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A.	SIGNIFICANCE	
	
A.1.	Different	Scales.		The	typical	cancer	has	thousands	of	somatic	variants.	These	manifest	their	effects	on	
different	scales.	At	the	smallest	scale	is	direct	effect	molecular	activity	such	as	the	binding	of	a	transcription	
factor	or	the	transcription	of	a	downstream	gene	(often	dubbed	the	"molecular	endophenotype"	
\cite{24748924,	need	better	ref}).		Cancer	manifests	itself	on	a	cellular	level	in	terms	of	the	phenotype	of	the	
cells	--	e.g.,	growth	or	invasiveness,	the	latter	related	to	metastasis.	Finally,	it	also	manifests	itself	on	an	
overall	organismic	level	in	terms	of,	obviously,	the	cancer	phenotype,	but	more	subtly	in	terms	of	the	severity	
of	the	cancer.	

The	extent	to	which	variant	effects	take	place	at	the	levels	of	molecular	activity	propagates	to	the	
cellular	phenotype,	and	organismal	presentation	is	unclear.		
	
A.2.	Systems	&	Networks.		The	coupling	between	the	individual	variant,	its	effect	on	molecular	activity,	
cellular	phenotype,	and	organismal	development,	is	a	systems	effect.	With	many	variants,	genes	are	often	
connected	in	both	regulatory	and	interaction	networks.	We	endeavor	to	probe	these	connections	here.	In	
particular,	many	proteins	carry	out	diverse	functions	through	interacting	with	other	proteins	[3].	Recent	
studies	have	been	conducted	on	genetic	coding	mutations	in	the	context	of	the	human	interactome	network	
[4-7],	where	on	average,	a	functionally	active	protein	interacts	with	>5	other	protein	partners.	We	will	
leverage	our	experience	to	deploy	a	novel	approach	that	systematically	uses	several	agnostic	functional	assays	
in	parallel.	This	approach	serves	as	a	paradigm	to	prioritize	coding	variants	and	provides	important	insights	
into	mutation	mechanisms	of	interaction	from	a	systems	biology	perspective.	
	
A.3.	Evaluation	of	Coding	and	Noncoding	Variants.		Conceptually,	both	coding	and	noncoding	variants	may	
vary	in	their	degree	of	impact	on	cancer	development	or	protein	formation	and	function.	Numerically,	the	
overwhelming	bulk	of	variants	in	cancer	genomes	are	non-coding	(usually	by	a	factor	of	50	to	100)	
\cite{26781813}.	Historically,	there	has	been	an	emphasis	towards	studying	coding	variants	due	to	the	
functional	significance	of	protein	coding	regions.	However,	as	noncoding	alterations	constitute	the	majority	of	
disease-associated	variants	[1],	further	study	of	non-coding	regions	may	also	be	critical	to	a	better	
understanding	of	cancer	biology.	Accordingly,	we	will	consider	a	combination	of	coding	and	noncoding	
variants.	Moreover,	a	wealth	of	non-coding	information	is	available	due	to	advances	in	sequencing	
technologies	and	efforts	by	consortia	like	ENCODE	and	1000	Genomes	\cite{22955616,	20981092}.	
	
A.4.	Weaker	effects.		Non-coding	variants	traditionally	have	been	thought	to	have	weaker	effects	than	coding	
ones	--	not	disabling	a	gene	or	creating	a	new	binding	site	in	one	but	more	subtly	affecting	regulation.	These	
may	come	into	play	in	the	development	of	weaker	drivers	which	may	have	smaller	effects	on	cancer.	There	
has	been	recent	work	on	these	of	late.	In	particular,	recent	studies	\cite{26456849}	\cite{23388632}	suggest	
that	certain	passenger	mutations	described	as	"mini-drivers"	may	have	a	weak	effect	on	tumor	cell	fitness	and	
in	turn	promote	or	inhibit	tumor	growth.	From	a	tumor	fitness	perspective,	three	categories	can	thus	emerge:	
positively-selected	driver	variants,	neutrally-selected	passenger	variants,	and	negatively-selected	mini-driver	
variants.		
	
A.5.	Application	to	prostate	cancer.		Prostate	cancer	is	a	particularly	tractable	system	for	us	to	focus	on	for	a	
number	of	reasons.	First	of	all,	as	we	described,	we	have	much	preliminary	background	working	on	this	
specific	cancer	and	deep	connections	with	the	cancer	SPORE	grant.[[add	ref]]	Also,	prostate	cancer	is	highly	
heterogeneous,	displaying	very	different	phenotypes,	from	a	highly	indolent,	almost	notice	less	disease,	to	a	
very	aggressive	condition.	These	different	presentations	may	be	coupled	to	systems-wide	effects.	

Significant	efforts	have	been	made	to	study	genetic	and	environmental	causes	of	this	cancer	type,	but	
major	leaps	forward	are	still	needed	to	develop	a	more	complete	etiology	of	this	disease	that	affects	XXX	
million	men	worldwide.	Along	with	other	major	factors	associated	with	prostate	cancer	such	as	the	hormonal	



action	of	androgens	and	estrogens	[8],	more	than	70	genetic	susceptibility	variants	have	been	identified	[9].	
Suspected	loci	are	continuously	being	discovered	using	GWAS	studies	[10]	and	genotyping	arrays	[11].	Such	
variants	increase	the	predictability	of	the	disease	and	have	been	associated	with	altering	the	expression	levels	
of	several	genes.	Some	of	the	most	well-known	genes	associated	with	prostate	cancer	are	TP53	and	RB1	
\cite{28586335,	add	more	refs?}.	These	genes	are	both	tumor	suppressors,	and	their	alteration	is	associated	
with	poorly	differentiated	tumors	of	prostate	and	other	cancers,	which	tend	to	be	more	
aggressive\cite{28586335}.	We	will	conduct	focused	investigations	of	coding	and	noncoding	variants	
associated	with	these	genes	and	their	molecular	subnetworks.	
	
A.6.	Indolent	versus	aggressive.		One	of	the	most	interesting	questions	about	prostate	cancer	is	whether	if	
can	detect	the	overall	aggressiveness	of	the	disease	from	its	molecular	mutation	profile	as	this	has	direct	
implications	for	treatment.[[ref]]		
	
B.	INNOVATION	
	
Our	mathematical	model,	its	multi-tiered	cutting-edge	biological	validation	in	concert	and	each	individually,	
and	the	real-time	Bayesian	update	of	the	former	with	the	latter	are	fresh,	exciting	contributions	to	the	field.	
	
B.1	Overall	Framework.	We	believe	our	overall	approach	is	highly	innovative	in	that	we	have	assembled	a	
diverse	team	of	investigators	and	are	probing	prostate	cancer	on	many	levels,	from	clinical	outcomes	to	a	
more	cellular,	systems-wide	experiments,	to	large-scale	molecular	experiments	to	computational	prioritization	
on	a	variety	of	scales.		
	
B.2	Aim	1	-	Mathematical	Model.	The	specific	mathematical	model	that	we	are	developing	is	innovative	for	a	
number	of	reasons.	First	of	all,	it	encompasses	a	wide	range	of	genomic	features.	Second,	of	all,	it	combines	
information	from	both	the	molecular,	nucleotide-level	scale	(biochemical/biophysical,		evolutionary,	and	
network)	with	information	about	recurrence	and	whole-organism	disease	phenotype.	Second,	we	provide	an	
innovative	scheme	to	update	our	model	in	a	Bayesian	framework	using	large-scale	experimental	data.	The	
update	and	the	validation	will	lead	to	a	more	accurate	and	usable	model.	
	
B.3	Aim	2	-	High-throughput	Molecular	Experiments.		eSTARR-seq:	this	unique	barcoding	approach	allows	
direct	quantification	of	enhancer	activity,	with	40-fold	increase	in	sequencing	efficiency	compared	with	
traditional	STARR-seq	

InPOINT:	this	unique	technology	directly	examines	the	biochemical	consequences	of	coding	variants	on	
protein	stability	and	interactions		
	
B.3	Aim	3	-	Cellular	Assays.		CRISPR:	This	genomic	editing	breakthrough	technology	can	build	a	cellular	
variants	impact	evaluation	model	to	introduce	targeted	mutation	in	coding	and	noncoding	regions	from	
normal	prostate	cell	lines,	which	will	grow	in	prostate	organoid	to	investigate	tumor	progression	effect.	
Organoid	technology:	This	technique,	successfully	deployed	differs	from	traditional	cell	culture	by	maintaining	
cancer	cells	in	three-dimensional	(3D)	cultures.	Benign	and	cancer	cells	that	are	grown	in	3D	retain	cell-cell	
and	cell-matrix	interactions	that	more	closely	resemble	those	of	the	original	tumor	compared	to	cells	grown	in	
two	dimensions	on	plastic.	
	
C. APPROACH 

C.1. AIM 1 Computational prioritization of coding and non-coding somatic mutation We will first prioritize 
both coding and noncoding prostate cancer variants. This prioritization will be used to identify variants to be 
investigated using subsequent assays of molecular, cellular, and organoid-level phenotypes. These assays will 



simultaneously validate candidate oncogenic variants and refine tools to predict impactful variants (Figure 1). 
These efforts leverage our extensive experience in both variant prioritization and cancer genome analysis.  

C.1.A. Prior experience for variant prioritization 
  
C.1.A.1. Experience in background mutation rate estimation 
and recurrence analysis.  A major method to search for driver 
variants is to find genes or regions of the genome that are highly 
enriched for mutations. However, this search can be confounded 
by the fact that different regions of the genome have different 
mutation rates. Moreover, great mutation heterogeneity and 
potential correlations between neighboring sites give rise to 
substantial overdispersion in mutation counts, which complicates 
background rate estimation. We developed a computational 
framework called LARVA, which integrates variants with a set of 
noncoding functional elements, modeling the mutation counts of 
the elements with a beta-binomial distribution to handle 
overdispersion \cite{26304545}. Importantly, this method 
incorporates regional genomic features such as replication timing 
to better estimate local mutation rates and find mutational 
hotspots. Applying LARVA to 760 whole-genome tumor 
sequences shows that it identifies well-known noncoding drivers, 
such as mutations in the TERT promoter, in addition to 
uncovering new potential noncoding driver regions. 
 
C.1.A.2. Experience prioritizing protein-coding variants.  We have developed a number of tools that 
identify deleterious protein-coding variants. Our Variant Annotation Tool (VAT) is a utility that characterizes 
variants according to the genes and transcript isoforms affected, and any amino acids changes that may result 
\cite {22743228}. Building upon this work, Analysis of Loss of Function Transcripts (ALoFT) is a software 
pipeline we developed to predict which mutations will cause gene loss of function and whether loss of one or 
both copies of a gene is necessary to observe this effect. Assessing the functional impact of loss-of-function 
variants is one purpose of our netSNP tool that integrates networks of protein-protein interaction, transcription 
factor binding, and metabolic pathways to build a classifier that distinguishes essential genes (Fig 1) 
\cite{23505346}. The application of this tool to cancer genomes shows an enrichment for predicted loss of 
function mutations in known cancer-associated genes. STRESS is a tool we built to identify mutations that 
might affect allosteric hotspots in proteins, which can be key to protein function \cite{27066750}. Similarly, our 
Frustration tool uses calculations of localized structural frustration to identify key functional protein regions that 
may be altered by genetic variants \cite{27915290}. Finally, our Intensification tool searches for deleterious 
mutations particularly within repeat regions of proteins \cite{27939289}.  
 
C.1.A.3. Experience in noncoding genome analysis.  Our expertise in prioritizing noncoding DNA variants is 
built on our experience analyzing a wide variety of genomic assays. Much of this work has been in connection 
with the ENCODE and modENCODE consortia \cite{22955616, 25164757, 22955619, 21177976}. We have 
developed widely used tools to identify ChIP-Seq peaks \cite{19122651, MUSIC}, perform RNA-Seq 
quantification \cite{21134889, 22238592}, and identify new noncoding transcripts and categorize them 
according to function \cite{21177971, 25164757}. Our tool to predict enhancer regions \cite{22950945} has 
undergone functional validation of its predictions \cite{#58 from ncvarg grant, find PMID}. We have further 
linked enhancers to target genes \cite{25273974}, and have developed related tools to process HiC data 
\cite{28369339, http://biorxiv.org/content/early/2016/12/29/097345}. This work highlights chromosome 
conformations that can aid enhancer-target linkage inference. In addition to identifying, quantifying, and linking 
noncoding genomic elements, we have multiple linear and nonlinear models that use epigenetic signals to 
predict gene expression \cite{22955978, 21926158, 21324173}. Moreover, we have extensive experience 
incorporating genomic data into networks to help explain gene regulation and to identify key regulators 
\cite{22955619, 25249401, }. 
 

Figure	1.	Overall	variant	prioritization	workflow 



C.1.A.4. Experience in allelic analysis.  We have also made focused investigations of allele-specific activity 
in the genome, which can provide a direct readout of the effects of an allele-specific variant (ASV). We 
developed the AlleleSeq pipeline to quantify allele-specific expression \cite{21811232}. More recently, we 
conducted a study of allele-specific activity from RNA-Seq and ChIP-Seq experiments conducted on 1000 
Genomes Project \cite{23128226, 27089393} individuals, including data from the gEUVADIS \cite{24037378} 
and ENCODE \cite{22955616} projects. After uniformly reprocessing all data, we detected ASVs using a beta-
binomial test to correct for overdispersion. Since most ASVs are rare variants, we also combined the effects of 
many variants to assign allelicity scores to genomic elements, indicating that these elements are particularly 
sensitive to mutations. 
 
C.1.A.5. Experience in noncoding variant prioritization.  We have completed extensive analysis of patterns 
of variation in noncoding regions, along with their coding targets90,95,114. In recent studies \cite{24092746, 
25273974}, we have integrated and extended these methods to develop a prioritization pipeline called FunSeq 

(Fig 2). It identifies sensitive and ultra-sensitive 
regions (i.e., those annotations under strong 
selective pressure, as determined using genomes 
from many individuals from diverse populations). 
FunSeq links each noncoding mutation to target 
genes, and prioritizes such variants based on scaled 
network connectivity. It identifies deleterious variants 
in many noncoding functional elements, including TF 
binding sites, enhancer elements, and regions of 
open chromatin corresponding to DNase I 
hypersensitive sites. By integrating data from large-
scale resources (including ENCODE and the 1000 
Genomes Project) with cancer genomics data, our 
method is able to prioritize known TERT promoter 
driver mutations. 
 
C.1.A.6. Experience in genomics and cancer 
genome analysis consortia.  We have extensive 
experience in analysis of cancer genomes through 
our participation in The Cancer Genome Atlas 
(TCGA) and Pancancer Analysis of Whole Genomes 
(PCAWG) consortium projects. We participated in the 
TCGA consortium studies of prostate \cite{26544944} 
and kidney \cite{26536169} cancers and recently 
conducted a detailed investigation of the noncoding 

variants in TCGA kidney papillary cancer samples 
\cite{28358873}. We developed tools for somatic 

variant calling \cite{26381235}. We used TCGA RNA-Seq data extensively in the development and application 
of seveal other tools \cite{Loregic, DREISS, 25884877}. We are currently leading the PCAWG group 
investigating the impact of so-called passenger mutations on cancer development, progression, and prognosis. 
We are also conducting a study integrating ENCODE data to provide a comprehensive resource for cancer to 
interpret patient cohort data such as expression and somatic mutation profiles. 
	
C.1.B. Research plan for variant prioritization 
	
C.1.B.1. Identification of recurrently mutated elements & genes 
 
C.1.B.1.a. Tools for background mutation rate estimation and recurrence analysis  
To identify genes whose mutation is important to the development of prostate cancer, we will search for genes 
that are recurrently mutated in prostate cancer patients. We will do this using the compact annotation 
described above, which incorporates both coding and noncoding elements associated with a given gene (see 
below). 

Figure	2.	FunSeq2	workflow 



We also propose a Negative binomial regression based Integrative Method for mutation Burden 
analysis (NIMBus). This analysis will treat mutation rates from different individuals as random variables with an 
underlying a gamma distribution. Pooled mutation counts from a heterogeneous population serve as a negative 
binomial distribution to handle overdispersion. Furthermore, to capture the effect of covariates, NIMBus 
integrates extensive features in all available tissues from Roadmap Epigenomics Mapping 
Consortium  (REMC) and the Encyclopedia of DNA Elements (ENCODE) project. The result of this data 
integration is a covariate matrix that predicts local mutation rate with high precision through regression. In 
addition, customization of the most comprehensive noncoding annotations from ENCODE facilitate the 
interpretation of results. This integrative approach will enable us to effectively pinpoint mutation hotspots 
associated with disease progression. This genome-wide search for disproportionately burdened regions will be 
complemented by use of our LARVA software for identification of recurrent mutation affecting non-coding 
elements. 
  Our search for significant genomic regions across the breadth of the genome, will then be 
complemented by detailed examination of the molecular functional impact of individual variants. This 
examination of the molecular functional impact of individual variants will include detailed follow-up examination 
of any genomic regions of significance identified through genome-wide recurrence and burdening analysis. We 
will examine individual variants in both coding and noncoding regions. 
 
C.1.B.1.b. Definition of a compact annotation for variant analysis 
To perform combined recurrence analysis of coding and noncoding elements, we will take non-coding 
regulatory regions and link them to genes by constructing “extended gene neighborhoods”. We will first identify 
a compact list of enhancers through a purpose built ensemble method. This ensemble method integrates ChIP-
seq, DNase-seq, and STARR-seq into a pipeline for  enhancer candidate identification based on pattern 
recognition. Enhancer-target linkages will be predicted using the Joint Effect of Multiple Enhancers (JEME) 
method of Cao et al. (under review). Subsequent filtering of these predictions will be performed using high-
resolution Hi-C experiments. We will also extract cis-acting TF and RBP binding sites and incorporate them 
into these extended genes. Similar to exonic regions within genes, we will annotate a set of discrete regions 
that potentially affect gene expression. This unified annotation will enable joint evaluation of the mutational 
signals from distributed yet biologically relevant genomic regions. 
	
C.1.B.2. Variant prioritization by molecular disruption  
 
C.1.B.2.a. Functional prioritization of coding mutations 
Once we have identified putative driver genes through a combination of recurrence and biological network 
analysis, we will score the functional importance of mutations that overlap the coding regions of these genes. 
We will use our VAT and ALoFT tools to identify mutations that may completely inactivate copies of genes. For 
potentially impactful variants that do not fully eliminate gene function, we will combine GERP score - a 
measure of evolutionary conservation - and FunSeq2 score, an ensemble method that combines scores from 
many tools to score the functional impact of coding variants \cite{ 24453961} In addition, for proteins with 
known structures, we will apply our STRESS \cite{27066750} and Frustration \cite{27915290} tools to search 
for allosteric hotspots and sites of localized structural frustration, respectively. We will also use our 
Intensification tool to provide mutation impact scores within protein repeat regions  \cite{27939289}. 
  
C.1.B.2.b. Functional prioritization of noncoding mutations 
  
FunSeq and FunSeq2 allow us to score mutations based on predicted molecular functional impact. Variants 
with high FunSeq scores are predicted to be functionally impactful variants. These high scoring variants tend to 
be located in functionally significant noncoding domains, and may correspond to undiscovered drivers (both 
strong & weak) as well as passenger variants that decrease tumor cell fitness. Conversely, common variations 
tend to arise in functionally unimportant regions due to constraint by selective pressure. Thus, genomic 
features that are enriched with common polymorphisms are less likely to contribute to the deleteriousness of 
variants and so receive lower scores. 
 
We will expand the scoring system of FunSeq\cite{24092746} and Funseq2\cite{25273974} in order to 
integrate the additional variant attributes we measure. In general, features can be classified as discrete (e.g., 
either within or outside of a given functional annotation) or continuous (e.g., the PWM change in ‘motif-
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breaking’). We will weigh these two sets of features using different strategies. For each discrete feature, we will 
calculate the probability that it overlaps with common polymorphisms. We will then calculate the information 
content to denote the value of discrete features: !" = 1 + &" ∗ ()*+&" + (1 − &") 	∗ ()*+(1 − &"). The 
situation is more complex for continuous features; as different feature values have different probabilities of 
being observed in natural polymorphisms. Thus, one weight cannot suffice for varied feature values. For a 
continuous feature 0, which is associated with a value 12 , the probability &2

34 is first estimated using common 

variants: &2
34 = #267768	39:;98<	3=34

#267768	39:;98<
 . The score of continuous feature is defined as !2

34 = 1 + &2
34 ∗ ()*+&2

34 +
(1 − &2

34) 	∗ ()*+(1 − &2
34) . 

	
The score is calculated as >"!"" + >2!2

34
2 = >, @ . We will also incorporate the feature dependency 

structure when calculating the scores by removing redundant features using feature selection or by performing 
dimensionality reduction	
 
C.1.B.2.c. Identification of key regulators using TF network analysis 
We will then investigate the global topology of the transcriptional regulation network by comparing the inbound 
and outbound edges of each transcription factor (TF). The level of a TF within the network hierarchy reflects 
the extent to which it directly regulates expression of other TFs \cite{25880651}. TF rewiring (i.e., target 
changing) may help to identify cancer-associated deregulation when comparing the common regulators in 
approximately matched tumor and normal regulatory networks. Our rewiring analysis not only considers direct 
connections associated with a given TF, but also the whole neighborhood of connections with which a TF 
associates. Through use of both TF membership and topic models, we are able to build a mixed-membership 
model to look more abstractly at local gene neighborhoods to re-rank the TFs. 
	
C.1.B.3. Emphasis on variation affecting TP53 and RB1 
  
Given the high frequency of somatic variation affecting of TP53 and RB1 tumor suppressor genes across 
cancer types, we will focus on the characterization and prioritization of variants affecting these genes. 
Recurrent mutations of TP53 and RB1 are particularly common in poorly differentiated neuroendocrine tumors 
of prostatic origin \cite{28586335}. Transdifferentiation of prostatic adenocarcinoma into a neuroendocrine 
phenotype may occur concomitant with resistance to chemotherapeutic agents \cite{28411207}. This finding 
underscores the importance of detailed examination of variation affecting RB1 and TP53. An understanding of 
mechanisms of gene loss may lead to improved therapeutic options for patients that develop resistance to 
chemotherapy. Our expertise in understanding the effect of variation affecting noncoding regions, and the our 
ability to predict the consequence of variation affecting networks of genes, and extended networks of genetic 
regulatory elements, will be used to provide an in-depth understanding how TP53 and RB1 levels may be 
affected by variants that do not affect their coding sequence. 

 
C.1.B.4. Updating model parameters following experimental validation 

 
Let A(B) =(>C

(D), >+
(D), … , >7

(D))  represent an initial feature parameters chosen at random, where F  is the number 
of features. A will be optimized using an iterative learning scheme by incorporating new experimental 
information produced in Aims 2 and 3. Because of the high throughput of our molecular activity assays 
(eSTARR-seq and InPOINT), our strategy is to implement for the first time an iterative learning scheme 
consisting of three stages: 1) initial learning, 2) real-time experimental parameter optimization, and 3) final 
assessment. 
  
In the first stage, we will randomly select ~500 candidate driver genes as defined by recurrence analysis, 
PCAWG and TCGA. We will first generate the wild-type and mutant clones of these genes and promoters 
using Clone-seq. Then we will select 2 coding variants from the coding region and 2 non-coding variants from 
the promoter region of each gene and generate all ~2,000 variant clones through Clone-seq. The effect of 
these variants on coding and non-coding variants will be quantified by the InPOINT and eSTARR-seq pipelines 
respectively. Starting from the initial tuning of  A(B), we will update these tunings according to the results of 

Deleted: FunSeq and FunSeq2 allow us to score 
mutations based on predicted molecular functional 
impact. Variants with high FunSeq scores are predicted 
to be functionally impactful variants. These high scoring 
variants tend to be located in functionally significant 
noncoding domains, and may correspond to 
undiscovered drivers (both strong & weak) as well as 
passenger variants that decrease tumor cell fitness. 
Conversely, common variations tend to arise in 
functionally unimportant regions due to constraint by 
selective pressure. Thus, genomic features that are 
enriched with common polymorphisms are less likely to 
contribute to the deleteriousness of variants and so 
receive lower scores. ... [1]



~2000 variants in the first stage. For a specific variant 1,, we define G3 as Bernoulli distributed random variable 
with G3 = 1 indicates that 1 is functional. The expectation of G3	can be predicted through a logistic regression: 
logit(M GN = 1 ) = 	−O	 ∗ 	 PQR − S = −O	 ∗ 	 >7 ∗ !N,77 − S   (O, S are scaling parameters). To update A(B) 
with experimental validation results T, we implement Bayes’ rule: M(A|T) 	∝ 	M(T|A)M(A). We will use MCMC 
(Monte Chain Markov Carlo) sampling to search over the parameter space and find the most probable A(W). We 
will predict the functional impact of all noncoding variants genome-wide, M GN = 1|A(W)  . 
 
In the third stage of final assessment, we will select xxx variants (xxx with predicted high impact, xxx with 
medium impact, and xxx with low impact) on previously cloned candidate driver genes. We will measure their 
impact on cell growth and migration activities quantitatively through xx-seq. 
 
We will build similar models for both molecular and cellular activity assays, with the exception that some gene-
centric features, e.g. protein-protein interaction network degree, will be held out of noncoding activity 
prioritization. 
 
 
	
	
	
C.2 AIM 2 High-throughput in vitro quantification of molecular phenotypes of ~2500 non-
coding and ~1500 coding mutations 
  
In Aim 2, we will take variants prioritized using our models in Aim 1 and investigate their molecular activity in eSTARR-
Seq assays for noncoding variants and using our InPOINT pipeline for coding variants. Results of these assays will 
enable model tuning and aid selection of candidates for assays of cellular phenotypes in Aim 3. 
 
C.2.A. Preliminary results 
 

C.2.A.1. The importance of investigating functional relevance of coding variants through 
protein interactome networks 
An increasingly accepted view of the cell 
is that of a complex network of interacting 
macromolecules and metabolites, 
sometimes referred to as the 
“interactome network”1. In particular, 
protein-protein interactome networks are 
of great importance because most 
proteins carry out their functions by 
interacting with other proteins1,2. More 
importantly, many proteins are pleiotropic 
and carry out diverse functions through 
interacting with different proteins3. On 
average, a protein interacts with >5 other 
protein partners in the human 
interactome network. Recently, studies have been conducted on genetic coding mutations in the 
context of the human interactome network4-7. However, our approach is novel in that we 
systematically use several agnostic functional assays in parallel.  

Previously, as described in Nature Biotechnology, Science, and AJHG8-10, improved upon here in 
preliminary results (see c.1.1.3, c.2.1.2, and c.2.1.4), our team has successfully used our high-
throughput InPOINT pipeline to screen >2,000 coding genetic variants and successfully identified 
many deleterious genetic mutations, for example, in the Wiskott-Aldrich Syndrome Protein (WASP, 
see Fig. 1). This strategy also provided important insights into mutation mechanisms, in particular 

	
	
	
	
	
	
	
	
	
	

 
 

Fig 1. Illustration of WASP’s interaction interfaces with 
CDC42 and VASP and effects on the WASP-CDC42 
interaction by mutations on WASP. Mutations causing 
two distinct diseases are located on two separate 
interaction interfaces and disrupt different interactions as 
described in our Nature Biotechnology paper. 



	
Fig 2. Our modified iSTARR-seq pipeline. The 
random molecular barcodes (red) uniquely label each 
mRNA molecule produced before the amplification 
step during the sequencing library preparation, 
enabling us to quantitatively determine the enhancer 

that many coding mutations only affect a subset of specific interactions, rather than all interactions, 
and that mutations in the same protein disrupting different protein-protein interactions often lead to 
clinically distinct disorders10-13. Overall, our InPOINT screen both effectively nominates candidate 
mutations and gives insights into specific mechanisms to be tested in follow up confirmatory 
assays. 
 
C.2.A.2 Our site-directed mutagenesis Clone-seq pipeline is unique 

Our recently-published Clone-seq pipeline allows massively-parallel site-directed mutagenesis to 
generate one and only one specific mutation per DNA molecule for thousands of genes/TREs 
(enhancers and promoters). We have used 
our Clone-seq pipelines to generate 
thousands of gene/enhancer WT and 
mutant clones with an average length of 
~2kb. We will have no problem cloning 
enhancers (up to 4kb) and their mutations 
in their entirety. Clone-seq is entirely 
different from previously described random 
mutagenesis approaches50-53: each mutant 
clone has a separate stock with one and 
only one pre-defined mutation. Finally, we 
implemented a smart-pooling strategy and 
a customized variant-calling algorithm 
such that we can fully sequence each 
mutant clone in its entirety and ensure that 
there are no other unwanted mutations 
introduce on clones used in all 
downstream experiments (e.g., iSTARR-
seq, InPOINT, or other in vivo functional 
assays).  
 

C.2.A.3. iSTARR-seq: highly parallel transcriptional readout of candidate regulatory variants  
STARR-seq (self-transcribing active regulatory region-sequencing) is a recently-established method 
that can identify enhancer elements genome-wide14. Briefly, short genomic fragments are cloned en 
masse into the 3’ untranslated region of a simple transcription unit between paired-end sequencing 
primers. After transfection of this fragment library into cells, enhancer activity is quantified by counting 
the number of unique fragments from a particular genomic locus that give rise to detectable mRNA. 
Importantly, STARR-seq does not quantify the enhancer activity of individual candidate fragments, 
but instead requires creation of a complex library of unique but overlapping fragments for each 
candidate region to be tested. Thus the original STARR-seq protocol cannot be directly used to 
measure enhancer activities from a clonal library of WT and mutant enhancer elements, where each 
element has one and only one clone with defined boundaries, as is the case for our proposed 
research. Furthermore, >98% of sequencing reads are discarded in STARR-seq because multiple 
mRNA molecules are often produced from a single unique DNA fragment (see Supplemental Figure 
2E of Arnold et al14). To circumvent these difficulties, we developed the chromosome-integrated 
STARR-seq (iSTARR-seq) transcriptional readout assay to incorporate a unique molecular barcode 
to the cDNA of each mRNA molecular produced at the reverse transcription step, allowing direct 
quantification of enhancer activity for each individual enhancer by counting RNA sequence reads with 
unique molecular barcodes (Fig. 2). In our preliminary study (c.1.1.4), >80% of the reads were used 
for enhancer activity quantification (>40-fold increase in sequencing efficiency). In summary, these 
improvements will significantly simplify high-throughput studies of candidate enhancer sequences, 
and increase assay sensitivity compared with the original STARR-seq protocol.  
 



b.4. Our high-throughput InPOINT pipeline that directly examines the biochemical 
consequences of coding variants on protein stability and interactions is innovative 
As described in our previous publications (e.g., Nature Biotechnology, Science, PLoS Genetics and AJHG8-10,12), our 
InPOINT pipeline incorporate six high-throughput approaches: Clone-seq (to generate specific mutant clones), 
GFP (to examine SNP’s impact on protein stability), and four orthogonal interaction assays (PCA, LUMIER to 
examine SNP’s impact on specific protein-protein interactions).  
 

 
C.2.B. APPROACH 
c.2. Specific Aim 2.  High-throughput in vitro quantification of molecular phenotypes of ~2500 non-
coding and ~1500 coding mutations. 
 

c.2.1. Preliminary Studies 
c.2.1.1. Performance, throughput, and cost of our Clone-seq pipeline. Clone-seq is currently the highest-throughput 

site-directed mutagenesis pipeline for generating 
thousands of targeted mutations on many genes. Clone-
seq is entirely different from previously described random 
mutagenesis approaches50-53: each mutant clone has a 
separate stock with one and only one pre-defined 
mutation. Other methods, such as Dial-out PCR15, are not 
comparable because it can only generate clones of short 
fragments limited by the Illumina read length. In Clone-
seq, we routinely clone genes of length >4 kb; each clone 
is fully sequence-verified at part of the pipeline (Fig. 5) to 
ensure it has one and only one pre-defined mutation. 
Every step of Clone-seq has been significantly optimized 
for high-throughput operations. We have also implemented 
customized variant calling software because existing 

pipelines (e.g., GATK16) cannot be applied due to our pooling strategy12. This customized variant calling software allows 
us to carefully examine whether other unwanted mutations have been inadvertently introduced during PCR-mutagenesis 
throughout the entire clone.   

	
	
	
	
	
	
		
	
	
	
	
	
	
	
	

	Fig 5. Our massively-parallel Clone-seq pipeline. 



The Clone-seq pipeline can easily be adapted to clone WT TREs and genes. To date, we have 
used the Clone-seq pipeline12 to successfully generate 678 WT TRE clones and 4,026 mutant clones 
on 2,438 TREs/genes. The results confirm the scalability, accuracy, and throughput of our Clone-seq 
pipeline. We are confident that this approach can successfully generate all WT and mutant clones as 

proposed. c.2.1.2. We have successfully implemented our iSTARR-seq assay to quantitatively 
measure enhancer activities of 678 TREs and their mutations. To make the STARR-seq 
compatible with our high-throughput cloning/mutagenesis pipeline, we modified the original STARR-
seq vector by substituting the flanking homology arms with a Gateway cassette (attR1-R2) and 
retaining the Developmental Core Promoter (dCP). Our modified vector (called pDEST-iSTARR-dCP) 
behaves like the original vector in transfection assays. We generated entry clones carrying four 
genomic DNA fragments (HS001, 002, 005, 006) that showed enhancer activity and one (HS018) that 
did not as measured by STARR-seq previously14 as controls. Additionally, we used Clone-seq to 
generate WT and mutant clones for 678 TREs. We cloned all WT and mutant TREs in pDEST-
iSTARR-dCP by Gateway LR reaction and quantified their enhancer activity through our iSTARR-seq 
assay (Fig. 6a). 49 of the 346 (14.2%) TRE mutations examined show significantly lower enhancer 
activities measured by iSTARR-seq as compared to their corresponding WT TREs. Additionally, all 
five control fragments were also cloned into pGL4.23-DEST-dCP vector and their enhancer activity 
was also confirmed by the dual luciferase assay. Both experiments (Fig. 6bc) successfully replicated 
the data published in the original STARR-seq paper14. Thus, the Gateway-compatible iSTARR-seq 
vector is compatible with our high-throughput cloning/mutagenesis pipeline, and provides reliable 
quantification of the enhancer activity of target DNA fragments. To ensure coverage of the main 
classes of enhancers, we will use iSTARR-seq vectors representing the two major classes of core 
promoters17: one that is responsive to developmental enhancers (pDEST-hSTARR-dCP) and one 
responsive to housekeeping enhancers (pDEST-hSTARR-hkCP).  
 

a.                                                                                                     b. 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 

                                                                                                                                                c. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

��

�

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Chromosome

R
N

A
 / 

D
N

A
1

10
10
0

1 3 5 7 9 11 13 15 17 19 22

iSTARR-seq enrichment 
(our data) 

Fig 6. Our iSTARR-seq results agree well with published 
data. (A) Our iSTARR-seq results on 678 WT and mutant 
TREs, including 5 elements from the previous STARR-seq 
study. (B) Our iSTARR-seq results on the 5 elements 
agree well (R2 = 0.860) with published STARR-seq 
results. (C) Our high-throughput dual luciferase assay 
results agree well (R2 = 0.998) with published luciferase 



c.2.1.2. Using our high-throughput InPOINT pipeline (GFP assay) to examine the stability of 
mutant proteins. After we generated clones for 204 known disease mutations using Clone-seq12, we 
examined whether the mutant proteins could be stably expressed in human cells using the GFP 
assay. Compared with the corresponding wild-type proteins, the expression levels of 17 of the 204 
(8.3%) mutants are significantly diminished (Fig. 7a). To validate these findings, we performed 
western blotting for 10 random mutants that are stably expressed and 10 random mutants with 
significantly diminished expression levels (Fig. 7b). All western blotting results agree perfectly with 
our GFP readings12.  
c.2.1.3. Four orthogonal high-throughput high-quality interaction-
detection assays in our InPOINT pipeline. Current high-throughput 
interaction-detection technologies can benefit from an increase in sensitivity18-

20. To address this, we have developed a high-throughput interaction-detection 
tool-kit18,20,21 consisting of four complementary high-quality assays: Protein 
Complementation Assay (PCA)22, yeast two-hybrid (Y2H), LUminescence-
based Mammalian IntERactome mapping (LUMIER)23, and 96-well-plate-
based Nucleic Acid Programmable Protein Array (wNAPPA)24. With a large set 
of positive and negative controls for human proteins, we found that all four 
assays are of high quality and combining four assays significantly improves 
both sensitivity and specificity in detecting true protein interactions19.  
c.2.1.4. Using our high-throughput InPOINT pipeline to examine the 
effects of disease mutations on protein interactions. We investigated 
whether these 204 mutations could affect protein-protein interactions using the 
four assays in our InPOINT pipeline. We found that 21 of the 27 (78%) 
“interface residue” mutations, 57 of the 100 (57%) “interface domain” 
mutations, and only 22 of the 77 (29%) “away from the interface” mutations 
disrupt the corresponding interactions, confirming that structural information of 
interactions greatly improves our understanding of the impact of disease 
mutations12. Y2H has been applied by us and other groups to examine 
hundreds of disease mutations and has been proven to be an effective 
approach10-13,25. The novelty of our InPOINT pipeline is that it combines four 
orthogonal assays (PCA, Y2H, LUMIER, and wNAPPA). Combining four 
orthogonal assays and using only consistent results by two or more assays will 
ensure scientific rigor and practically eliminate false-positives in our results. 

c.2.2. Research Design 
c.2.2.1. High-throughput cloning of ~500 WT TREs and ~2500 non-coding 
SNPs on these TREs using Clone-seq. Sequence-specific forward and 
reverse primers containing attB1 and attB2 sequences for 769 WT TREs will 
be designed by our automated online primer design website 
“http://primer.yulab.org”12, and synthesized in bulk as “Trumer Oligo” plates by 
Eurofins Genomics. Using human genomic DNA as template, the selected 
TREs will be PCR amplified in 96-well format with high-fidelity Phusion DNA 
polymerase to minimize introduction of unintended mutations. We will perform 
large-scale Gateway BP reactions to clone each PCR product into pDONR223 
vector. Entry clones containing the intended TREs will be identified through our Clone-seq protocol12. Briefly, 
E. coli transformation is performed and a 20 µL aliquot of the cells is then spread onto LB + Spectinomycin 
plates in high-throughput using the Tecan robot. The next day, four colonies per allele are picked for Illumina 
sequencing using QPix-HT. After identifying successful clones without any unwanted mutations through our 
customized variant calling pipeline, we robotically picked out these 769 WT TRE clones for downstream 
experiments. 

Primers for site-directed mutagenesis are designed by our automated online primer design website 
“http://primer.yulab.org”12, and synthesized in bulk as “Trumer Oligo” plates by Eurofins Genomics. The mutant 
clones will be generated using our Clone-seq protocol12. Briefly, 50 µL mutagenesis PCR reactions are set up 
on ice in 96-well PCR plates using Phusion polymerase (NEB M0530) according to manufacturer’s manual with 
WT TRE clones generated above. PCR products are digested by DpnI (NEB R0176L) overnight at 37 °C. E. 
coli transformation, colony picking, and Illumina sequencing will be performed as described above through our 
high-throughput protocol using Tecan and QPix-HT robots. After identifying successful clones with the 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Fig 7. (a) GFP images of 
WT HPRT1 and its unstable 
mutant allele. (b) Western 
blot confirming results of 
our GFP assay. 
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designed SNP but without any unwanted mutations through our customized variant calling pipeline, we 
robotically pick out the 1,407 successful mutant TRE clones for downstream experiments. 

These fully sequence-verified WT and mutant entry clones will be subjected to Gateway LR reaction to 
transfer TREs in the entry vector to our modified pDEST-iSTARR destination vectors via recombination. The 
resulting expression clones will be pooled, maxipreped, and subjected to iSTARR-seq analysis in colon 
organoids.  
c.2.2.2. Quantitatively measuring enhancer activity of WT and mutant TREs using iSTARR-seq. 
The 1,407 SNPs and their corresponding WT entry clones generated in c.1.2.1 will be cloned into 
both pDEST-iSTARR-dCP and pDEST-iSTARR-hkCP vectors by Gateway LR reaction. In order to 
produce lentiviral particles carrying an iSTARR-seq library, the iSTARR-seq library plasmids will be 
transfected into HEK293T cells together with the envelope plasmid and the packaging plasmids. The 
viral particles will be collected from the culture medium of the transfected cells at 60h post 
transfection and then titrated with qRT-PCR targeting the viral RNA. Colon organoids will be 
transduced with the harvested lentiviral particles at desired MOI and selected with puromycin. 
Towards the end of the selection process, the integration rate will be confirmed by qPCR with 
genomic DNA (gDNA) extracted from a small portion of the transduced cells. The cells will then be 
collected for gDNA and total RNA extraction. mRNA derived from iSTARR-seq vectors will first be 
reverse transcribed and then PCR-amplified according to previous publication14 with minor 
modifications. Briefly 1st-strand cDNA will be synthesized by reverse transcription with a vector 
backbone-specific primer annealing to 3’-end of the transcripts. Each primer molecule will contain a 
unique 15 nt molecular barcode to label each cDNA molecule (Fig. 2). Two rounds of nested PCR 
with low cycle numbers will be performed to amplify the TRE region in the cDNA without introducing 
contamination from transfected plasmid DNA or copy number bias. The cDNA library will be subjected 
to tagmentation with Tn5 transposase and customized sequencing adaptors containing indexing 
barcodes. After another round of low-cycle PCR for enriching successfully tagmented cDNA 
fragments, the barcoded library will then be sequenced with Illumina HiSeq or NextSeq. 

Another sequencing library targeting gDNA-integrated TREs in the transduced cells will also be prepared 
and sequenced using the similar procedure as that for the mRNA. In addition, the lentiviral library will also be 
processed and sequenced as a control for overall library quality. The total number of the mRNA or DNA 
molecules of a given TRE (WT and all the mutants) will be the number of unique molecular barcodes 
associated with it. The proportion of each mutant is calculated based on the number of sequencing reads at its 
corresponding mutation site. The transactivity of a specific allele of a TRE (WT or mutant) will be calculated as 
the ratio of the number of mRNA molecules derived from the allele over the number of the TRE allele 
integrated into the gDNA. 
c.2.2.3. High-throughput dual luciferase assays to further confirm and nominate functional non-coding 
risk variants. The canonical luciferase reporter vector pGL4.23 (Promega) was modified into two Gateway 
compatible vectors, pGL4.23-DEST-dCP and pGL4.23-DEST-hkCP. These vectors contain a Gateway 
cassette upstream of the corresponding core promoter (dCP and hkCP) followed by a luc2 (synthetic firefly 
luciferase) reporter gene. All WT and mutant TREs will be LR-cloned into these reporter vectors accordingly. 
pGL4.75 vector (Promega), which contains a CMV enhancer/promoter and a downstream hRluc (synthetic 
Renilla luciferase) gene, is used as transfection control. TRE-containing reporter vector and control vector will 
be co-transfected into normal colon organoid cells by electroporation. The activity of each of the WT and 
mutant TREs as indicated by the intensity of bioluminescence will be measured by with Dual-Glo luciferase 
assay system (Promega).  
c.2.2.4. High-throughput site-directed mutagenesis to generate ~1500 coding mutants through Clone-
seq. Clone-seq will be carried out as described in our previous publication12 and c.1.2.1. All WT clones are 
obtained from the Human ORFeome 8.126, which is a fully sequence-verified Gateway-compatible ORF clone 
library for human genes that we have purchased and maintained for the past five years. After Illumina 
sequencing, correct clones without any unwanted mutations are identified using our customized variant calling 
software12.  
c.2.2.5. High-throughput InPOINT pipeline (GFP assay) to test the stability of the ~1500 mutant 
proteins. All WT and mutant clones are first moved into the pDEST-GFP-mCherry vector using 
automated Gateway LR reactions in 96-well format. A 100 ng aliquot of the expression clone is used 
for transfection into HEK293T cells in 96-well plates using polyethylenimine. At approximately 48 hrs 



post- transfection, fluorescence intensities of 
transfected cells are measured with a Tecan M1000 at 
395/507 nm for cycle 3 GFP (Invitrogen) and 580/612 
nm for mCherry, denoted as Ig and Ir, respectively. As 
negative controls, the GFP and mCherry fluorescence intensities corresponding to cells transfected 
with the empty pDEST-GFP-mCherry vector (with a plate-specific mean Igb and s.d. ) and empty 
pcDNA-DEST47 vector (with a plate-specific mean Irb and s.d. ) are measured. A plate-specific Zg 
and Zr are calculated as  and . A WT clone is considered to have 
stable expression if its Zg and Zr  values are both > K. Here, K = 1.645, corresponding to the single tail 
P value of 0.05 for a normal distribution (i.e., it has significantly higher expression than background 
for both GFP and mCherry). For mutants with corresponding stable WTs, we remove transfection 
failures (Zr ≤ K) and then calculate normalized quantitative stability scores for both WT and mutant: 
 
 
All experiments will be performed in triplicate. Mutations that significantly affect protein stability will be identified 
by comparing the means of log(SWT) and log(Smut) scores using a t-test (the log transformed stability scores 
follow a normal-like distribution). We will calculate a quantitative relative stability index, X@Y = 	 @7Z< @[\, for 
mutations that significantly affect protein stability. To further ensure the quality of our results, we will perform 
an ELISA assay using anti-FLAG antibody for all 121 mutants. This is part of the LUMIER assay that we 
routinely apply to test the presence of the bait protein. Only mutants with consistent results between GFP and 
ELISA assays will be kept for downstream analyses, ensuring data quality and scientific rigor. 
c.2.2.6. High-throughput InPOINT pipeline to test the effects on interactions of the ~1500 mutant 
proteins. Next, we will examine the impact of mutations on specific interactions: (1) PCA. Briefly, mutant ORF 
clones will be transferred by Gateway LR reactions into vectors encoding the two fragments of YFP (Venus 
variant) fused to the N-terminus of the tested proteins. Baits were fused to the F1 fragment (amino acids 1-158 
of YFP) and preys to the F2 fragment (amino acids 159-239 of YFP). Plasmids encoding the two proteins are 
used for transfection into HEK293T cells in 96-well plates, using Lipofectamine2000 (Invitrogen). 48 hrs post-
transfection cells are processed with Tecan M1000. A pair are considered interacting if the YFP fluorescence 
intensity is ³2 fold higher over background. (2) LUMIER. ORFs are cloned into Gateway-compatible LUMIER 
vectors by LR reactions and minipreped. HEK293T cells were transfected in 96-well plates. After transfection, 
cells are processed for immunoprecipitation. LUMIER intensity ratio (LIR) values are obtained for the 
immunoprecipitates (LIR-IP) and calculated similarly for the total lysates (LIR-TOT). Normalized LIR (NLIR) 
was calculated as the ratio LIR-IP/LIR-TOT. A pair with NLIR score of ≥ 33.2 are considered to be interacting. 
(3) Y2H. ORFs are cloned into pDEST-AD and pDEST-DB vectors by LR reactions. All DB-X and AD-Y 
plasmids will be transformed individually into the Y2H strains MATα Y8930 and MATa Y8800, respectively. 
After mating, only yeast cells containing interacting pairs of DB-X and AD-Y will grow on selective media (i.e., 
expression of HIS3 and ADE2 reporter genes). (4) wNAPPA. ORFs are cloned into pCITE-HA and pCITE-GST 
vectors by LR reactions. Both prey and bait plasmids are added to Promega TnT coupled transcription-
translation mix and incubated to express proteins. The whole mix is then added to anti-GST antibody-coated 
96-well plates. After binding and capture, plates are incubated with primary and secondary antibody and 
visualized using chemiluminescence with Tecan M1000. Wells with ³3 fold higher intensity over background in 
either configuration are scored positives. Only disruptions confirmed by two or more assays (including Y2H) 
will be considered disrupted for all downstream analyses. Combining four orthogonal assays and using 
only consistent results by two or more assays will ensure the quality and practically eliminate false-
positives in our results, ensuring scientific rigor. 

 
 
C.3. AIM 3 Medium-throughput in vivo quantification of cellular phenotypes and validation of 
10 coding and non-coding variants in prostate organoids 
In aim 3, we will take variants prioritized based on molecular impact and investigate their effects on 
cellular- and organoid-level phenotypes related to cancer. 
 
C.3.A. Preliminary results 
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C.3.A.1 Experience with CRISPR-Cas9 and interaction with P54 Cancer Systems Biology Center. 
In our work, we will take advantage of collaborative interactions with the NCI-funded P54 Cancer Systems 
Biology Center at Yale (CaSB@Yale), directed by Prof. Andre Levcheno (see his letter attached). In particular, 
we will use the service of its Core 2 focused on the CRISPR-based generation of cell and animal cancer 
models, involving knockin and knockout of pre-determined molecular target. Previously and currently, 
researchers at the Center have applied in vivo somatic genome editing to generate tumor models of specific 
driver genes in cell lines and mouse models of different cancers (see Fig. 1 for an example of liver cancer). 
Cas9 was 
targeted to cells 
and animals to 
generate specific 
genetic changes 
that can promote 
oncogenesis or 
model other 
mutations (Xue et 
al., 2014). Viral 
delivery enables 
targeting of 
almost any tissue, 
including prostate 
tissues, 
constrained by 
the packaging 
capacity, which limits the number of sgRNAs, HDR donors, and other elements that will fit within the same 
vector as Cas9. For example, lentivirus mediated delivery was used to deliver Cas9 in mammalian cells to 
study cancer (Shalem et al., 2014, Wang et al. 2014, Chen et al. 2015). Adeno-associated viral (AAV) vectors 
are DNA-based and not prone to recombination, making the expression of multiple U6-sgRNA cassettes 
feasible.  CaSB@Yale generated a Cre-conditional Cas9 mouse model, which facilitates rapid and efficient 
modeling of single and multi-genic mutations in specific tissue and cell types of interest. In this model, Cas9 is 
already present and dormant within the genome of all cells, which opens up a larger capacity for delivery of 
sgRNAs as well as other elements. We have combined this conditional Cas9 mouse with AAV vector-mediated 
expression of sgRNAs in the lung, and modeled lung cancer using a combination of the Kras oncogene and 

two tumor suppressor genes, p53 and Lkb1 (Stk11) (Platt et al. 
2014). These enable novel viral vector based platforms to study 
the combinatorial contribution of mutations, defining tumor 
phenotypes and their evolution in vitro and in vivo. 
 
C.3.A.3 Assays for cell proliferation and migration 
The Director of CaSB@Yale, Andre Levchenko, will also 
participate in the proposed work by contributing the analysis 
platforms allowing to separate prostate cancer populations  into 
sub-populations of highly migratory and highly proliferative cells. 
Co-existence of such sub-populations is common, stemming 
from what is commonly referred to as the ‘go or grow’ 
phenotypic switch, which can in turn be controlled by various 
genetic and environmental alterations. In our prior work, we 
have demonstrated that highly migratory and highly proliferative 
cells can be separated using anisotropically nanofabricated 
substrata (ANFS) that closely mimic the fibrous structure of 
ECM 18-20. This ANFS, in addition to mimicking putative 
alignment of ECM fibers 21, converts cell migration from a 2D 
random walk to an essentially 1D persistent and unidirectional 

movement along the direction of nano-fibers – similar to cell migration and alignment observed in sparse 3D 
ECM (Fig 2A). This similarity of migration on ANFS to 3D cell migration in vivo not only suggests that the 

A

Fig. 1 Demonstration of in vivo genome editing for cancer modeling. (A) Schematics of a conditional Cas9 knockin mice; 
(B) Schematics of Cas9 activation in tissues of interest upon delivery of Cre; (C) Example of single gene targeting by CRISPR, 
hydrodynamic delivery of Cas9 and sgRNA plasmid targeting Pten in mouse liver leads to clonal Pten null cells; (D) liver cancer 
model induced by hydrodynamic delivery of Cas9 and two sgRNAs targeting Pten and p53; (E) lung adenocarcinoma model 
using gene editing with conditional Cas9 knockin mice, showing istology of AAV-KPL generated lung cancer (grade III).
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Figure 2. The steps involved in the RACE based 
phenotypic filtering phenotypic filtering into 
relatively highly proliferative and highly migratory 
cells 



analysis is biomimetic and more relevant than the usual Petri dish experimentation, but also provides a 
convenient way to contrast the migration of differentially perturbed cells against each other. In this proposal, 
we will develop the initial screening of aggressive melanoma cells. We refer to this first test as the 
Rapid Analysis of Cell migration Enhancement (RACE).  
 
 
C.3.A.3. Patient-derived tumor organoids as a tool for precision cancer care.  We recently demonstrated 
that we can develop cancer and benign organoids. From a cohort of 145 specimens from patients with 
advanced cancers including prostate (52).  We were able to develop tumor organoids from 38.6%. We define 
successful establishment of PDTO cultures when they contain viable cells that form spheroid-like structures 
and can be propagated after the initial processing for at least five passages. These specimens are 
characterized, stored in our living biobank and are used for functional studies. Cell viability was assessed in 
the first ten established cultures at passages 2-4, and in 9 out of 10 cases, > 90% of cells were viable. Tumor 
and benign organoids are characterized using cytology and histology as previously described 21.  As the data is 
now published we only note that we have been able to perform extensive studies with these organoids 
including CRIPSR-cas9 manipulation (FANCA PAPER), drug screens (PAULI REFERENCE), and lenti-viral 
SH infection.  With many years experience, we are confident that developing benign prostate cell lines for this 
Aims should be readily accomplished.  
 
C.3.B. Research Plan. 
 
C.3.B.1. Medium throughput quantification of variant effects on cell proliferation and migration. We will 
introduce knockin-based perturbations of the top 120 highly scored genetic targets using the CRISPR 
techiques outlined above and study their effect on cell migration and proliferation using RACE. In our 
preliminary analysis, as a proof-of –principle, we employed the virally packaged, Doxycycline-inducible short 
hairpin RNAs (shRNAs) collection. The key aspect of this library, is that the silencing is inducible, and the 
constructs are barcoded. The cells have been transfected by a pool of shRNAs en-mass and scored for a 
phenotype of choice, e.g., cell migration and prolfieration. Cells achieving a high or low score can then be 

assayed for the presence of specific shRNAs by PCR-amplifying 
it using a set of unique primers. As described in Fig 2, the mixed 
populations of melanoma cells transduced with different shRNAs 
are plated on ANFS in a small slit of a poly-(di)-methyl-syloxene 
(PDMS) stencil. After cell attachment, the stencil is removed, 
allowing the cells to migrate along the direction of nano-ridges. 
The silencing of expression of sub-sets of specific genes by the 
corresponding shRNAs differentially affects cell movement or 
proliferation, so that the RACE results in cells ‘racing’ with 
different values of speed and persistence along the direction 
specified by the ANFS. After 1 week of RACE, we harvest the 1/3 
of the ANFS area where cells were originally seeded (‘slow 
group’, high prolifeation) and the most distant 1/3 from the area of 
cell seeding (‘fast group’; high migration). The cells from the ‘fast’ 
and ‘slow’ groups are re-seeded separately and the RACE assay 
is repeated three times to enrich the ‘fast’ and ‘slow’ populations 
through sequential ‘racing’ periods. Finally, the cells were 
harvested, and the shRNA sequences were PCR-amplified to 
determine the genes whose silencing affected the phenotype. As 

a result, we can determine the role of silenced genes in driving cell migration/proliferation and thus 
potentially the propensity of cancer cells to initiate invasion and metastasis. Importantly, we have shown 
that this assay selects cells not only for increased migration but also for other characteristics (signaling, stem-
ness, metabolic control, etc.) (a sample of the results in a melanoma cell line is shown in Fig 3).  
 
 
C.3.B.2 Validation of 10 coding and non-coding variants in prostate organoids 

	

	
Figure 3. Partial characterization of the ‘fast’ and 
‘slow’ cell sub-populations with the cell 
population of SK-Mel-28 melanoma cell line.  
	



C.3.B.2.a. Specimen procurement. Patient-derived fresh tissue samples will be collected with written 
informed patient consent in accordance with the Declaration of Helsinki and with the approval of the Ethics 
Board at the University of Bern and the Inselspital (Bern Hospital Group). Fresh tissue biopsies and resection 
specimens are taken directly in the procedure rooms. Fresh tissue biopsies will be transported to the laboratory 
to establish primary tumor organoid cultures. Macroscopically different appearing tumor areas will be collected 
and processed individually. The time between harvesting fresh tissue specimens and placing them in transport 
media [Dulbecco’s modified Eagle medium (DMEM, Invitrogen) with Glutamax (1x, Invitrogen), 100U/ml 
penicillin, 100ug/ml streptomycin (Gibco), Primocin 100ug/ml (InvivoGen), 10 uM Rock inhibitor Y-27632 
(Selleck Chemical Inc)] should be less than 30 minutes.  
 
C.3.B.2.b. Tissue processing and cell culture conditions. Tissue samples will be washed a minimum of 
three times with transport media and placed in a sterile 3 cm petri dish (Falcon) for either total mechanical 
dissociation or dissection into smaller pieces (∼2 mm diameter) prior to enzymatic digestion. Enzymatic 
digestion was done with 2/3rd of 250 U/mL collagenase IV (Life Technologies) in combination with 1/3rd of 
0.05% Trypsin-EDTA (Invitrogen) in a volume of at least 20 times the tissue volume. The cells will be 
resuspended in a small volume of tissue-type specific primary culture media with a 1:2 volume of growth factor 
reduced Matrigel (Corning).  
 
CRISPR-cas9 Experiments.  We will employ CRISPR-cas9 gene exiting approaches as described above to 
modify benign luminal prostate organoids.  Analysis with regards to downstream effects will be compared to 
scrambled guide RNA treated cell lines.  (QUESTIONS FOR GROUP CAN WE DEFINE OUR READOUTS 
HERE) 
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FunSeq and FunSeq2 allow us to score mutations based on predicted molecular functional 
impact. Variants with high FunSeq scores are predicted to be functionally impactful variants. 
These high scoring variants tend to be located in functionally significant noncoding domains, 
and may correspond to undiscovered drivers (both strong & weak) as well as passenger 
variants that decrease tumor cell fitness. Conversely, common variations tend to arise in 
functionally unimportant regions due to constraint by selective pressure. Thus, genomic features 
that are enriched with common polymorphisms are less likely to contribute to the 
deleteriousness of variants and so receive lower scores. 
  
We will expand the scoring system of FunSeq\cite{24092746} and Funseq2\cite{25273974} in 
order to integrate the additional variant attributes we measure. In general, features can be 
classified as discrete (e.g., either within or outside of a given functional annotation) or 
continuous (e.g., the PWM change in ‘motif-breaking’). We will weigh these two sets of features 
using different strategies. For each discrete feature, we will calculate the probability that it 
overlaps with common polymorphisms. We will then calculate the information content to denote 
the value of discrete features. The situation is more complex for continuous features, as 
different feature values have different probabilities of being observed in natural polymorphisms. 
Thus, one weight cannot suffice for varied feature values. For a continuous feature , which is 
associated with a value , the probability  is first estimated using common variants: . The 
score of continuous feature is defined as . 
The score () is calculated as . We will also incorporate the feature dependency structure when 
calculating the scores by removing redundant features using feature selection or by performing 
dimensionality reduction 
 

	


