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Abstract 

The Pan-cancer Analysis of Whole Genomes (PCAWG) project provides an unprecedented opportunity to 

comprehensively characterize a vast set of uniformly annotated coding and non-coding mutations present 

in thousands of cancer genomes. Classical models of cancer progression posit that only a small number of 

these mutations strongly drive tumor progression and that the remaining ones (termed “nominal 

passengers”) are considered inconsequential for tumorigenesis. In this study, we leverage the 

comprehensive variant data from PCAWG to ascertain the molecular functional impact of each variant, 

including nominal passengers. This allows us to decipher their overall impact uniformly over different 

genomic elements, both coding and non-coding. The molecular impact distribution of PCAWG mutations 

shows that, in addition to high-impact drivers and low-impact passengers, there is a group of medium-

impact passenger variants predicted to influence gene expression or activity. Furthermore, we find that 

functional impact relates to the underlying mutational signature: different signatures confer contrasting 

molecular impact, differentially affecting distinct regulatory subsystems and different categories of genes. 

Also, we find that molecular functional impact varies based on subclonal architecture (i.e. early vs. late 

mutations) and can be related to patient survival. We further show that the additive effects of nominal 

passenger mutations can explain a significant portion of the total variance (~X%) when observed cancer 

variants are compared to random expectation from a null model. We use this approach to further provide a 

conservative estimate of the number of weak drivers and deleterious passengers in different cancer cohorts. 

Finally, we delineate multiple suggestive evidences that correlate the overall burdening of cancer mutations 

with the existence of both weak positive and negative selection during tumor evolution. 

 
  

 

 

 

 

 

 

 

 



 

Introduction 

Previous studies have focused on characterizing variants occupying coding regions of cancer genomes 

\cite{24071849}. However, the extensive Pan-cancer Analysis of Whole Genomes (PCAWG) dataset, 

which includes variant calls from ~2500 uniformly processed whole cancer genomes, offers an 

unparalleled opportunity to investigate the overall molecular functional impact of variants influencing 

coding and different non-coding genomic elements. Given that the majority of cancer variants lie in non-

coding regions \cite{26781813}, this variant dataset serves as a substantially more informative resource 

than the many existing datasets focused on exomes. Moreover, it also contains a full spectrum of variants, 

including copy number variants (CNVs) and large structural variants (SVs), in addition to single-

nucleotide variants (SNVs) and small insertion & deletions (INDELS). 

 Of the 30 million SNVs in the PCAWG variant data set, a few thousand (< 5/tumor1) 

\cite{26559569} can be identified as driver variants – positively selected variants that favor tumor 

growth. The remaining ~99% of SNVs are termed nominal passenger variants, with poorly understood 

molecular consequences and fitness effects. Recent studies have proposed that, among variants that have 

not been found to be driver variants (i.e. nominal passenger variants), some may weakly affect tumor cell 

fitness by promoting or inhibiting tumor growth. In prior studies, these variants have been described as 

“mini-drivers” \cite{26456849} and “deleterious passengers” \cite{2338863}, respectively.  

The weak fitness effect associated with nominal passengers is in principle parallel to individual 

germline variants in a GWAS study. These germline variants have very low effect size and can explain 

only a small proportion of the predicted genetic variance, thus contributing to the “missing heritability” 

problem in GWAS \cite{20562875,19571811}. Although their individual effect size is low, aggregating 

these low effect size variants in key genes and regulatory networks is considered important for 

deciphering the disease risk. Motivated by this, we leveraged the PCAWG variant dataset to assess the 

role of aggregated molecular effect of nominal passenger variants in cancer progression. We built on 

existing tools \cite{25273974} to annotate and score the predicted molecular impact of each variant, 

including SNVs, INDELs and SVs in the pan-cancer dataset. We observed that disruption of genetic 

regulatory elements in the noncoding genome correlates with altered gene expression. Moreover, various 

mutation processes have different impacts on the regulatory elements as elucidated by our signature 

analysis. We also found that overall functional impact correlates with patient survival, subclonal 

architecture, and tumor heterogeneity. Finally, we observed suggestive evidences, which are consistent 

with the notion that aggregated subsets of functionally impactful passenger variants confer weak selection 

avenues to tumor cells. 

 



 

 

Aggregated nominal passengers and additive variance  

In the context of germline variants, while significant variants found in current GWAS studies only explain 

a small proportion of total heritability of quantitative traits, the combined analysis of all common variants 

can account for most of the missing heritability through additive effects. Similarly, here we investigate 

the combined effect of somatic nominal passengers by estimating their ability to predict cancerous from 

an observed cohort and a corresponding null genotype through additive effects.  We estimate the variance 

explained by a linear model with random effects, in which the pooled SNV counts (burdens) at each gene 

are treated as predictors with random effects sampled from a normal distribution with a common variance 

parameter \cite{20562875,21167468}. This is equivalent to a model in which medium to high impact 

mutations belonging to the same gene are constrained to have the same effect size.  Additionally, all 

effect sizes are normalized by the individual tumor’s overall mutational burden. This model is used to 

predict cancerous versus null sample designations as a discrete cell-level phenotypic trait.  The additive 

variance is expected to form a component of the heritability of a subclone’s fitness, although non-additive 

effects are expected to play a significant role also in the context of asexual heritability in cancer evolution 

(supplemental note).  Using this approach, we identify low and medium impact somatic nominal 

passengers in non-coding regions to account for significant proportions of the total variance, for instance, 

54% in breast adenocarcinoma, 52% in kidney renal cell cancer ~100% in liver cancer, 83% in pancreatic 

adenocarcinoma, and 75% in skin melanoma cohorts. 

 

Impactful passengers and their prevalence 

If these nominal passenger variants do indeed exert a combined effect on tumor cell fitness, one would 

expect that this effect is mediated through their molecular functional impact. Therefore, we surveyed the 

putative molecular functional impact distribution of somatic variants in different cancer genomes. The 

molecular functional impact distribution varies among different cancer types and for different genomic 

elements. A closer inspection of the pan-cancer impact score distributions for non-coding variants 

demonstrated three distinct peaks. The upper and the lower extremes of this distribution correspond to 

traditional definitions of high-impact putative driver variants and low impact neutral passengers 

respectively. In contrast, the middle peak in the intermediate molecular functional impact regime 

corresponds to what we term impactful nominal passengers. This intermediate functional impact category 

is most likely to include undiscovered drivers (strong & weak) as well as potentially deleterious 

passengers (Fig 2a).   



According to a null expectation, one might assume that the overall burden of nominal passengers 

in a cancer genome will be uniformly distributed across different functional elements and among different 

gene categories. In contrast, we observe that the predicted molecular impact burden in certain cancers is 

concentrated in particular gene categories. This is easiest to understand in terms of coding loss-of-

function (LoF) variants, where the putative molecular impact is most intuitive. For instance, as a measure 

of the molecular impact of both driver and non-driver loss of function SNVs, we examined the fraction of 

deleterious LoFs affecting genes across four categories of cancer-related functional annotation (Fig 2b). 

Driver LoF variants showed significant enrichment in each category of cancer-related genes compared to 

a random (shuffled-variant) control (p < 0.001). Conversely, non-driver LoF SNVs displayed depletion in 

each of these categories (p < 0.001). In addition, driver, non-driver, and random loss of function 

mutations were all enriched in comparison to germline LoF mutations (p < 0.001). Similarly, compared 

with the uniform null distribution, we observe that impactful variants (nonsynonymous & promoter 

SNVs) tend to occur in essential genes more often compared to low impact variants (Fig 2c). Conversely, 

low impact passengers constitute larger fractions of variants influencing non-essential genes. This 

observation is consistent with underlying functional properties of the human genome. 

 

TF binding landscape 

Similar to LoF variants, we can also quantify the overall burden of the noncoding SNVs in a cancer 

genome. However, for majority of noncoding variant, predicted molecular functional impact is less easy 

to gauge. For instance, noncoding and coding variants occupying the terminal region of the gene or 

undergoing alternatively splicing, will have little functional consequence. In contrast, transcription factor 

binding site (TFBS) variants are among the noncoding variants where molecular impact is clearly 

manifested through the creation or destruction of TF binding motifs (gain or loss of motif). In both cases 

(gain or loss), we observed significant differential burdening of TFBS among different cancer cohorts. 

For instance, we detect significant enrichment of high impact variants creating new motifs in various TFs 

including GATA, PRRX2 and SOX10 (Fig 3a) across major cancer types, compared with uniform 

expectation. Similarly, high impact variants breaking motifs, were highly enriched in TFs such as IRF, 

POU2F2, NR3C1and STAT (Fig 3b) in the majority of cohorts. This selective enrichment or depletion 

suggests distinct alteration profiles associated with different components of regulatory networks in 

various cancers. 

Furthermore, for a particular TF family, one can identify their target genes affected due to bias 

towards creation or disruption of specific motifs in their regulatory elements (promoters and enhancers). 

For instance, TERT shows the largest alteration bias for ETS motif creation across a variety of cancer 

types (Fig 3d), with other genes (such as BCL6) showing a similar bias, albeit in fewer cancers. 



Furthermore, enrichment of SNVs in selective TF motifs leads to gain and break events in promoter that 

significantly perturb the overall downstream gene expression (Fig 3c). For example, ETS family 

transcription factor at the regulatory region of IRF4 and PSIP1 gene displayed a strong motif creation bias 

and a significant change in gene expression (with p-value IRF4=0.001 and p-value PSIP1=0.019). 

 

Signature Analysis  

The differential burdening of various genomic subsystems can be further explained by closely inspecting 

the underlying mutational processes generating nominal passengers. These mutational processes are 

considered to play an important role during tumor growth by preferentially targeting specific tri-

nucleotides, genes and regulatory elements. For instance, it is expected that mutational processes targeting 

stop codons will be highly correlated with the number of nonsense mutations identified across different 

samples. Indeed, we found that although we often observe a high correlation between the mutation pattern 

and the number of expected nonsense mutations within cancer types, the degree of correlation varies 

across cancer types. Moreover, the number of expected nonsense mutations differs across cancer types . 

For example, we observed a high degree of correlation between mutation spectrum profile and the number 

of nonsense mutations within melanoma and colorectal adenocarcinoma cohorts. However, we observe 

lower number of expected nonsense mutations and decreased correlation among melanoma samples 

compared to colorectal cancer cohort.  

Similarly, the disproportionate functional load on certain TFs in cancers can be related to an 

underlying mutational spectrum (signature) influencing their binding sites. For instance, the mutational 

spectrum of motif breaking events observed in SP1 TF binding sites (TFBS) suggests major contribution 

from C>T and C>A mutation (Fig 4b). In contrast, motif-breaking events at TFBS of HDAC2 and 

EWSR1 have relatively uniform mutational profiles. Similarly, comparing the signature composition of 

low and high impact SNVs in certain cancer-cohorts can help us to distinguish between mutational 

processes that generate distinct variant impact classes. We observed distinct signature distributions for the 

low and high impact non-coding passengers for multiple cancer cohorts including Liver-HCC, Prost-

AdenoCA and Kidney-RCC. For instance, in the Kidney-RCC cohort, although the majority of passenger 

variants can be explained by signature 5, high impact passengers have a higher fraction of SNVs 

explained by signature 4 (Fig4c). Moreover, we also observed cancers showing microsatellite instability 

(MSI) due to failure of DNA mismatch repair, have a higher percentage of high impact non-coding 

passengers (Fig4c). Our findings suggest that various mutational processes shape and disproportionally 

burden cancer genomes.  

 

 



Overall variant impact 

For a uniform mutation distribution, we would expect that the fraction of impactful variants will remain 

constant as one accumulates large number of mutations in a given cancer sample. In contrast, we observed 

that as we acquire more SNVs in cancer, the fraction of impactful mutations decreases. This suggests that 

earlier variants tend to be impactful, and drive the cancer progression. Conversely, later variants are more 

likely to be random, i.e. collateral damage. This trend is particularly strong in CNS medulloblastoma (p < 

4e-8, Bonferroni's correction), lung adenocarcinoma (p<3e-4, Bonferroni’s correction), and a few other 

cancers (Fig 2c). 

In addition to SNVs,	we also analyzed the annotation and overall impact of structural variants 

(SVs) in the PCAWG dataset. We compared the pattern of somatic SV enrichment in cancer genomes 

with those from germline. First, we observed, that as expected, somatic SVs were more enriched among 

functional regions compared to germline SVs, because the latter ones will be under negative selection for 

disrupting functional regions. Furthermore, we observed a distinct pattern of enrichment for SVs that split 

a functional element versus those that engulf it. As has been previously noted, there is greater enrichment 

of germline SVs that engulf an entire functional element rather than for those break a functional element 

partially. Furthermore, we observed the same pattern for somatic SVs, which is contrary to what one 

would expect from a purely randomized model. Finally, we also quantified the functional impact of 

somatic SVs across various cancer-types. A close inspection of SV and SNV impact scores suggest that 

certain cancer subtypes tend to harbor large number of high impact SVs, while others were more 

burdened with high impact SNVs.  Many of these correlations have previously been observed 

\cite{24071851}. For example, it is known that ovarian cancer tends to be associated with driver SVs, 

whereas clear cell kidney cancer is often driven by SNVs. However, we also find new associations, such 

as the predominance of high impact SVs compared to SNVs in the bone leiomyoma cohort. 

Additionally, we sought to examine whether cumulative molecular impact of variants can be 

associated with tumor initiation and progression. Therefore, we performed survival analysis to see if 

somatic molecular impact burden – the mean GERP of somatic passenger variants per patient – predicted 

patient survival within individual cancer subtypes. Furthermore, patient age at diagnosis and total number 

of mutations were used as covariates in the survival analysis. We obtained significant correlation between 

overall molecular impact burden and survivability in two cancer subtypes after multiple test correction. 

For instance, we observed that somatic mutation burden predicted substantially better patient survival in 

lymphocytic leukemia (Lymph-CLL, p-value 0.00023) and ovary adenocarcinoma (Ovary-AdenoCA, p-

value 0.0020) (Fig5d). The prolonged survival of high mean GERP patients in these subtypes is 

consistent with the possibility that an important subset of mutations at conserved positions are deleterious 

to tumor cells and benefit the patient. 



 

Subclonal architecture and impact score 

Furthermore, we also explored the role of impactful variants in cancer evolution by analyzing variants in 

the context of their associated tumor sub-clone. One might hypothesize that high impact mutations 

achieve greater prevalence in tumor cells if they are advantageous to the tumor, and a lower prevalence if 

deleterious. Interestingly, there is evidence to corroborate this hypothesis.  We observed that high impact 

passenger variants in coding regions have greater prevalence among parental subclones (Fig 5a) – an 

effect driven by high impact nominal passenger SNVs in tumor suppressor and apoptotic genes (Fig 5a). 

In contrast, high impact passenger SNVs in oncogenes appear slightly depleted. Similarly, impactful 

SNVs in DNA repair genes and cell cycle genes are depleted in early subclones (Fig 5a). Furthermore, we 

also observe low heterogeneity in prevalence among higher impact variants compared to lower impact 

variants. This observation is consistent for both coding and non-coding variants (Fig 5c). 

 

Categorizing nominal passenger variants 

Through our analysis of the molecular functional impact of nominal passenger variants, we observed 

effects that are suggestive of their impact on tumor cell fitness. Conceptually, variants can be classified 

into three categories based on their impact on tumor cell fitness: drivers with positive selective effects, 

passengers with neutral selective effects, and deleterious passengers with negative selective effects. This 

broad classification can be further refined by considering ascertainment-bias and the putative molecular 

impact of different variants (Fig 1). Previous power analyses \cite{24390350} suggest that existing cohort 

sizes support the identification of strong positively-selected driver variants, but that many weaker drivers, 

and even some moderately strong driver variants would be missed. However, these moderately strong and 

weak driver variants can also provide potential fitness advantage to tumor cells.  As for the functional-

impact-based-classification: the philosophy of molecular reductionism holds that any positively or 

negatively selected variants have some functional impact (i.e. effect on gene expression or activity). The 

relevance of molecular functional impact is firmly established for driver mutations - positively-selected 

variants promoting tumor growth. However, rapid accumulation of weak and strong deleterious 

passengers, which undergo negative selection, could adversely affect the fitness of tumor cell 

\cite{23388632}. Moreover, a majority of low impact and some high functional impact variants may alter 

tumor gene expression or activity in ways that are not ultimately relevant for tumor fitness; hence, these 

variants will undergo neutral evolution. 

 

 

 



Estimating number of weak drivers and deleterious passenger variants 

In the context of this conceptual categorization of variants in cancer, we estimated the frequency of weak 

drivers and deleterious passengers in various cancer cohorts. As observed, these variants tend to have 

small effect sizes and current datasets are underpowered to detect them individually.  In addition to 

increasing the sample size, power to detect these variants can be increased by testing for their combined 

effect. We estimate a lower bound on the number of these nominal passengers contributing causally to the 

cancer phenotype, by determining the smallest subset of SNVs necessary to account for an equivalent 

proportion of the total variance when they are incrementally added to the additive variance model 

\cite{19571811}, according to their individual effect sizes .  This approach leads to varying lower 

estimates of the numbers of weak drivers and removed deleterious passengers across different tumors. For 

instance, we estimate at least 6.9 weak drivers and 9.2 deleterious passengers removed per tumor in the 

breast adenocarcinoma, 81.2 and 105 respectively per tumor in the liver cancer, and 1.9 and 247.5 

respectively in the melanoma cohort.  In general, the additive effects model thus predicts a larger number 

of medium to high impact somatic variants will have deleterious effects than positive effects in most 

tumors. 

Similarly, we also employed a conservation based metric to estimate the number of deleterious 

passenger mutations, which are removed and retained during tumor progression. To estimate the number 

of removed noncoding deleterious passengers per tumor, we compared the observed number of high-

impact noncoding mutations with the number expected under a neutral model. We observed a slight (2%) 

depletion in high-impact mutations in the observed mutation set versus the null, corresponding to a 

median of 48 high-impact noncoding mutations removed per tumor. This depletion was most pronounced 

at the promoters of essential genes in genomic regions suffering loss-of-heterozygosity (32%). Details of 

this analysis are described in Supplemental Methods X.X.  Similarly, to search for a signal of retained 

deleterious passenger variants, we tracked the correlation of variant allele frequency (VAF) with 

predicted functional impact. Once driver variants have been excluded, we would expect that, if indeed 

there are any retained deleterious passenger variants, variants with higher predicted impacts are more 

likely to be deleterious to tumor cells. We observed that increasing impact scores correlated with 

decreasing VAF. If there were no retained deleterious passenger variants, we would not expect a 

significant correlation between impact score and VAF. The fact that there was a significant and negative 

correlation between impact score and VAF suggests that there some deleterious passenger variants 

retained in tumor cells.  

 

 

 



Discussion 

Previous studies \cite{20562875} related to the missing heritability problem in GWAS, indicate the 

cumulative effect of SNVs can explain the majority of missing associations. Similarly, here we 

investigate whether the cumulative molecular impact of many weak somatic SNVs can have a meaningful 

role in cancer progression. Intuitively, tumor cells must maintain function of some minimal set of 

essential genes in order to achieve homeostasis. It is plausible that the aggregate effect of functionally 

impactful passenger variants on these essential genes would be deleterious to tumor cells 

\cite{23388632}. For instance, radiation therapy and some chemotherapies are believed to kill tumor cells 

by causing DNA damage \cite{PARP inhibitor}. Similarly, increased mutation counts in coding genes or 

regions relevant for splicing increase the antigenic cross-section of tumor cells, potentially making them 

vulnerable to immune surveillance \cite{}. Conversely, any variant that optimizes cell-division at the 

expense of organism-supporting functions is expected to have a small positive effect on tumor fitness that 

may be challenging to detect. Moreover, certain variants through their complex genetic regulatory 

interactions may moderately increase the expression levels of canonical oncogenes. It has been proposed 

that these weak undiscovered driver variants benefit tumor growth and have a small associated positive 

selection. 

In this work, several observations support the notion that some nominal passenger variants 

undergo weak selection. First, we observed overall enrichment and depletion of nominal passenger 

variants among TSGs and oncogenes, respectively. An interpretation of this finding is that passenger 

variants in tumor suppressor genes have weak driver activity, while passenger variants in oncogenes 

impair oncogenic activity to the detriment to tumor fitness. Similarly, our finding of depletion of nominal 

passenger variants among DNA repair and cell cycle genes may indicate that high impact variants 

affecting these genes decrease tumor cell survival in relation to greater mutational burden. Consistent 

with a possible deleterious effect of passenger variants on tumor growth, in some cancer subtypes, the 

most mutated tumors have a lower fraction of impactful variants. This may relate to the aggregate impact 

of passenger variants becoming more deleterious at higher mutation loads. Alternatively, a fixed number 

of undiscovered drivers may become diluted by neutral passengers at higher mutation counts. Our LoF 

mutation analysis indicates that driver LoF mutations exert a positive selective effect, whereas non-driver 

LoF mutations apparently exert a net negative selective pressure. This observation is consistent with prior 

evidence of net negative selective effect among nominal passenger missense mutations \cite{}. The 

aggregate fitness impact of nominal passenger variants may help explain why patient survival times are 

correlated with functional impact load in select cancer subtypes. Finally, using the additive variance 

model, we provide a conservative estimate of the number of weak drivers and deleterious passengers in 

various cancer cohorts. In conclusion, our work highlights that an important subset of somatic variants 



originally identified as passengers nonetheless show biologically and clinically relevant functional roles 

across a range of cancers. 
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