genome bisulfite sequencing for DNA methylation. In addition, we 

have performed ATAC-seq for chromatin accessibility, and RNA-seq for gene 

expression in the nucleus accumbens and prefrontal cortex from 6 additional 

individuals. We found substantial neuron- and brain region-specific differences in both 

DNA methylation and chromatin accessibility which were largely non-overlapping, and 

were greatest between nucleus accumbens and the other regions. In contrast, glial 

methylation and chromatin were relatively homogeneous across brain regions, although 

neuron/glia ratios varied greatly, demonstrating the necessity for cellular fractionation. 

Gene expression was also largely the same across glia from different brain regions and 

substantially different for neurons. Expression was correlated with methylation and 

accessibility across promoters and known enhancers. Several classes of transcription 

factor binding sites were enriched at regions of differential methylation and accessibility, 

including many that respond to synaptic activity. Finally, both regions of differential 

methylation and those of differential accessibility showed a surprising >10-fold 

enrichment of explained heritability associated with addictive behavior, as well as 

schizophrenia- and neuroticism-associated regions, suggesting that common psychiatric 

illness is mediated through brain region-specific epigenetic marks. 
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Introduction 

Epigenetic modifications, and DNA methylation in particular, are strongly implicated in 

carrying information for stable transcriptional patterns in the brain1. DNA methylation is 

altered in the brain tissues of patients with neuropsychiatric disease, including 

schizophrenia2-4, Alzheimer’s5, and major depressive disorder6. Brain-specific functions 

have anatomical regional correlates and much of disease-based brain research is 

focused on identifying structures that mediate normal function, e.g. the hippocampus in 

memory7, the prefrontal cortex in cognition8, and the nucleus accumbens in addictive 

behavior9. A key priority for human normal and disease-based research is identifying 

the functional genomic differences among brain regions, including gene expression, 

DNA methylation and chromatin.  

Previous studies comparing normal brain regions, including from our own group, 

have found few DNA methylation10-12 or gene expression13 differences among non-

cerebellar brain regions. Genome-wide analyses of these brain tissues fail to sufficiently 

account for cellular heterogeneity making it difficult to identify brain region-specific 

signatures that contribute differentially to neurological diseases, although computational 

methods have attempted to bridge this gap14-16. In spite of this, two recent case/control 

schizophrenia studies3,4 identified DNA methylation signatures that differed among brain 

regions between the diseased and normal brain, though combined this represents less 

than 200 DMRs. In contrast, DNA methylation differences between glia and neurons 

have been widely reported16-21, but comparisons between these cell types within a 

single brain region is generally uninformative with regard to neuronal dysfunction in 

many disease states.  
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Here, we addressed this knowledge gap by comparing post-mortem samples, 

both bulk tissues and fractionated neuronal and glial nuclei, from four brain regions 

(prefrontal cortex (BA9), anterior cingulate gyrus (BA24), hippocampus, and nucleus 

accumbens (NAcc)) at base pair resolution using whole genome bisulfite sequencing 

(WGBS). We found substantial differences in DNA methylation between the neurons of 

individual brain regions at thousands of locations across the genome, particularly 

between the nucleus accumbens and the other three tissues. The magnitude of these 

differences is as dramatic as we and others have previously reported between tumor 

and normal cells22-24, and is in marked contrast to methylation differences comparing 

bulk tissue across brain regions. We also examined both gene expression and 

chromatin accessibility (via ATAC-seq25) in an independent set of sorted neuronal and 

glial nuclei isolated from the nucleus accumbens and prefrontal cortex. In comparing 

these datasets, we found that differential methylation, gene expression, and chromatin 

accessibility intersected over genes highly relevant for region-specific neuronal function 

(i.e. dopamine receptor signaling in the nucleus accumbens). Regions of differential 

methylation and/or accessibility showed significant enrichment of explained heritability 

for neurological traits, particularly neuroticism and schizophrenia. Together, these data 

represent, to our knowledge, the largest and most comprehensive genome-wide 

epigenetic analysis of sorted nuclei from functionally diverse brain tissues. Our results 

have broad implications for future brain epigenetic studies, and suggest that 

comparisons of neurons within experimental frameworks (e.g. case/control studies, 

developmental trajectories, or inter-region comparisons) are more informative than 

comparisons of neurons to glia.  
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Results 

Cell type heterogeneity within and between specimens obscures 

epigenetic differences between brain regions 

To better understand the epigenetic regulation of normal brain function, we have 

mapped the DNA methylation landscape using whole-genome bisulfite sequencing of 

four human post-mortem brain regions: dorsolateral prefrontal cortex (BA9), anterior 

cingulate cortex (BA24), hippocampus (HC), and nucleus accumbens (NAcc). 

Functional abnormalities within each of these brain regions have been implicated in 

many neurological disorders including schizophrenia, Alzheimer’s, and major 

depressive disorder (MDD)26-31. We collected samples from the 4 brain regions from 

multiple donors (Supplementary Table 1) and generated 27 sequencing libraries at an 

average coverage of 8.4x per sample (Supplementary Table 2). We focus on epigenetic 

differences on the autosomes. Principal component analysis of the WGBS data binned 

in 1 kb intervals revealed no clear segregation between the different brain regions 

(Figure 1a), consistent with previous reports10-12.  

We hypothesized that this lack of brain region segregation might be due to 

confounding by cell type heterogeneity. Indeed, changes in cell type composition have 

been reported in patients with major depressive disorder, schizophrenia, and bipolar 

disorder32-35 and across brain development36. To address this, we used fluorescence-

activated nuclei sorting to separate neuronal nuclei from non-neuronal nuclei (hereafter 

referred to as glia) based on the nuclear neuronal marker NeuN (RBFOX3), followed by 

WGBS in a total of 45 samples from 6 donors at an average coverage of 11.1x 

(Supplementary Table 3; Supplementary Figure 1). Surprisingly, we observed that the 
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proportion of isolated NeuN+ nuclei varies substantially within and between brain 

regions, as well as between different samplings from the same tissue specimen (Figure 

1b). Indeed, principal component analysis of the sorted DNA methylation data now 

revealed clear segregation between brain regions and cell types (Figure 1c), showing 

that variation in cell type composition masks region-specific differences in DNA 

methylation. The first principal component represents cell type and explains 57% of the 

variation, while the second principal component represents a difference between the 

neurons of the NAcc and the neurons of the other three brain regions. In contrast to the 

differences between brain regions in the neuronal cell type, we observe no differences 

between brain regions in the glial cell type. To explore this further, we performed 

principal component analysis separately in the two cell types. This analysis showed 

distinct clustering of the 4 different brain regions in neurons (Figure 1d) whereas glial 

samples cluster by donor rather than brain region (Figure 1e). There are no clear brain 

region-specific patterns in autosomal global methylation, but we confirmed previous 

observations19-21 of higher global CpG and non-CpG methylation in neurons compared 

to glia (Supplementary Figure 2). These data clearly indicate that the neurons, rather 

than the glia, contain the relevant functional variability in DNA methylation between 

brain regions. 

Neuronal nuclei isolated from different brain regions display 

widespread differences in DNA methylation 

To identify neuronal differentially methylated regions (DMRs), regions where at least 

one of the brain regions differed from at least one other region while accounting for the 

variation between biological replicates, we extended the approach of BSmooth37 to 
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multi-group comparisons (Methods). We identified 13,074 autosomal neuronal DMRs 

containing 255,537 CpGs (1.1% of all CpGs analyzed), with a mean methylation 

difference of at least 10% between brain regions and family-wise error rate of 5% or 

less (by permutation). In contrast, we found only 114 autosomal DMRs using data from 

isolated glial nuclei and 71 autosomal DMRs using data from bulk tissue (Figure 2a; 

Supplementary Tables 4-6). This demonstrates that biologically relevant methylation 

differences between neurons from distinct brain regions are masked by the high 

proportion of glia across brain regions and the substantial variation of glial proportions 

across samples. 

To uncover the function of these DMRs, we computed overlaps and enrichment 

of these DMRs with common genomic features (Supplementary Figure 3). With respect 

to protein-coding genes, DMRs were most enriched in 3' UTRs, with modest to no 

enrichment upstream of the transcription start site (TSS) or over the gene body. We 

found the expected enrichment of DMRs in CpG island shores and shelves38,39, over a 

large (215 Mb) set of enhancer-like regions mapped using H3K27ac in human brain 

regions40, as well in a focused set (12 Mb) of permissive enhancers identified across 

many cell types and tissues41. Finally, using a map of chromatin states in 4 brain 

regions similar to the ones we have profiled42, we found high enrichment in putative 

regulatory regions. Together, these data suggest that our brain region-associated DMRs 

are enriched in regulatory and enhancer-like elements. 

Of the 13,074 neuronal DMRs, 11,895 involved the nucleus accumbens being 

different from all three of the other brain regions, consistent with our principal 

component analyses. Most (73%) of the NAcc neuronal DMRs were hypermethylated 

7

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/120386doi: bioRxiv preprint first posted online Mar. 24, 2017; 

http://dx.doi.org/10.1101/120386


compared to the other three tissues. LRRC4 (also known as NGL-2) is shown as an 

example of this (Figure 2b) and is known to play important roles in brain development, 

synapse formation, and differentiation of neurons and glia43. Analysis of 

hypermethylated DMRs using the Genomic Regions Enrichment of Annotations Tool 

(GREAT)44 showed enrichment in GO categories neurotrophin signaling and 

telencephalon development while hypomethylated DMRs showed enrichment in 

dopamine signaling and synaptic transmission (Supplementary Table 7). Focusing on 

DMRs overlapping promoters we used Enrichr45 to find that genes with hypermethylated 

promoters (1,284) were enriched for GO categories including positive regulation of 

GTPase activity, regulation of neuron differentiation, and synaptic transmission as well 

as KEGG pathways for glutamatergic and cholinergic synapse (Supplementary Table 

8). Genes with hypomethylated promoters (264) were enriched in GO categories 

including adenylate cyclase-activating dopamine receptor signaling pathway and 

dopamine receptor signaling pathway and KEGG pathways for morphine addiction, 

dopaminergic synapse, and GABAergic synapse. These findings are consistent with the 

fact that 95% of NAcc neurons are GABAergic medium spiny neurons that express D1 

or D2 dopamine receptors46 and the well documented role of the NAcc in addiction 

(reviewed in9).  

Given the overwhelming differences between the NAcc and the other brain 

regions, we hypothesized that DMRs between the other three brain regions could be 

masked. Therefore, we repeated our analysis using only the neuronal samples from 

prefrontal cortex (BA9), anterior cingulate cortex (BA24), and hippocampus and 

identified 208 autosomal DMRs comprising 6,489 CpGs and 217,265 bp 
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(Supplementary Tables 4, 9). One example where a DMR is present between these 

regions is at the DLGAP2 locus (Figure 2c). DLGAP2 is a main component of 

postsynaptic scaffolding complexes important for proper synapse function, has been 

implicated in autism47 and Alzheimer’s48, and is differentially methylated in a rodent 

model of post-traumatic stress disorder 49. GREAT analysis of these DMRs showed 

enrichment for genes involved in nervous system development and neurogenesis 

among others (Supplementary Table 7). While we detected fewer methylation 

differences between these brain regions than when comparing them to the NAcc, these 

DMRs represent the largest set of differentially methylated loci found to date between 

normal, non-cerebellar brain tissues.  

In addition to small DMRs (<11 kb), we also identified large blocks of differential 

methylation among neurons from these 4 brain regions. We discovered 1,808 

differentially methylated blocks containing >1.7 million CpGs, with a median width of 64 

kb, and mean methylation difference between brain regions greater than 10% 

(Supplementary Table 4; Supplementary Table 10). Several genes encoding GABAA 

(a1, b2, b3, g3) receptor subunits as well as the GABAB2 receptor were found in 

hypermethylated blocks in NAcc (example shown in Figure 2d). Interestingly, 23% of 

these blocks cover the entirety of a protein coding gene (411 blocks over 563 genes) 

(Supplementary Table 10); these genes showed enrichment for GO biological 

processes including neuron fate commitment, synaptic transmission, and regulation of 

neuron differentiation, as well as enrichment in KEGG pathways for enrichment in 

olfactory transduction, amphetamine addiction, and synaptic vesicle cycle 

(Supplementary Table 8). 
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Neurons and glia have very divergent methylation profiles 

In agreement with previous reports16-21, we found substantial methylation differences 

between neuronal and glial nuclei across all four brain regions. Simultaneously 

comparing all 45 samples, we identified 97,924 autosomal DMRs between cell types 

with mean methylation difference greater than 10% and large blocks of differential 

methylation (19,072 blocks with a median width of 48 kb) (Supplementary Tables 4, 11, 

12). Several DMRs were found within RBFOX3, which encodes NeuN (the marker used 

to distinguish neuronal from non-neuronal nuclei) (Figure 3a). The entirety of QKI, a 

gene encoding an RNA-binding protein involved in oligodendrocyte differentiation50, is 

covered by a large block of differential methylation and is hypomethylated in glia (Figure 

3b). The majority of both the small DMRs (63%) and differentially methylated blocks 

(81%) are hypermethylated in neurons, consistent with our and other’s results indicating 

slightly higher global methylation levels in neurons (Supplementary Figure 2). While 

previous studies have reported many differentially methylated loci between neurons and 

glia within the prefrontal cortex, hippocampus, and superior temporal gyrus14,19,20, we 

identified 21,802 novel DMRs (Supplementary Table 13). Interestingly, many of these 

novel regions correspond to genomic locations where the cell type difference is only 

present in one tissue, specifically the nucleus accumbens, indicating that inclusion of 

more diverse brain tissues can expand the current catalog of methylation differences 

between neurons and glia.  

Gene expression and chromatin accessibility differ between neurons, 

but not glia, from the nucleus accumbens and prefrontal cortex 
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Given the enrichment of neuronal DMRs in transcriptional regulatory regions (e.g. 

enhancer-like regions and near TSSs) and the divergence between the NAcc and the 

other tissues, we sought to determine the relationship among these differentially 

methylated loci, gene expression, and DNA accessibility. We generated gene 

expression (RNA-seq) and chromatin accessibility (ATAC-seq25,51) data using samples 

from 6 additional donors (Supplementary Table 1), constituting an independent set of 

neuronal and glial nuclei isolated from the NAcc and prefrontal cortex (BA9), the two 

most divergent neuronal populations based on our methylation analyses. 

We found 2,952 genes to be differentially expressed between NAcc and BA9 in 

neurons (FDR 5%). In contrast, there was 1 gene (TENM3) differentially expressed 

between NAcc and BA9 in glial cells supporting our conclusion of homogeneity in glial 

cells between brain regions (Figure 4a, b; Supplementary Tables 14, 15). Genes 

expressed at a higher level in BA9 (1,479) were enriched in GO biological processes 

including synaptic transmission, neuron projection guidance, and axon guidance. Given 

that the prefrontal cortex provides glutamatergic inputs to the NAcc52, it was 

unsurprising that the most enriched KEGG pathways were cAMP signaling pathway and 

glutamatergic synapse. In contrast, genes expressed at a higher level in the NAcc 

(1,473) were enriched in addiction-related GO biological processes including regulation 

of catecholamine secretion, adenylate cyclase-inhibiting G-protein coupled receptor 

signaling pathway, and response to amphetamine (Supplementary Table 8).  

Differential methylation and accessibility mark complementary parts 

of the genome 
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We measured chromatin accessibility via ATAC-seq and identified 424,597 peaks 

covering 324 Mb using peak calling on a pooled meta-sample (Methods). These ATAC 

peaks show the expected enrichment over 5’ UTRs, exons, promoters, FANTOM5 

enhancers and other regulatory regions (Supplementary Figure 4a, b) 

We performed a differential analysis of ATAC-seq peaks, accounting for 

biological variation, between NAcc and BA9 (Methods). For neurons we found 70,079 

neuronal peaks (52 Mb) to be differentially accessible (FDR 5%), while for glia we found 

only 19 differentially accessible peaks (0.01 Mb) (Figure 4c, d; Supplementary Tables 

16, 17; Methods). These results again strongly support our conclusion that glial cells are 

homogeneous between brain regions. Given that many differentially abundant peaks 

were associated with small fold changes between conditions, we focused on the 19,326 

neuronal peaks covering 12 Mb that had an absolute log2(fold change) > 1 between 

NAcc and BA9, which we term differentially accessible peaks (DAPs). 

These DAPs have a similar enrichment pattern as ATAC peaks when compared 

to random genomic regions (Supplementary Figure 4c). However, we reasoned that a 

better comparison would be to those ATAC peaks with little evidence of differential 

accessibility (null ATAC peaks, FDR > 5%). Surprisingly, this showed DAPs to be 

depleted in genic elements, enhancers, and other regulatory regions, with only slight 

enrichment in intergenic regions compared to null ATAC peaks (Supplementary Figure 

4d-f). GREAT analysis of DAPs show enrichment in only one obvious brain-related GO 

category, glutathione derivative biosynthetic process; however, they are enriched in the 

MSigDB Pathway term for genes involved in GABA synthesis, release, reuptake and 
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degradation, consistent with the predominance of GABAergic medium spiny neurons in 

the NAcc46 (Supplementary Table 8). 

We next investigated the relationship between methylation and accessibility in 

our dataset. Of the 13,074 neuronal DMRs, 12,895 (11.7 Mb) involve differences 

between BA9 and NAcc and we focus on these DMRs for comparison with the neuronal 

DAPs. Most DMRs (76%) overlap an ATAC peak, but far fewer (22%) overlap a DAP 

(Figure 4e). Despite the fact that only 22% of DMRs overlap a DAP, they are strongly 

enriched in DAPs (log2(OR)=4.2, P < 2.2 x 10-16) and vice versa (log2(OR)=4.9, P < 2.2 

x 10-16). Thus, differential methylation does not imply differential accessibility. However, 

we do find that greater methylation difference increases the chance of differential 

accessibility (Figure 4f). Further, if a region exhibits both differential methylation and 

accessibility, the two measures are highly concordant with 99.9% of these DMRs having 

higher methylation when the region is less accessible. If DMRs and DAPs do not 

overlap, they are far apart: the median distance from a DMR to a DAP is 54 kb (109 kb 

from a DAP to a DMR). GREAT analysis shows that DAPs are enriched for GO 

categories that are less brain region-specific as compared to DMRs (Supplementary 

Table 8). Together, these data indicate that DMRs and DAPs mark distinct regions of 

the genome. 

DMRs and DAPs are enriched for explained heritability of GWAS traits  

We hypothesized that the epigenetic differences we found between brain regions might 

mark regions important in neurological diseases. To answer this, we estimated their 

contribution to the amount of heritability explained in genome-wide association studies 

(GWAS) using stratified LD score regression53. This method is a more principled 
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approach to the question of genetic importance of various genomic regions than 

considering enrichment of leading GWAS SNPs in the same regions.  

We separately evaluated our different sets of regions (DAPs, DMRs, blocks). We 

compare these regions to the signal observed in conserved regions - the regions 

Finucane et al.53 found to carry the strongest signal - as well as to FANTOM5 

enhancers. As a negative control, we first examined enrichment for height, HDL, LDL, 

and triglyceride levels. As expected, the regions marked by differential methylation and 

accessibility do not show significant enrichment of explained heritability for these traits, 

unlike conserved regions (Figure 5a, Supplementary Figure 5c). We also observed that 

rheumatoid arthritis, a disease we have previously found to be associated with 

methylation in whole blood54, does not display significant enrichment over our regions of 

interest (Supplementary Figure 5d). 

In marked contrast, examination of enrichment for neurological traits revealed 

striking results. We find significant enrichment (5% FDR) of one or more sets of regions 

for schizophrenia, neuroticism, educational attainment, PGC cross-disorder and ever 

smoked (Figure 5b, Supplementary Figure 5b). We find the largest enrichment values 

for DMRs and DAPs between brain regions within neurons, whereas DMRs and DAPs 

between neurons and glia are more often significant, but with a lower enrichment value. 

To interpret this, we note that (1) essentially all neuronal DMRs and DAPs between 

brain regions are also DMRs and DAPs between neurons and glia and (2) as a 

consequence of the LDSC method, the size of the query regions has a major impact on 

the uncertainty of explained heritability; neuronal DMRs and DAPs between brain 

regions are 2-6 times smaller than DMRs and DAPs between neurons and glia. Indeed, 
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it is striking that neuronal DMRs and DAPs between brain regions have very large 

enrichment estimates across all 12 neurological traits (Supplementary Figure 5a). 

De novo mutations have been hypothesized to contribute to the burden of some 

neurological traits. Recently, 10,387 de novo single nucleotide variants (SNVs) were 

identified in 192 autistic children with unaffected parents55. These mutations are slightly 

enriched in our neuronal DMRs (log2(OR)=0.80, P < 0.0001 by simulation, 

Supplementary Figure 5e), however, so too are de-novo mutations detected in a Dutch 

control population56 (log2(OR)=0.56, P < 0.0015 by simulation, Supplementary Figure 

5f). This suggests that these neuronal DMRs may be hotspots for de novo mutations 

though not necessarily specific to autism. 

The relationship between differential expression, methylation and 

accessibility over promoters and enhancers 

We next examined the relationship between differential expression, differential 

methylation and differential accessibility. To do so requires linking DMRs and DAPs to 

individual genes which is straightforward when they overlap genic promoters (+/- 2 kb of 

the transcription start site) or gene bodies. Selecting all genes with a DMR in their 

promoter, we find expression and methylation to be negatively correlated, as expected 

(Figure 6b), although the degree of correlation depends on the location of the DMR with 

respect to the transcriptional start site, with highest correlation 2 kb downstream of the 

TSS (Figure 6a). Extending to the entire gene body only slightly decreased the 

correlation (Figure 6c). Performing the same analysis with differential chromatin 

accessibility, we found that accessibility was positively correlated with differential 

expression, suggesting that the level of differential accessibility quantitatively influences 
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gene expression (Figure 6a, d). Accessibility had peak correlation right at the TSS and 

substantially lower correlation within the gene body (Figure 6a, e). There is a slight 

interaction between accessibility and methylation in the sense that genes containing 

both a DAP and a DMR in their promoter show slightly stronger correlation between 

these marks and gene expression (Supplementary Figure 6). 

To expand our analysis to include enhancers, we used data from the FANTOM5 

project, which linked 11,607 genes to 27,451 enhancer regions using CAGE data 

across more than five hundred samples41. While not brain-specific, using their data we 

can link 8,361 putative enhancer regions to 1,686 differentially expressed genes 

between NAcc and BA9. Just over half (4,237) of these putative enhancer regions 

overlap an ATAC peak, and 59% of these putative enhancers overlap a gene body 

(including introns). We next investigated the joint effect of differential methylation and 

accessibility in promoters and enhancers on these 1,686 enhancer-linked, differentially 

expressed genes. Of these, 945 do not have a DMR or a DAP overlapping either a 

promoter or a linked enhancer. There are 373 enhancer-linked differentially expressed 

genes where only their promoter overlaps a DMR or DAP; the epigenetic state of 86% 

of these genes is consistent with gene expression, in that genes with higher expression 

are more accessible and less methylated. The remaining genes have at least one DAP 

or DMR in a linked enhancer. Many (66%) of these genes are fully consistent with a 

simple model: all DMRs and DAPs overlapping either enhancers or promoters of the 

gene are more accessible and less methylated in the same brain region, and this brain 

region shows higher expression. An example of this is the KLF5 gene which has one 

DMR and two DAPs in two linked enhancers (Figure 6f-i).  
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Differential methylation and accessibility mark genes involved in 

brain region-specific activity 

Many neuronal DMRs and DAPs occur near or within differentially expressed genes 

involved in axon guidance. One such gene is SATB2 which is hypermethylated in the 

NAcc with decreased expression compared to BA9 (Figure 7a). SATB2 is a 

transcriptional repressor that targets many genes involved in axon guidance 57,58. Two 

SATB2 targets, BCL11B and DCC, contain hypomethylated DMRs and are more highly 

expressed in NAcc consistent with the repressive function of SATB2. (Supplementary 

Tables 5, 14). Another example is the semaphorin family member SEMA7A. 

Semaphorins play important roles throughout development in establishing neuronal 

connectivity networks (reviewed in 59). We found SEMA7A to be hypermethylated in 

NAcc with decreased expression compared to BA9 (Figure 7b). 

In addition, many members of the regulator of G protein signaling (RGS) family of 

proteins are differentially methylated and differentially expressed in NAcc (RGS6, 

RGS8, RGS9, RGS14, and RGS20); an example is given in Figure 7c, RGS9. These 

proteins are primarily expressed in the brain and regulate neurotransmitter release, 

synaptic plasticity, and synaptic transmission (reviewed in 60). Expression of RGS9 is 

60-fold higher in NAcc, is important in addiction (cocaine, morphine), and has been 

implicated in schizophrenia and dyskinesias60. Another family member, RGS6, which is 

hypermethylated and downregulated in NAcc, is known to interact with DNMT1 complex 

member, DMAP1, to inhibit the repressive activity of this complex61. Both SEMA7A and 

RGS9 illustrate the aforementioned relationship whereby a change in accessibility over 
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a promoter is accompanied by downstream changes in DNA methylation, both of which 

are consistent with changes in gene expression (Figure 7b, c). 

Another gene, MEF2C, encodes a synaptic activity-regulated transcription factor that 

restricts the number of synapses and dendritic spines in medium spiny neurons of the 

NAcc and has been identified as a possible autism spectrum disorder risk gene62-65. 

This entire gene is highly methylated in NAcc containing multiple small DMRs and is 

included in a large hypermethylated block (Figure 7d). In addition, MEF2C is 

downregulated 11-fold in NAcc compared to BA9. These are just a few examples of the 

many genes with brain region-specific functions whose epigenome differs between 

NAcc and BA9.  

Differential epigenetic regulation of transcription factors and their 

binding sites 

Given the importance of the epigenome in regulating transcription factor (TF) binding, 

we used Haystack66 to identify motifs enriched in DMRs and DAPs. Our DMRs were 

enriched in CpG-containing motifs whose methylation influences TF binding67-70 (Figure 

8a), and many TFs whose motifs were enriched were also differentially expressed 

between NAcc and BA9 neurons (Supplementary Figure 7a). DMRs that overlap 

promoters (Figure 8b; Supplementary Table 20) and those located elsewhere in the 

genome (Supplementary Figure 7b; Supplementary Table 21) were enriched for binding 

sites of synaptic activity-regulated TFs. These include multiple MEF2 family members 

(MEF2A, MEF2C, and MEF2D) and immediate-early genes (IEGs) (FOS, JUN, EGR1-

3). Using MEF2C ChIP-seq ENCODE data from a lymphoblastoid cell line, we found 

that 181 neuronal DMRs (143 hypermethylated and 38 hypomethylated in NAcc) and 
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626 differentially expressed genes overlap a MEF2C binding site. These sites include 

known MEF2C targets JUN71 and BDNF which are both downregulated in NAcc, 

consistent with the hypermethylation and downregulation of MEF2C itself. IEGs with 

enriched motifs include EGR2 and EGR3, implicated in schizophrenia72 and bipolar 

disorder73, respectively, and AP-1 complex components (c-Jun, Fos, and JDP family 

members) with known roles in addiction74-78. A recent study performing ATAC-seq on 

mouse dentate granule neurons found that AP-1 binding sites were enriched in regions 

of chromatin that became open after neuronal activation79. We also observe enrichment 

within our DAPs, regardless of the direction of accessibility (i.e. more accessible in 

NAcc or more accessible in BA9) suggesting differential sites of TF binding between 

brain regions (Figure 8c; Supplementary Figure 7c).  

Other DMRs were enriched in binding sites for TFs important during brain 

development many of which were also enriched in “hypo DAPs” (i.e. regions more 

accessible in BA9 than NAcc) (Figure 8b, c). For example, NEUROD2 activates genes 

required for neurogenesis, migration, and axon guidance of cortical projection 

neurons80, and its reduced expression and hypermethylation of its recognition sites in 

NAcc is consistent with its important role in the cortex (BA9). Taken together, our data 

show that differential methylation and accessibility mark regions of genome being 

regulated by TFs that are responsive to synaptic activity and suggest that these TFs 

likely regulate different targets in each tissue. 

Discussion 

Our results reveal unexpectedly high variation in neuron/glia ratios across the brain, 

even in the same small specimen. This variation greatly confounds the search for brain 
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region-specific molecular patterns. We find that DNA methylation, as well as gene 

expression and chromatin accessibility, are remarkably consistent in glia across brain 

regions, while neuron-specific differences are as substantial as we find in other tissues, 

contrary to many published papers, including our own10-12. As previously reported14,16-21, 

we find substantial differences between neurons and glia. Most of the differentially 

methylated regions we found between neurons from distinct brain regions distinguish 

nucleus accumbens from the other brain regions. Given that GABAergic medium spiny 

neurons comprise 95% of nucleus accumbens neurons and that the other brain regions 

display more neuronal heterogeneity, we hypothesize that further cell fractionation will 

enhance detection of DMRs in other brain regions. This is supported by a recent 

methylation profiling of three neocortical neuron subtypes in mice, which revealed more 

than twice as many differentially methylated regions compared to a mixed neuronal 

sample81. Our neuronal DMRs were most enriched in enhancer regions and 3’ UTRs 

emphasizing the importance of DNA methylation in regulatory regions.  

Surprisingly, we found that regions of differential methylation and differential 

accessibility were largely non-overlapping, indicating that differential methylation does 

not imply differential accessibility. This shows the power of profiling both methylation 

and accessibility. Gene expression was negatively correlated with methylation and 

positively correlated with chromatin accessibility as expected. Interestingly, this 

correlation was strongest over the TSS for DAPs while for DMRs it was strongest ~2-4 

kb into the gene body. Accessibility and methylation over known enhancers are 

consistent with each other and with gene expression, even between different enhancers 

for the same gene. 
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Additionally, both neuronal DMRs and DAPs display >10-fold enrichment of 

explained heritability associated with addictive behavior (e.g. ever smoked), consistent 

with the well-characterized role of the nucleus accumbens in addiction9, as well as an 

enrichment of DMRs for schizophrenia- and neuroticism-associated regions. 

Surprisingly, the DMRs are between brain regions, yet they are enriched for multiple 

psychiatric GWAS traits, in support of the conclusion that disease mechanisms are 

brain region-specific. We find that regions of hypomethylation in the nucleus accumbens 

were enriched in genes involved in dopaminergic pathways including DRD1, which 

encodes D1 dopamine receptor, and addiction mechanisms (e.g. MEF2C and RGS9) 

suggesting that the epigenome promotes specialized neuronal function.  

Finally, we found very strong enrichment for several classes of transcription 

factor binding sites at DMRs and DAPs, including many (MEF2C, FOS, JUN, EGR1-3) 

that respond specifically to synaptic activity (reviewed in82) and several which are 

reported to be methylation sensitive. These data are consistent with a link between 

synaptic activity and long-term epigenetic modification of transcription factor binding 

sites. This finding agrees with previous data in adult mouse dentate gyrus neurons, 

suggesting that DNA methylation could perpetuate transient stimuli into long-lasting 

neuronal plasticity83. Together, these results are consistent with the notion that insofar 

as epigenetics is involved in human disease, it may be related to disrupted 

developmental and phenotypic plasticity84. 
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ONLINE METHODS 

Data availability 

Raw and processed data generated during this study are available on the Gene 

Expression Omnibus (GSE96615).  

Experimental Methods 

Human Postmortem Brain Samples 

Fluorescence-activated nuclei sorting was performed on flash-frozen postmortem 

dorsolateral prefrontal cortex (BA9), hippocampus (HC), nucleus accumbens (NAcc), 

and anterior cingulate gyrus (BA24) from six individuals not affected with neurological or 

psychiatric disease. These samples underwent nuclei extraction and sorting as 

described below for subsequent DNA methylation analysis. Additionally, neuronal nuclei 

were isolated from the nucleus accumbens (NAcc) and dorsolateral prefrontal cortex 

(BA9) of 6 different individuals for RNA-seq and ATAC-seq analysis. To underscore the 

importance of cell sorting, we also prepared DNA from unsorted material from the four 

brain regions above (BA9, n=9; HC, n=7; NAcc, n=7; BA24, n=5). The majority of 

individuals were matched between sorted and unsorted, but not all. All samples were 

obtained from the University of Maryland Brain and Tissue Bank which is a Brain and 

Tissue Repository of the NIH NeuroBioBank (Supplementary Table 1). This study was 

approved under IRB00061004.   

 

Nuclei Extraction, Cell Sorting, and DNA Isolation 

Total nuclei were extracted via sucrose gradient centrifugation as previously described1 

with the following changes. For WGBS analysis, a total of 2 × 250 mg of frozen tissue 
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per sample was homogenized in 5 mL of lysis buffer (0.32 M sucrose, 10 mM Tris pH 

8.0, 5 mM CaCl2, 3 mM Mg acetate, 1 mM DTT, 0.1 mM EDTA, 0.1% Triton X-100) by 

douncing 50 times in a 40 mL dounce homogenizer. Lysates were combined and 

transferred to a 38 mL ultracentrifugation tube and 18 mL of sucrose solution (1.8 M 

sucrose, 10 mM Tris pH 8.0, 3 mM Mg acetate, 1 mM DTT) was dispensed to the 

bottom of the tube. The samples were then centrifuged at 28,600 rpm for 2 h at 4°C 

(Beckman Optima XE-90; SW32 Ti rotor). After centrifugation, the supernatant was 

removed by aspiration and the nuclear pellet was resuspended in 500 uL staining mix 

(2% normal goat serum, 0.1% BSA, 1:500 anti-NeuN conjugated to AlexaFluor488 

(Millipore, cat#: MAB377X) in PBS) and incubated on ice. Unstained nuclei and nuclei 

stained with only secondary antibody served as negative controls. The fluorescent 

nuclei were run through a Beckman Coulter MoFlo Cell Sorter with proper gate settings 

(Supplementary Figure 1). A small portion of the NeuN+ and NeuN- nuclei were re-run 

on the sorter to validate the purity which was greater than 95%. Immuno-negative 

(NeuN-) and -positive (NeuN+) nuclei were collected in parallel. Sorted nuclei were 

pelleted by adding 2 mL of sucrose solution, 50 uL of 1 M CaCl2, and 30 uL of Mg 

acetate to 10 mL of nuclei in PBS. This solution was incubated on ice for 15 min, then 

centrifuged at 3,000 rpm for 20 min. The nuclear pellets were flash frozen in liquid 

nitrogen and stored at -80°C. DNA was extracted from the frozen nuclear pellets using 

the MasterPure DNA Extraction kit (Epicentre, Madison, Wisconsin, USA) following the 

manufacturer’s instructions. 

Whole genome bisulfite sequencing (WGBS) 

WGBS single indexed libraries were generated using NEBNext Ultra DNA library Prep 
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kit for Illumina (New England BioLabs, Ipswich, MA, USA) according to the 

manufacturer's instructions with modifications. 400 ng gDNA was quantified by Qubit 

dsDNA BR assay (Invitrogen, Carlsbad, CA, USA) and 1% unmethylated lambda DNA 

(cat#: D1521, Promega, Madison, WI, USA) was spiked in to measure bisulfite 

conversion efficiency. Samples were fragmented to an average insert size of 350 bp 

using a Covaris S2 sonicator. Size selection was performed using AMPure XP beads 

and insert sizes of 300-400 bp were isolated (0.4x and 0.2x ratios). Samples were 

bisulfite converted after size selection using EZ DNA Methylation-Gold Kit (cat#: D5005, 

Zymo, Irvine, CA, USA) following the manufacturer’s instructions. Amplification was 

performed after the bisulfite conversion using Kapa Hifi Uracil+ (cat#: KK282, Kapa 

Biosystems, Boston, USA) polymerase using the following cycling conditions: 98°C 45s 

/ 8cycles: 98°C 15s, 65°C 30s, 72°C 30s / 72°C 1 min. Final libraries were run on 2100 

Bioanalyzer (Agilent, Santa Clara, CA, USA) High-Sensitivity DNA assay; samples were 

also run on Bioanalyzer after shearing and size selection for quality control purposes. 

Libraries were quantified by qPCR using the Library Quantification Kit for Illumina 

sequencing platforms (cat#: KK4824, KAPA Biosystems, Boston, USA), using 7900HT 

Real Time PCR System (Applied Biosystems). Libraries were sequenced with the 

Illumina HiSeq2500 using 125 bp paired-end single indexed run and 10% PhiX spike-in. 

Assay for transposase-accessible chromatin using sequencing 

(ATAC-seq) 

NeuN+ and NeuN- nuclei were isolated as previously described and 100,000 nuclei were 

used for ATAC-seq library preparation as per standard protocols2. Briefly, nuclei were 

suspended in lysis buffer and incubated 20 min on ice followed by centrifugation for 10 
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min as previously described. The transposition reaction was incubated for 1 h at 37°C 

(Nextera DNA library prep kit; cat #:FC-121-1031, Illumina). After PCR amplification of 

libraries and column clean up via the Qiagen MinElute PCR purification kit (cat#:28004, 

Qiagen, Valencia, CA, USA), an additional clean up with AMPure XP beads (0.8x ratio) 

was performed twice with 80% ethanol washes before quantification using a DNA High 

Sensitivity chip on a 2100 BioAnalyzer (Agilent, Santa Clara, CA, USA). Libraries were 

sequenced with the Illumina HiSeq4000 using 70 bp paired-end single indexed run with 

a 5% PhiX spike-in.  

RNA sequencing (RNA-seq) 

RNA isolated from bulk tissue was assessed and only tissues with a RIN > 4 were used 

for nuclei isolation. NeuN+ and NeuN- nuclei were isolated as previously described with 

the addition of 20 U/mL RNAse Inhibitors (cat#: N8080119, Applied Biosystems) to the 

lysis buffer, sucrose solution, and antibody solution while protease inhibitor cocktail 

(cat#: 50-751-7359, Amresco) was added to the lysis buffer only. Approximately 

200,000 nuclei were sorted directly into RLT buffer + 150 mM 2-mercaptoethanol and 

RNA was isolated using the Qiagen RNeasy Kit (cat #:74106, Qiagen, Valencia, CA, 

USA). Nuclear RNA quality was assessed by running samples on a Total RNA Pico 

Chip on a 2100 BioAnalyzer (Agilent, Santa Clara, CA, USA). RNA-seq libraries were 

created using 2.5 ng input RNA with the SMARTer® Stranded Total RNA-Seq Kit - Pico 

Input Mammalian (cat#: 635005, Takara Bio, Mountain View, CA, USA) following the 

manufacturer's instructions for degraded RNA samples. Libraries were sequenced with 

the Illumina HiSeq4000 using 70 bp paired-end single indexed run with 5% PhiX spike-

in. 
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Computational Methods 

Annotation 

The hg19 build of the human reference genome was used for all analyses. Only 

analyses of autosomal data are reported. Genes, exons, introns, and UTRs were 

generated from GENCODE v19 (http://www.gencodegenes.org/releases/19.html)3 and 

CpG islands were downloaded from UCSC (http://genome.ucsc.edu/)4,5. CpG shores 

are defined as 2 kb flanking CpG islands and CpG shelves are defined as 2 kb flanking 

CpG islands. Promoters were defined as 4 kb centered on the transcription start 

site. The 15-state ChromHMM model for 7 adult brain tissues from the Roadmap 

Epigenomics Project6 was downloaded using the R/Bioconductor AnnotationHub 

package (v2.6.4).  

Whole genome bisulfite sequencing (WGBS) 

Mapping and quality control of WGBS reads 

We trimmed reads of their adapter sequences using Trim Galore! (v0.4.0) 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and quality-trimmed 

using the following parameters: trim_galore -q 25 --paired ${READ1} 

${READ2}. We then aligned these trimmed reads to the hg19 build of the human 

genome (including autosomes, sex chromosomes, mitochondrial sequence, and lambda 

phage (accession NC_001416.1) but excluding non-chromosomal sequences) using 

Bismark7 (v0.14.3) with the following alignment parameters: bismark --bowtie2 -X 

1000 -1 ${READ1} -2 ${READ2}. Supplementary Tables 2 and 3 summarize the 

alignment results. Using the reads aligned to the lambda phage genome, we estimated 

that all libraries had a bisulfite conversion rate > 99%. 
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We then used bismark_methylation_extractor to summarize the number 

of reads supporting a methylated cytosine and the number of reads supported a 

unmethylated cytosine for every cytosine in the reference genome. Specifically, we first 

computed and visually inspected the M-bias8 of our libraries. Based on these results, we 

decided to ignore the first 5 bp of read1 and the first 10 bp of read2 in the subsequent 

call to bismark_methylation_extractor with parameters: --ignore 5 --

ignore_r2 10. The final cytosine report file summarizes the methylation evidence at 

each cytosine in the reference genome. 

Smoothing WGBS 

We used BSmooth to estimate CpG methylation levels as previously described8. 

Specifically, we ran a ‘small’ smooth to identify small DMRs (smoothing over windows of 

at least 1 kb containing at least 20 CpGs) and a ‘large’ smooth to identify large-scale 

blocks (smoothing over windows of at least 20 kb containing at least 500 CpGs). 

Following smoothing, we analyzed all CpGs that had a sequencing coverage of at least 

1 in all samples (n = 45 for sorted data, n = 27 for unsorted data). 

Identification of small DMRs and large-scale blocks 

Previously, we have used BSmooth to perform pairwise (two-group) comparisons9. In 

the present study, we had up to 8 groups to compare: 4 brain regions (BA9, BA24, HC, 

NAcc) and, for the sorted data, 2 cell types (NeuN+, NeuN-). Rather than running all 28 

pairwise comparisons, we extended the BSmooth method to handle multi-group 

comparisons, which we refer to as the F-statistic method. 

For the F-statistic method, we constructed a design matrix with a term for each 

group (e.g., BA9_neg for NeuN- cells from BA9, BA9_pos for NeuN+ cells from BA9, 
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etc.). For each CpG, we then fitted a linear model of the smoothed methylation levels 

against the design matrix. To improve standard error estimates, we thresholded the 

residual standard deviations at the 75% percentile and smoothed these using a running 

mean over windows containing 101 CpGs. We then combined the estimated coefficients 

from the linear model, their estimated correlations, and the smoothed residual standard 

deviations to form F-statistics to summarize the evidence that methylation differs 

between the groups at each of the CpGs. 

Next, we identified runs of CpGs where the F-statistic exceeded a cutoff and 

where each CpG was within a maximum distance of the next. Specifically, we used 

cutoffs of F = 4.62 for DMRs and F = 22 for blocks (following10) and required that the 

CpGs were within 300 bp of one another for DMRs and 1000 bp of one another for 

blocks. For blocks, we also required that the average methylation in the block varied by 

at least 0.1 across the groups. These runs of CpGs formed our candidate DMRs and 

blocks. Each candidate DMR and block was summarized by the area under the curve 

formed when treating the F-statistic as a function along the genome (areaStat). 

We used permutation testing to assign a measure of statistical significance to each 

candidate DMR/block. We randomly permuted the design matrix, effectively permuting 

the sample labels, and repeated the F-statistic analysis with the same cutoffs using the 

permuted design matrix, resulting in a set of null DMRs/blocks for each permutation. We 

performed 1000 such permutations. We then asked, for each candidate DMR/block, in 

how many permutations did we see a null DMR/block anywhere in the genome with the 

same or better areaStat as the candidate DMR/block; dividing this number by the total 

number of permutations gives a permutation P-value for each DMR/block. Since we are 
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comparing each candidate block/DMR against anything found anywhere in the genome 

in the permutation set, we are also correcting for multiple testing by controlling the 

family-wise error rate. Those candidates DMRs/blocks with a permutation P-value ≤ 

0.05 form our set of DMRs/blocks. 

Annotation of small DMRs and blocks 

The F-statistic approach allows us to jointly use all samples for the identification of 

DMRs and blocks. However, it does not tell us which group(s) are hypomethylated or 

hypermethylated for the region. To assign such labels to our F-statistic DMRs and 

blocks, we used a post-hoc analysis for specific pairwise comparisons of interest: 

NeuN+ vs. NeuN-; NeuN+ cells in NAcc vs. NeuN+ cells in BA9, BA24, and HC; NeuN+ 

cells in NAcc vs. NeuN+ cells in BA9. We identified small DMRs and blocks using the 

original t-statistic method of BSmooth; an F-statistic DMR was assigned a label (e.g., 

hypermethylated in NeuN+ and hypomethylated in NeuN-) if the corresponding t-statistic 

DMR or block overlapped at least 50% of the F-statistic DMR or block. This procedure 

does not change the coordinates of the DMR/block and means an F-statistic DMR/block 

may be assigned multiple labels.  

Subset analyses 

We found, as expected, that the differences between NeuN+ and NeuN- samples 

dominated our results (98,420 / 100,875 F-statistic DMRs and 19,072 / 20,373 F-

statistic blocks were assigned the label, NeuN+ vs NeuN-; Supplementary Tables 11 and 

12). To better focus on the differences between brain regions within a given cell type 

(NeuN+ or NeuN-), we repeated the F-statistic analysis using just the NeuN+ or NeuN- 

samples (Supplementary Tables 5, 6, 10). We again found that one group dominated: 
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11,895 / 13,074 F-statistic NeuN+ DMRs were specific to NAcc. To better focus on the 

differences between the remaining brain regions, we repeated the analysis using just 

the BA9, BA24, and HC NeuN+ samples (Supplementary Table 9). 

Novel NeuN+ vs NeuN- DMRs 

Three published datasets of NeuN+ vs NeuN- methylation differences1,11,12 were used 

for comparison with our DMRs. Data from Montano et al. was generated from our own 

lab and is accessible through GEO series accession number GSE48610. Differentially 

methylated sites from Kozlenkov et al. were obtained by request directly from the 

authors. DMRs from Lister et al. were obtained from 

http://brainome.ucsd.edu/BrainMethylomeData/CG_DMR_lists.tar.gz and converted to 

hg19 using the UCSC liftOver tool13. As three different platforms were used to measure 

methylation (CHARM, WGBS, and 450K, respectively), we combined the differentially 

methylated CpGs from the autosomes of each study and compared to the differentially 

methylated CpGs within our NeuN+ vs NeuN- DMRs. Sites that were unique to our 

NeuN+ vs NeuN- DMRs were reported as novel. 

 

Assay for transposase-accessible chromatin using sequencing 

(ATAC-seq) 

Mapping and quality control of ATAC-seq reads 

We trimmed reads of their adapter sequences using trimadap (v0.1, 

https://github.com/lh3/trimadap/archive/0.1.zip) with the following parameters: 

trimadap-mt -3 CTGTCTCTTATACACATCTCCGAGCCCACGAGA ${READ1}; 

trimadap-mt -3 CTGTCTCTTATACACATCTGACGCTGCCGACGA ${READ2}. We then 
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aligned these trimmed reads to the hg19 build of the human genome (including 

autosomes, sex chromosomes, mitochondrial sequence, unplaced sequence, and 

unlocalized sequence) using Bowtie214 (v2.2.5) with alignment parameters: bowtie2 -

X 2000 --local --dovetail. Potential PCR duplicate reads were marked using 

MarkDuplicates from the Picard library (http://broadinstitute.github.io/picard/; v2.2.1). 

Supplementary Table 18 summarizes the alignment results for the 22 libraries. 

Identifying differentially accessibly ATAC-seq peaks (DAPs) 

Peaks were called using MACS15 (v2.1.0) on a metasample formed by combining all 

non-duplicate-marked reads with a mapping quality > 30 from the 22 samples: macs2 

callpeaks --nomodel --nolambda --call-summits -t ${BAMS[@]}. We 

excluded those peaks overlapping the ENCODE mappability consensus blacklist 

regions 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/) 

and the blacklist for ATAC-seq created by Buenrostro et al.2 

(https://sites.google.com/site/atacseqpublic/atac-seq-analysis-

methods/mitochondrialblacklists-1). We extended +/- 250 bp from the summit of peak 

and merged overlapping peaks to form our initial set of peaks comprising 961,916 

autosomal peaks.  

For each sample, we counted the number of fragments (fragment = start of read1 

to end of read2) overlapping each of the 961,916 peaks using the summarizeOverlaps() 

function in the GenomicAlignments R/Bioconductor package16 (v1.10.0). Specifically, we 

only counted those fragments where both reads had a mapping-quality score > 30, 
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reads not marked as potential PCR duplicates, and those where any part of the 

fragment overlapped exactly one peak. 

We then analyzed these data using the voom method, originally designed for 

differential expression analysis of RNA-seq data17. Briefly, the read counts were 

transformed to counts per million (cpm) and only those 424,597 / 961,916 peaks with at 

least 1 cpm for at least 5 samples (the size of the smallest group of samples) were 

retained. These 424,597 peaks were used in all downstream analyses described in the 

main text. We normalized these counts using TMM18, then used edgeR19 (v3.16.5) and 

limma20 (v3.30.7) to transform these counts to log2-cpm, estimate the mean-variance 

relationship, and compute appropriate observation-level weights ready for linear 

modelling. 

In our design matrix, we blocked on donor (donor1, …, donor6) and included a 

term for each group (e.g., BA9_neg for NeuN- cells from BA9, BA9_pos for NeuN+ cells 

from BA9, etc.). We ran surrogate variable analysis21 using the sva (v3.22.0) 

R/Bioconductor package and identified 4 surrogate variables, one of which correlated 

with the date on which these samples were flow-sorted. We ultimately decided to 

include all 4 surrogate variables in the linear model. Using the empirical Bayes 

shrinkage method implemented in limma, we tested for differential accessibility of peaks 

in three comparisons: (1) NAcc vs. BA9 in NeuN+ cells; (2) NAcc vs. BA9 in NeuN- cells; 

(3) NeuN+ cells vs NeuN- cells. For an ATAC-seq peak to be called a differentially 

accessible peak (DAP), it had to have a Benjamini-Hochberg adjusted P-value < 0.05 

and an absolute log2 fold change > 1, the latter filter to focus on the regions that were 

plausibly more interesting and interpretable. 
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RNA sequencing (RNA-seq) 

Mapping and quality control of RNA-seq reads 

We trimmed the first 3 bp of read1, which were derived from template switching oligos 

and not the cDNA of interest, using seqtk (https://github.com/lh3/seqtk; v1.2-r94) with 

the following parameters: seqtk trimfq -b 3 ${READ1}. We then quasi-mapped 

these trimmed reads to a FASTA file of protein-coding and lncRNA genes from 

GENCODE v19 (http://www.gencodegenes.org/releases/19.html)3 and performed 

transcript-level quantification using Salmon22 (v0.7.2). Supplementary Table 19 

summarizes these results for the 20 libraries. 

Identifying differentially expressed genes (DEGs) 

We used tximport23 (v1.2.0) to compute normalized gene-level counts from the 

transcript-level abundance estimates (scaling these using the average transcript length 

over samples and the library size). Only autosomal genes with at least 1 cpm in at least 

4 libraries (the size of the smallest group of samples) were retained for downstream 

analysis (24,161 / 33,351 genes). We normalized these counts using TMM18 then used 

edgeR19 (v3.16.5) and limma20 (v3.30.7) to transform these counts to log2-cpm, estimate 

the mean-variance relationship, and compute appropriate observation-level weights 

ready for linear modelling. 

In our design matrix, we blocked on donor (donor1, …, donor6) and included a 

term for each group (e.g., BA9_neg for NeuN- cells from BA9, BA9_pos for NeuN+ cells 

from BA9, etc.). We ran surrogate variable analysis21 using the sva (v3.22.0) 

R/Bioconductor package and identified 5 surrogate variables, some of which correlated 

with the date on which these samples were flow-sorted. We ultimately decided to 
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include all 5 surrogate variables in the linear model. Using the empirical Bayes 

shrinkage method implemented in limma, we tested for differential expression of genes 

in three comparisons: (1) NAcc vs. BA9 in NeuN+ cells; (2) NAcc vs. BA9 in NeuN- cells; 

(3) NeuN+ cells vs NeuN- cells. For a gene to be called a differentially expressed gene 

(DEG), it had to have a Benjamini-Hochberg adjusted P-value < 0.05 with no minimum 

log2 fold change cutoff. 

Enrichment of DMRs, ATAC peaks, and DAPs in genomic features 

Enrichment odds ratios and P-values 

We formed a 2×2 contingency table of (n11, n12, n21, n22); specific values of (n11, n12, n21, 

n22) are described below. The enrichment log odds ratio was estimated by log2(OR) = 

log2(n11) + log2(n22) - log2(n12) - log2(n21), its standard error was estimated by 

se(log2(OR)) = sqrt(1 / n11 + 1 / n12 + 1 / n21 + 1 / n22), and an approximate 95% 

confidence interval formed by [log2(OR) – 2 × se(log2(OR)), log2(OR) + 2 × 

se(log2(OR))]. We also report the P-value obtained from performing Fisher’s exact test 

for testing the null of independence of rows and columns in the 2×2 table (i.e. the null of 

no enrichment or depletion) using the fisher.test()function from the ‘stats’ package 

in R24. 

DMRs 

For DMRs, we computed the enrichment of CpGs within DMRs inside each genomic 

feature (e.g., exons, FANTOM5 enhancers, etc.). Specifically, for each genomic feature, 

we constructed the 2×2 table (n11, n12, n21, n22), where: 

• n11 = Number of CpGs in DMRs that were inside the feature 

• n12 = Number of CpGs in DMRs that were outside the feature 
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• n21 = Number of CpGs not in DMRs that were inside the feature 

• n22 = Number of CpGs not in DMRs that were outside the feature 

The total number of CpGs, n = n11 + n12 + n21 + n22, was the number of autosomal CpGs 

in the reference genome covered by at least one read. We counted CpGs rather than 

DMRs or bases because this accounts for the non-uniform distribution of CpGs along 

the genome and avoids double-counting DMRs that are both inside and outside the 

feature.  

ATAC peaks 

For ATAC peaks, we computed the enrichment of bases within ATAC peaks inside each 

genomic feature. Specifically, for each genomic feature, we constructed the 2×2 table 

(n11, n12, n21, n22), where: 

• n11 = Number of bases in ATAC peaks that were inside the feature 

• n12 = Number of bases in ATAC peaks that were outside the feature 

• n21 = Number of bases in the rest of the genome that were inside the feature 

• n22 = Number of bases in the rest of the genome that were outside the feature 

The total number of bases, n = n11 + n12 + n21 + n22, was the number of autosomal bases 

in the reference genome. We counted bases rather than number of ATAC peaks to 

account for the slight variation in ATAC peak width, the large variation in width for the 

‘rest of the genome’ features, and to avoid double-counting ATAC peaks that were both 

inside and outside the feature. 

DAPs 
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For DAPs, we computed the enrichment of bases within DAPs inside each genomic 

feature in two ways. Firstly, for each genomic feature, we constructed the 2 × 2 table 

(n11, n12, n21, n22), where: 

• n11 = Number of bases in DAPs that were inside the feature 

• n12 = Number of bases in DAPs that were outside the feature 

• n21 = Number of bases in the rest of the genome that were inside the feature 

• n22 = Number of bases in the rest of the genome that were outside the feature 

Secondly, for each genomic feature, we constructed the 2 × 2 table (n11, n12, n21, n22), 

where: 

• n11 = Number of bases in DAPs that were inside the feature 

• n12 = Number of bases in DAPs that were outside the feature 

• n21 = Number of bases in null-peaks that were inside the feature 

• n22 = Number of bases in null-peaks that were outside the feature 

‘Null-peaks’ were those ATAC-seq peaks that were not differentially accessible between 

the relevant condition (NAcc and BA9 in NeuN+ cells) based on the peak having a 

Benjamini-Hochberg adjusted P-value > 0.05 in the analysis of differential accessibility. 

By comparing to null-peaks rather than the rest of the genome, we account for the non-

uniform distribution of ATAC peaks along the genome.  

We counted the number of bases rather than the number of ATAC peaks to account for 

the slight variation in peak width and to avoid double-counting ATAC peaks that were 

both inside and outside the feature.  

Linkage disequilibrium score regression (LDSC) 
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We used stratified linkage disequilibrium score regression (LDSC25) to evaluate the 

enrichment of common genetic variants from genome-wide association study (GWAS) 

signals to partition trait heritability within functional categories represented by our 

DMRs, ATAC peaks, and DAPs26. LDSC estimates the proportion of genome-wide 

single nucleotide polymorphism (SNP)-based heritability that can be attributed to SNPs 

within a given category by a regression model that combines GWAS summary statistics 

with estimates of linkage disequilibrium from an ancestry-matched reference panel. 

We ran LDSC (v1.0.0; https://github.com/bulik/ldsc) to estimate the proportion of 

genome-wide SNP-based heritability across 25 traits within 7 categories defined from 

our set of DMRs and DAPs. Each of these 7 categories was added one at a time to a 

‘full baseline model’ that included 53 functional categories (24 main annotations, 500 bp 

windows around of each of the 24 main annotations, and 100 bp windows around 5 sets 

of ChIP-seq peaks) that capture a broad set of genomic annotations, as previously 

described26. 

The 7 categories were: 

1. Neuronal DMRs (Supplementary Table 5) 

2. Neuronal DAPs (Supplementary Table 16) 

3. Neuronal blocks (Supplementary Table 10) 

4. Neuronal non-DAPs1 (Supplementary Table 16) 

5. Neuron vs. glia DMRs (Supplementary Table 11) 

6. Neuron vs. glia DAPs (Supplementary Table 22) 

                                                
1 ‘Non-DAPs (Neuron)’ were all those ATAC peaks not called as ‘DAPs (Neuron)’, i.e. 
adjusted P-value > 0.05 and/or |logFC| < 1 in comparison of NAcc and BA9 in NeuN+ 
cells. 
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7. Neuron vs. glia blocks (Supplementary Table 12) 

The 25 traits and their summary statistics were: 

1. ADHD27 (https://www.med.unc.edu/pgc/files/resultfiles/pgc.adhd.2012-10.zip)  

2. Age at menarche28 

(http://www.reprogen.org/Menarche_Nature2014_GWASMetaResults_17122014.

zip)  

3. Alzheimer’s disease29 (IGAP_summary_statistics.zip downloaded from 

http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php) 

4. Autism spectrum disorder (Autism Spectrum Disorder Working Group of the 

Psychiatry Genomics Consortium. Dataset: PGC-ASD summary statistics from a 

meta-analysis of 5,305 ASD-diagnosed cases and 5,305 pseudocontrols of 

European descent (based on similarity to CEPH reference genotypes, March 

2015; https://www.med.unc.edu/pgc/files/resultfiles/pgcasdeuro.gz)  

5. Bipolar disorder30 (https://www.med.unc.edu/pgc/files/resultfiles/pgc.bip.2012-

04.zip) 

6. Cognitive performance31 

(http://ssgac.org/documents/CHIC_Summary_Benyamin2014.txt.gz) 

7. Depressive symptoms32 (http://ssgac.org/documents/DS_Full.txt.gz) 

8. Educational attainment33 (http://ssgac.org/documents/SSGAC_Rietveld2013.zip) 

9. Neuroticism32 (http://ssgac.org/documents/Neuroticism_Full.txt.gz) 

10. PGC cross-disorder27 

(https://www.med.unc.edu/pgc/files/resultfiles/pgc.cross.full.2013-03.zip) 
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11. Schizophrenia34 

(https://www.med.unc.edu/pgc/files/resultfiles/scz2.snp.results.txt.gz) 

12. Subjective well-being32 (http://ssgac.org/documents/SWB_Full.txt.gz) 

13. Age of smoking onset35 

(https://www.med.unc.edu/pgc/files/resultfiles/tag.logonset.tbl.gz) 

14. Cigarettes smoked per day35 

(https://www.med.unc.edu/pgc/files/resultfiles/tag.cpd.tbl.gz) 

15. Ever smoked35 (https://www.med.unc.edu/pgc/files/resultfiles/tag.evrsmk.tbl.gz) 

16. Former vs. current smoker35 

(https://www.med.unc.edu/pgc/files/resultfiles/tag.former.tbl.gz) 

17. HDL36 

(http://archive.broadinstitute.org/mpg/pubs/lipids2010/HDL_ONE_Eur.tbl.sorted.g

z) 

18. Height37 

(http://portals.broadinstitute.org/collaboration/giant/images/4/49/GIANT_HEIGHT

_LangoAllen2010_publicrelease_HapMapCeuFreq.txt.gz) 

19. LDL36 

(http://archive.broadinstitute.org/mpg/pubs/lipids2010/LDL_ONE_Eur.tbl.sorted.g

z) 

20. Triglycerides (TG)36 

(http://archive.broadinstitute.org/mpg/pubs/lipids2010/TG_ONE_Eur.tbl.sorted.gz

)  
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21. BMI38 

(http://portals.broadinstitute.org/collaboration/giant/images/b/b7/GIANT_BMI_Spe

liotes2010_publicrelease_HapMapCeuFreq.txt.gz) 

22. Coronary artery disease35 

(http://www.cardiogramplusc4d.org/media/cardiogramplusc4d-consortium/data-

downloads/cardiogram_gwas_results.zip) 

23. Fasting glucose39 

(ftp://ftp.sanger.ac.uk/pub/magic/MAGIC_Manning_et_al_FastingGlucose_MainE

ffect.txt.gz) 

24. Rheumatoid arthritis40 

(http://plaza.umin.ac.jp/yokada/datasource/files/GWASMetaResults/RA_GWASm

eta_European_v2.txt.gz) 

25. Type-2 diabetes41 (DIAGRAMv3.2012DEC17.zip, corresponding to ‘Stage 1 

GWAS: Summary Statistics’, downloaded from http://www.diagram-

consortium.org/downloads.html) 

For each of the 7 × 25 = 175 category/trait combinations, we used LDSC to estimate the 

category’s enrichment, the associated standard error, and the associated P-value. 

Enrichment is calculated as the proportion of SNP heritability accounted for by each 

category divided by the proportion of total SNPs within the category; its standard error is 

assessed using a block jack-knife procedure. Using the enrichment and its standard 

error, LDSC forms a Z-score and associated P-value, which we subsequently adjusted 

for multiple testing using the method of Benjamini and Hochberg42. 
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The baseline categories were included in all 7 fits per trait. There was some 

slight variation in the estimates for these baseline categories across the 7 fits. To 

summarize each baseline-category/trait combination, we selected the enrichment and 

standard error associated with the minimum P-value across the 7 fits. For clarity of 

presentation, we only show results for two of the baseline categories: ‘Conserved’ (the 

most enriched category across a broad range of traits in a previous analysis26) and 

‘FANTOM5 enhancer’; these categories serve as control regions for comparison with 

our DMRs and DAPs. 

Enrichment of de novo mutations within DMRs and DAPs 

We downloaded a list of de novo mutations (DNMs) from 192 individuals with autism 

(Supplementary Table 443), specifically, containing 10,387 single nucleotide variants. 

We also downloaded a list of de novo mutations from 258 control individuals44, 

specifically the GoNL_DNMs.txt file from http://www.nlgenome.nl/?page_id=9 containing 

11,020 single nucleotide variants. 

For each set of DNMs, we constructed a 2×2 contingency table cross-classifying 

whether each base in the autosomal genome was a DNM and within a neuronal DMR. 

We then estimated the log odds ratio for the enrichment of DNMs within DMRs as in 

section ‘Enrichment of DMRs, ATAC peaks, and DAPs in genomic features’. We 

repeated the analysis for neuronal DAPs.  

We also used a simple simulation to check whether:  

1. The DMRs/DAPs contained more DNMs than we would expect by chance 

2. The proportion of individuals with at least one DNM in a DMR/DAP was larger 

than we would expect by chance. 
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Briefly, we sampled 10,000 null sets of regions from the autosomal genome. Each set of 

null regions had as many regions as there were DMRs/DAPs and with the same width 

distribution as the DMRs/DAPs. For each set of null regions, we tabulated the number 

of DNMs in each set overlapping the null regions and the number of individuals with at 

least one DNM in a null region. We then compared the observed counts to the counts 

from the simulated null regions to derive empirical P-values for each hypothesis. This 

analysis was performed for both the set of DNMs from individuals with autism and the 

set of DNMs from control individuals. 

Transcription Factor Motif Enrichment 

We used the Haystack (v0.4)45 haystack_motifs module to scan for vertebrate 

JASPAR (2016)46 transcription factor binding motifs enriched in our datasets. We 

separated the hypo-, hypermethylated DMR and hypo-, hyper-DAPs identified between 

NAcc and BA9 in NeuN+ cells into DMRs or DAPs that overlapped a promoter and those 

that did not, resulting in eight lists that were input into Haystack as BED files. All 

autosomal promoters were input as background for the DMRs or DAPs that overlapped 

promoters while the entire autosomal hg19 genome excluding the promoters was input 

as background for the DMRs or DAPs not overlapping promoters. Haystack selects a 

random, CG content-matched subset of the input background to use for enrichment 

calculations. 

Gene Ontology and KEGG Annotation 

We utilized the Genomic Regions Enrichment of Annotations Tool (GREAT; version 

3.0.0)47 to assess nearest gene enrichment for distinct sets of DMRs and DAPs we 

identified. We used the hg19 assembly, reduced the default input parameter for max 
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extension to 100 kb, and kept all other default parameters the same (settings available 

at the GREAT website: http://great.stanford.edu/). Gene Ontology (GO) terms returned 

must be significant by both the binomial and hypergeometric tests using the multiple 

hypothesis correction false discovery rate (FDR) ≤ 0.05 whose binomial fold enrichment 

is at least 2.0. If no GO terms were enriched, we reported MSigDB Pathway results if 

present. 

EnrichR was used to perform gene ontology (GO) and KEGG pathway analyses 

using lists of gene symbols as input. Gene lists were generated by matching GENCODE 

gene IDs to gene symbols (“external_gene_id”) using biomaRt48,49. 

MEF2C ChIP from ENCODE 

ChIP data generated by ENCODE for the MEF2C transcription factor in lymphoblastoid 

cells (GM12878) was downloaded using AnnotationHub on 8/15/2016 (AnnotationHub 

ID: AH22613; URL: 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUnifor

m/wgEncodeAwgTfbsHaibGm12878Mef2csc13268V0416101UniPk.narrowPeak.gz). 

Software 

All statistical analyses were performed using R24 (v3.3.x) and made use of packages 

contributed to the Bioconductor project50,51. In addition to those R/Bioconductor 

packages specifically referenced in the above, we made use of several other packages 

in preparing results for the manuscript: 

• AnnotationHub (v1.36.2) 

• biomaRt48,49 (v2.30.0) 

• GenomicAlignments16 (v1.10.0) 
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• GenomicFeatures16 (v1.26.2) 

• GenomicRanges16 (v1.26.2) 

• ggplot252 (v2.2.1) 

• Hmisc (v4.0-2) 

• Matrix (v1.2-8) 

• rtracklayer53 (v1.34.1) 

• SummarizedExperiment (v1.4.0) 
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Figure 1. Differences in DNA methylation between brain regions are restricted to neuronal 
nuclei. (a) Principal component analysis of distances derived from average CpG methylation levels in 
1 kb intervals along the autosomes of bulk brain tissue samples, assayed by whole-genome bisulfite 
sequencing (BA24 = anterior cingulate cortex, n = 5; BA9 = prefrontal cortex, n = 9; HC = hippocam-
pus, n = 6; NAcc = nucleus accumbens, n = 7). Note the lack of segregation by tissue. (b) Sorting 
nuclei from bulk tissue samples revealed high variation in the proportion of neuronal nuclei isolated 
from distinct brain regions (BA24, n = 6; BA9, n = 6; HC, n = 6; NAcc, n = 6). Note that some pieces 
were split and sorted multiple times; arrows indicate an example of two punches from the same tissue 
sample. (c-e) Principal component analysis of distances derived from average CpG methylation levels 
binned in 1 kb intervals along the autosomes of (c) all sorted samples (BA24, n = 9; BA9, n = 12; HC, n 
= 12; NAcc, n = 12), (d) only neuronal nuclei (pos) (BA24, n = 5; BA9, n = 6; HC, n = 6; NAcc, n = 6) or 
(e) only glial nuclei (neg) (BA24, n = 4; BA9, n = 6; HC, n = 6; NAcc, n = 6) from each brain region.
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Figure 2. Neuronal nuclei isolated from different brain regions display widespread differences in 
DNA methylation. (a) Overlap of DMRs identified between brain regions within neurons, glia, and bulk 
tissues. (b-d) Methylation values for neuronal nuclei from the nucleus accumbens (orange, n = 6), hippo-
campus (grey, n = 6), anterior cingulate gyrus (BA24, pink, n = 5) and prefrontal cortex (BA9, blue, n = 6) 
from six individuals, as well as normalized ATAC sequencing coverage for neuronal nuclei from each of 
six individuals (transparent lines) in nucleus accumbens (n = 5) and prefrontal cortex (n = 6). Note: 
methylation and ATAC data are from different sets of individuals. Average ATAC coverage is indicated by 
opaque lines. Regions of differential methylation (DMRs) or differentially accessible ATAC peaks (DAPs) 
are shaded pink (see Methods). Overlap with brain-specific enhancers (see text) and protein-coding 
genes is depicted below each graph. Examples include: (b) a DMR between neurons in the 4 different 
brain regions (BA24, nWGBS = 6; BA9, nWGBS = 6, nATAC = 6; HC, nWGBS = 6; NAcc, nWGBS = 6, 
nATAC = 5); (c) a DMR between BA24, BA9 and hippocampus (BA24, nWGBS = 6; BA9, nWGBS = 6, 
nATAC = 6; HC, nWGBS = 6); (d) a large differentially methylated block across an entire gene containing 
multiple focal DAPs, one of which is expanded below (BA24, nWGBS = 6; BA9, nWGBS = 6, nATAC = 6; 
HC, nWGBS = 6; NAcc, nWGBS = 6, nATAC = 5).
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Figure 3. DNA methylation differs between neurons and glia. Methylation values for neurons 
(green, n = 23) and glia (purple, n = 22) from four brain regions from six individuals. Normalized 
ATAC sequencing coverage for nuclei isolated from each of six individuals (transparent lines) in 
nucleus accumbens (n = 10) and prefrontal cortex (BA9, n = 12) is shown below each methyla-
tion plot. Average ATAC coverage is indicated by opaque lines. Regions of differential methyla-
tion (DMRs) or differentially accessible ATAC peaks (DAPs) are shaded pink (see Methods). 
Overlap with brain-specific enhancers (see text) and protein-coding genes is depicted below 
each graph. Examples include: (a) multiple small DMRs between neurons and glia and (b) a 
large differentially methylated block between neurons and glia containing multiple focal DAPs, 
one of which is expanded below.
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Figure 4. Chromatin accessibility and gene expression differ between brain regions in 
neurons, but not in glia. Mean-difference plots of gene expression data comparing nucleus 
accumbens (NAcc) to prefrontal cortex (BA9) in (a) glia (NAcc, n = 4; BA9, n = 5) and (b) neu-
rons (NAcc, n = 5; BA9, n = 6). Differentially expressed genes (DEGs) are shown in orange 
(see Methods). Mean-difference plots of peak accessibility data comparing NAcc to BA9 in (c) 
glia (NAcc, n = 5; BA9, n = 6) and (d) neurons (NAcc, n = 5; BA9, n = 6). Differentially accessi-
ble peaks (DAPs) are those orange points that additionally have an absolute log fold change > 
1 (see Methods). Data plotted in (c-d) were randomly down sampled (20% of DAPs, 10% of 
non-DAPs) to reduce over-plotting. (e) Overlap of neuronal DMRs between NAcc and BA9 with 
neuronal DAPs and ATAC peaks. (f) Estimate and 95% confidence interval for the percentage 
of neuronal DMRs that overlap a neuronal DAP (n = 2,841) as a function of the absolute differ-
ence in average methylation over the DMR (NAcc vs. BA9). 
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Figure 5. Neuronal DMRs and DAPs are highly enriched for explained heritability of 
neuropsychiatric GWAS traits. Estimates and 95% confidence intervals for the enrichment 
of explained heritability of GWAS traits (see Methods). Enrichments within neuronal DMRs 
and DAPs are contrasted with 1) enrichments within a set of permissive enhancers from the 
FANTOM5 project and 2) enrichments within regions of highly conserved sequence, which 
were previously shown to be highly enriched for explained heritability across a broad range of 
GWAS traits. The size of each category is reported as a percentage of the size of the autoso-
mal genome. (a) Neuronal DMRs and DAPs are significantly enriched for explained heritability 
in neuroticism and schizophrenia GWAS traits (DMRs only); height is included as a negative 
control. (b) DMRs or DAPs in neuronal nuclei have > 10-fold enrichment for explained herita-
bility in twelve neurological GWAS traits. In most cases, these enrichments are comparable to 
or larger than either baseline category, albeit it with wider confidence intervals due to the 
small genomic size of these features.
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Figure 6. The relationship between differential expression, methylation, and accessibility 
in neurons over promoters and enhancers. (a) Absolute Pearson correlation between expres-
sion and methylation (blue) or accessibility (yellow) centered around the transcriptional start site 
in comparison of neurons from nucleus accumbens (NAcc) and prefrontal cortex (BA9). Estimat-
ed correlation is indicated by opaque lines and 95% confidence interval indicated by shaded 
region. (b)-(e) Scatterplots showing Pearson correlation of differential expression with differential 
methylation (b,c) or accessibility (d,e) in promoters (b,d) and gene bodies (c,e) in comparison of 
neurons from nucleus accumbens (NAcc) and prefrontal cortex (BA9). Note that the methylation 
measurements were obtained from samples distinct from accessibility and expression measure-
ments. Differentially expressed genes are shown in orange. (f) Genome view of a 400 kb region 
containing KLF5 illustrating the relationship between gene expression, DMRs, and DAPs around 
protein-coding genes and linked enhancers (see text and Methods). The directionality of all 
DMRs and DAPs linked to KLF5 are consistent with the direction of differential expression (see 
text). (g,i) Methylation values and normalized accessibility for neuronal nuclei from the nucleus 
accumbens (NAcc, nWGBS = 6, nATAC = 5; orange) and prefrontal cortex (BA9, nWGBS = 6, nATAC = 6; 
blue) for six individuals, around (g) KLF5 and (i) two distant enhancers. (h) Gene expression of 
KLF5 in nucleus accumbens and prefrontal cortex, along with estimated log fold change of 
expression between the two brain regions in neurons (NAcc, nRNA = 5, orange; BA9, nRNA = 6, 
blue).
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Figure 7. Methylation differences between neuronal nuclei from different brain regions overlap 
enhancers and genes involved in brain region-specific functions. Methylation values for neuro-
nal nuclei from the nucleus accumbens (orange), hippocampus (grey), anterior cingulate gyrus (BA24 
(pink) and prefrontal cortex (BA9) (blue) for six individuals, as well as normalized ATAC sequencing 
coverage for neuronal nuclei from each of 6 individuals (transparent lines) in nucleus accumbens and 
prefrontal cortex (BA24, nWGBS = 6; BA9, nWGBS = 6, nATAC = 6; HC, nWGBS = 6; NAcc, nWGBS 
= 6, nATAC = 5). Note: methylation and ATAC data are from different sets of individuals. Average 
ATAC coverage is indicated by opaque lines. Regions of differential methylation (DMRs) or differen-
tially accessible ATAC peaks (DAPs) are shaded pink (see Methods). Overlap with brain-specific 
enhancers (see text) and protein-coding genes is depicted below each graph. Examples include: (a) 
a small DMR in the SATB2 gene overlapping both an enhancer and a DAP; (b) a DAP in SEMA7A 
flanked by two small DMRs and two enhancers; (c) a small DMR in RGS9 overlapping an enhancer 
and flanked by DAPs; (d) a large differentially methylated block overlapping MEF2C containing multi-
ple focal DAPs and enhancers, one of which overlaps a small DMR and is expanded below.
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Figure 8. Transcription factor motifs enriched in DMRs and DAPs that overlap 
promoters. (a) Transcription factors with motifs enriched in our DMRs and/or DAPs 
(regardless of overlap with promoters) whose binding is impacted by CpG methylation 
(see Methods). (b,c) Transcription factor motifs enriched in promoter-specific (b) DMRs 
and (c) DAPs. Only motifs corresponding to transcription factors expressed in BA9 and 
NAcc neuronal nuclei are shown. “Hyper DMR” and “Hypo DMR” refer to regions of 
differential methylation when comparing NAcc to BA9. Similarly, “Hyper DAP” and “Hypo 
DAP” refer to ATAC peaks that are more, or less accessible, respectively, in NAcc vs. 
BA9. Transcription factors are roughly grouped by family (or function). 
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