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Motivation

* Most disease-related SNPs lie
in noncoding regions

* Historically, coding regions
have been given more attention

* De novo predictions help
prioritize in regions with no or
poor annotation




Framework

* Deep learning-based Sequence
Analyzer (DeepSEA)

* DeepSEA Framework

» Convolutional Neural Network (CNN)

e Relative log-fold change
» Regularized logistic regression
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Framework

Convolutional Neural Network

* Works on spatial features where order of features is important
* Inspired by receptive fields of animal visual cortex
* One of few approaches that revolutionized Deep Learning

* Popular for image classification

[+] 0
0
o o
o -0 psunsel
-0
A [+] ~O
° No
ol \ %8 > Pu
o o
[+] [+]
ol \[2 Lt e
. . (] [+]
convolution + max pooling vec | o \g
nonlinearity o

—

convolution + pooling layers fully connected layers  Nx binary classification



Framework

Convolutional Neural Network

* Learning discriminative features automatically
e Qutput can be one or many values, depending on network architecture

Input Convolution + RelU Pooling Convolution + RelLU Pooling Fully Connected



Framework

Convolutional Neural Network

e Convolution Step
e Scanning for each feature

* Pooling Step

* Shrinking feature map (~ zooming in), also called subsampling
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Framework

Convolutional Neural Network

* Final layer is usually a fully connected neural network
e Can be any other classifier, such as SVM as in [Tang, 2013]
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Framework

Convolutional Neural Network

* Number of features, window size for scanning, and other parameters need to
be optimized

* But why does it work on sequence data?
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Framework

Convolutional Neural Network

» Works on spatial features where order of features is important
* DNA sequences, video frames, images, etc.
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Framework

Convolutional Neural Network

* Works on spatial features where order of features is important

® DNA sequences, video frames, images, etc.

* Input: 1000-bp sequence

SEQUENCE: A i i & T G G A
x4(N) 1 0 0 0 0 0 1
xc(n) 0 0 1 0 0 0 0
x;(n) 0 0 0 0 1 1 0
xr(n) 0 1 0 | 0 0 0

e Qutputs: Chromatin features
e 975 values (670 TF binding, 125 DHS, and 104 histone modification values)

* Hundreds of features to scan for



Framework

Convolutional Neural Network

* CNN Toy Example | MNIST Digit Classification via TensorFlow in Python [here]

e Setup on Farnam (~ 5 minutes) [here]

* Accuracy > 99%
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Framework

Predictive Tasks

e Chromatin Feature Prediction

* Training data

* Genome wide chromatin profiles

* 670 TF binding, 125 DHS, and 104 histone mark profiles

* ENCODE and Roadmap Epigenomics

* 521.6 Mbp (17%) of the genome bound 1+ of 160 chosen TFs

* Testing

* Holdout sequences from the genome
* 4,000 samples from chr7 region 30,508,751-35,296,850
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Framework

Predictive Tasks | Chromatin Feature Prediction

* Results e SVM-based gkm-SVM
 TF binding sites | Median AUC = 0.985 * TF binding sites | Median AUC = 0.896
* DHS | Median AUC = 0.923 * Two models: 300-bp & 1000-bp-based
* Histone modifications | Median AUC = 0.865
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Framework

Predictive Tasks [ In Silico Mutagenesis

* Computational generation of all possible SNVs (3x1000 per 1KB input sequence)
* Validation against disease-related SNPs with experimental evidence

e Results

* Accurate prediction of TF binding effects on SNPs with experimentally validated known effects
* Breast cancer risk locus C-to-T SNP rs4784227 in FOXA1
* a-thalassemia T-to-C creates a binding site for GATA1
* Pancreatic agenesis A-to-G mutation has deleterious effect on FOXA2 binding

GATA1 (K562)

binding site

*A>C>G>Torder

* Yellow increase in binding

* Blue decrease in binding



Framework

Predictive Tasks

* SNP Functional Prioritization
* CNN followed by regularized log-reg

* Sequence & evolutionary features (Phylop & others)

* Data
* Human Gene Mutation Database (HGMD)

* Noncoding eQTLs from Genome-Wide Repository of
Associations between SNPs and Phenotypes

* Noncoding SNPs from HGRI GWAS Catalog
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Framework

Predictive Tasks | SNP Functional Prioritization

* Discriminating negative SNPs close to positive (functional) ones
* AUC (<0.7) lower on this task compared to all 3 previous chromatin effect prediction tasks

* Relatively low FPR
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Figure 3 | Sequence-based prioritization of functional noncoding variants. Comparison of DeepSEA to other methods for prioritizing functionally
annotated variants including HGMD annotated regulatory mutations, noncoding GRASP eQTLs and noncoding GWAS Catalog SNPs against noncoding
1000 Genomes Project SNPs (across multiple negative-variant groups with different scales of distances to the positive SNPs). The x axes show the
average distances of negative-variant groups to a nearest positive variant. The “All” negative-variant groups are randomly selected negative 1000
Genomes SNPs. Because GWAVA was trained on the HGMD regulatory mutations, we filtered out GWAVA training positive-variant examples and closely
located variants (within 2,000 bp) in evaluating its performance on HGMD regulatory mutations. Model performance is measured with area under the
receiver operating characteristic curves (AUC).
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Supplementary Figure 8
DeepSEA-based classifier prioritized functionally annotated indels with high performance

HGMD regulatory indels prioritization performance was evaluated against negative 1000 Genomes indel groups with
different dlstunm to posmve mdels (avemge distance shown on the x-axis). The performance was measured by area
under tic (AUC). The prioritization model was trained with HGMD regulatory single
nucleotide substitution mutations agamst 1200bp average distance negative variants.




Strengths & Weaknesses

* Strengths

* First deployment of deep learning methods in variant prioritization
» De novo predictions for multiple tasks

* Weaknesses
* gkb-SVM optimized on 300-bp input sequences, not 1000-bp ones
* N = 77 sequences only to test for indels
* SNP functional prioritization is de novo, but not de novo
* More focus on functionally negative rather than positive SNPs






