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Abstract 
Genome-wide	proximity	ligation	based	assays	such	as	Hi-C	have	revealed	that	

eukaryotic	genomes	are	organized	into	structural	units	called	topologically	

associating	domains	(TADs).	From	a	visual	examination	of	the	chromosomal	contact	

map,	however,	it	is	clear	that	the	organization	of	the	domains	is	not	simple	or	

obvious.	Instead,	TADs	exhibit	various	length	scales	and,	in	many	cases,	a	nested	

arrangement.	Here,	by	exploiting	the	resemblance	between	TADs	in	a	chromosomal	

contact	map	and	densely	connected	modules	in	a	network,	we	formulate	TAD	

identification	as	an	optimization	problem	and	propose	an	algorithm,	MrTADFinder,	

to	identify	TADs	from	intra-chromosomal	contact	maps.	MrTADFinder	is	based	on	

the	network-science	concept	of	modularity.	A	key	component	of	it	is	deriving	an	

appropriate	background	model	for	contacts	in	a	random	chain,	by	numerically	

solving	a	set	of	matrix	equations.	The	background	model	preserves	the	observed	

coverage	of	each	genomic	bin	as	well	as	the	distance	dependence	of	the	contact	

frequency	for	any	pair	of	bins	exhibited	by	the	empirical	map.	Also,	by	introducing	a	

tunable	resolution	parameter,	MrTADFinder	provides	a	self-consistent	approach	for	

identifying	TADs	at	different	length	scales,	hence	the	acronym	"Mr"	standing	for	

Multiple	Resolutions.	We	then	apply	MrTADFinder	to	various	Hi-C	datasets.	The	

identified	domains	are	marked	by	boundary	signatures	in	chromatin	marks	and	

transcription	factor	(TF)	that	are	consistent	with	earlier	work.	Moreover,	by	calling	

TADs	at	different	length	scales,	we	observe	that	boundary	signatures	change	with	

resolution,	with	different	chromatin	features	having	different	characteristic	length	

scales.	Furthermore,	we	report	an	enrichment	of	HOT	regions	near	TAD	boundaries	

and	investigate	the	role	of	different	TFs	in	determining	boundaries	at	various	

resolutions.	To	further	explore	the	interplay	between	TADs	and	epigenetic	marks,	

we	examine	how	somatic	mutations	are	distributed	across	boundaries	(as	tumor	

mutational	burden	is	known	to	be	coupled	to	chromatin	structure),	finding	a	clear	

stepwise	pattern.	Overall,	MrTADFinder	provides	a	novel	computational	framework	

to	explore	the	multi-scale	structures	in	Hi-C	contact	maps.	
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Author Summary 

The accommodation of the roughly 2m of DNA in the nuclei of mammalian cells results in an 

intricate structure, in which the topologically associating domains (TADs) formed by densely 

interacting genomic regions emerge as a fundamental structural unit. Identification of TADs is 

essential for understanding the role of 3D genome organization in gene regulation. By viewing 

the chromosomal contact map as a network, TADs correspond to the densely connected regions 

in the network. Motivated by this mapping, we propose a novel method, MrTADFinder, to 

identify TADs based on the concept of modularity in network science. Using MrTADFinder, we 

identify domains at various resolutions, and further explore the interplay between domains and 

other chromatin features like transcription factors binding and histone modifications at different 

resolutions. Overall, MrTADFinder provides a new computational framework to investigate the 

multiple length scales that are built inside the organization of the genome.  
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Introduction 

The packing of a linear eukaryotic genome within a cell nucleus is dense and highly organized. 

Understanding the role of 3D genome in gene regulation is a major area of research [1][2][3][4]. 

Recently, genome-wide proximity ligation based assays such as Hi-C have provided insights into 

the complex structure by revealing various structural features regarding how a genome is 

organized [5][6][7]. Perhaps, one of the most important discoveries is the domain of self-

interacting chromatin called topologically associating domain (TAD) [8][9]. Inside a TAD, 

genomic loci interact often; but between TADs, interactions are less frequent. Thus the TAD 

emerges as a fundamental structural unit of chromatin organization; it plays a significant role in 

mediating enhancer-promoter contacts and thus gene expression, and breaking or disruption of 

TADs can lead to diseases like cancers [10][11][12]. Therefore, a deeper understanding of TADs 

from Hi-C data presents an important computational problem. 

Results of a typical Hi-C experiment are usually summarized by a so-called chromosomal 

contact map [5]. By binning the genome into equally sized bins, the contact map is essentially a 

matrix whose element (𝑖, 𝑗) reflects the population-averaged co-location frequencies of genomic 

loci originated from bins i and j. In this representation, TADs are displayed as blocks along the 

diagonal of a contact map [8][9]. Despite the fact that TADs are rather eye-catching in a contact 

map, computational identification is still challenging because of experimental factors such as 

noise and inadequate coverage. Moreover, it is apparent from a visual examination of the contact 

map that TADs exhibit various length scales: there are TADs that appear to be overlapping, and 

within many TADs, there are rich sub-structures.  

Mathematically speaking, it is very natural to transform a contact matrix to a weighted 

network in which nodes are the genomic loci (or bins) whereas the interaction between two loci is 

quantified by a weighted edge. In network science, a widely studied problem is the identification 

of network modules, also known as community detection problem [13]. A module refers to a set 
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of nodes that are densely connected. In its simplest form, the community detection problem 

concerns with whether nodes of a given network can be divided into groups such that connections 

within groups are relatively dense while those between groups are sparse. Therefore, by viewing 

the chromatin interactions as a network, the highly spatially localized TADs immediately 

resemble densely connected modules. Motivated by the resemblance, we formulate the 

identification of TADs as a global optimization problem based on the observational contact map 

and a background model. As a network-based approach, our method goes beyond a direct 

adaptation of standard community detection algorithms. We introduce a novel background model 

that takes into account the effect of genomic distance, which is specific to the context of genome 

organization. The objective function is optimized using a heuristic algorithm that is efficient even 

if the size of the input contact map is large. Furthermore, by introducing a tuning parameter, our 

network approach can identify TADs at different resolutions. At a low resolution, larger TADs 

are found whereas, at a high resolution, smaller TADs are identified as the nucleome is viewed on 

a finer scale. In other words, the method can identify TADs at different length scales. We name 

our method MrTADFinder where the acronym Mr stands for multiple resolutions.  

 

Results 

A network modularity framework for TADs identification 

The identification of modules in a network is formulated as a global optimization problem on the 

so-called modularity function over possible divisions of the network. Consider an unweighted 

network represented by an adjacency matrix 𝐴. For a particular division (i.e. a mapping from the 

set of all nodes to a set of modules), the modularity is defined as the fraction of edges within 

modules minus the expected fraction of such edges in a randomized null model of the network. 

Mathematically, the modularity is equal to 
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1
2𝑚

𝐴*+ −
𝑘*𝑘+
2𝑚

*,+

𝛿/0/1.	

 

(1) 

Here, the summation goes over all possible pairs of nodes, the value of the Kronecker data 𝛿/0/1 

equals one if nodes 𝑖 and 𝑗 have the same label 𝜎	and zero otherwise, meaning only pairs of nodes 

within the same module are summed. In particular, 𝑚 is the number of edges in the network 

whereas the expression 𝑘*𝑘+/2𝑚 represents the expected number of edges between 𝑖 and 𝑗 in a 

so-called configuration model. The configuration model is a randomized null model in which the 

degrees of nodes 𝑘* are fixed to match those of the observed network, but edges are in other 

respects placed at random. High values of the modularity correspond to good partitions of a 

network into modules and similarly low values to bad partitions. Optimizing the modularity 

function leads us to the best partition over all possible partitions. More recently, a so-called 

resolution parameter 𝛾 has been incorporated in equation (1) to adjust the size of the resultant 

modules [14]. 

Following the network formalism, given a Hi-C contact map represented by a weighted 

matrix 𝑊, we define a similar objective function 𝑄 as 

 
𝑄 =

1
2𝑁

𝑊*+ − 𝛾𝐸*+
*,+

𝛿/0/1	

 

(2) 

Here, 𝑖, 𝑗 index the equally binned genomic loci. 𝑁 is the total number of pair-end reads. 𝐸*+ is the 

expected number of contacts between locus 𝑖 and locus 𝑗. 𝛾 is the resolution parameter that could 

be used to tune the size of resultant TADs. Very much similar to the network setting, the 

identification of TADs aims to partition the loci into domains such that 𝑄 is optimized. 

Nevertheless, it is important to emphasize two points. First, unlike the case in a network, the bins 

in a chromosome form a continuous chain and therefore genomic loci belonging to a TAD have to 

form a continuous segment. Second, simply because of the physical nature of chromosome, the 
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expected number of contacts between locus 𝑖 and locus 𝑗 depends on their genomic distance. Two 

loci that are close together in a 1-dimensional sense are expected to have a higher contact 

frequency as compared to two loci that are far apart. This point suggests that the null model 𝐸*+ in 

equation (2) has to be modified. 

 

A novel null model of intra-chromosomal contact maps 

Thus, given an intra-chromosomal contact map 𝑊, the expected null model E is defined as  

 𝐸*+ = 𝜅*∗𝜅+∗𝑓 𝑖 − 𝑗 . (3) 

Here, 𝑓 is the average number of contacts as a function of distance 𝑑 = 𝑖 − 𝑗 . By considering all 

possible pairs of bins in 𝑊 in terms of their distance apart and the contact frequency, we estimate 

𝑓 by local smoothing (see Methods). For intermediate values of 𝑑, 𝑓	follows pretty well with a 

power-law function 𝑑@A (see Figure S1), which is a well-known observation first reported in [5]. 

As a null model, the resultant 𝐸	matrix satisfies a set of constraints, namely  

 𝐸*+ =
+

𝑊*+
+

= 𝑐*				∀𝑖, 

(4) 

𝐸*+ =
*+

𝑊*+
*+

= 2𝑁. 

The first equation means that the coverage 𝑐*, i.e. the total number of reads (one end of pair-end 

reads) mapped to bin 𝑖, defined in the observed map is the same as the coverage defined in the 

null model. The second equation is a direct consequence of the first equation, where 𝑁 is the total 

number of pair-end reads mapped to the chromosome. As 𝑓 has been estimated from the observed 

𝑊, we can numerically solve all the unknowns	𝜅*∗ in the system of matrix equations (see 

Methods). Mathematically, 𝜅*∗ can be regarded as an effective coverage because of the correlation 

between	𝜅*∗ and the coverage 𝑐* is extremely high (r=0.95, Figure S2). In comparison with 

equation (1), 𝜅*∗ is conceptually analogous to the degree 𝑘*. As shown in Figure 1, given a 

particular matrix 𝑊, the contact frequency of the resultant null model 𝐸 are the highest in the 
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diagonal and decrease gradually away from the diagonal. With W and E, for any given resolution 

parameter 𝛾, we employ a modified Louvain algorithm to optimize Q (see Methods and Figure 1 

for details). To ensure robustness, multiple runs of the modified Louvain algorithm are 

performed, and a boundary score is defined as the fraction of times a bin is called as a boundary. 

The final set of TADs is defined based on the set of consensus boundaries (Figure 1 and 

Methods). It is important to emphasize that the conventional Louvain algorithm used in network 

analysis [15] cannot be directly used because chromatin domains are continuous segments.  

 

Identifying TADs in multiple resolutions 

As a demonstration, we applied MrTADFinder to analyze Hi-C data of hES cell from [8]. Figure 

2A shows a particular snapshot of the contact map (for chromosome 10) and its alignment with 

the identified TADs. In general, the TADs displayed agree well with the apparent block structures 

in the contact map. Of particular interest is the choice of 𝛾 that capture various length scales in 

domain organization. As shown in Figure 2A, when 𝛾 increases, a large TAD breaks into a few 

small TADs. On the other hand, a few large TADs merge together to form an even larger TAD as 

the value of 𝛾 is lowered. Statistically speaking, 𝛾 quantifies to what extent do we accept the 

enrichment of empirical contact frequency over the expectation. As 𝛾 increases, only matrix 

elements close to the diagonal contribute positively to the objective function. Therefore, in 

general, the size of TADs decreases (see Figure 2B) and the number of TADs increases (see 

Figure 2C). For example, when 𝛾=1.0, there are about 1000 TADs in hES cells with a median 

size of 3Mb. When 𝛾=2.25, the number of TADs increases to 2600 and the median size is roughly 

1Mb.  

We then further compared the TADs identified at different resolutions by MrTADFinder 

with TADs identified by a previous method. As quantified by the normalized mutual information 

(see Methods for details), TADs identified by MrTADFinder best match with TADs identified in 
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[8] when the resolution parameter is 2.9. In general, unless the resolution is sufficiently small 

(𝛾 < 1.5), the two methods are quite consistent (see Figure 2D). Nevertheless, the introduction of 

the resolution parameter 𝛾 opens an extra dimension in domain identification in a sense the 

algorithm used in [8] focuses on a particular resolution instead.  

 

Signatures near TAD boundaries identified in various resolutions 

The interplay between 3D genome organization and various chromatin features has widely been 

investigated since some of the first Hi-C experiments were reported [5][8][9]. Nevertheless, there 

is no clear-cut pattern emerges by aligning a variety of chromatin features with TADs (Figure 

S3), even though the occurrence of sharp peaks at the boundaries is quite apparent. By identifying 

TADs and their boundaries using MrTADFinder, we found the boundary signatures that are 

consistent with the observations previously reported [8], for instance, the enrichment of active 

promoter mark H3K4me3 or active enhancer mark H3K27ac, as well as the depletion of 

transcriptional repression mark like H3K9me3 (Figure 3A and Figure S4). To better understand 

the relationship between domains organization and different chromatin features, we further 

examined the chromatin features near different sets of boundaries that were identified in different 

resolutions. We found that in general, the enrichment of peak density at boundary decreases as 

resolution increases. This is because the number of TADs increases as the resolution increases,  

various chromatin features appear in the boundaries of low-resolution TADs do not appear in 

high-resolution TADs (Figure 3A). More specifically, the enrichment of histone marks like 

H3K36me3 and H3K4me3 exhibits a monotonic drop whereas certain marks exhibit 

characteristic resolutions. For instance, the enrichment of mark H3K27me3 remains high up to a 

resolution of 𝛾 = 2.5 (Figure 3B). The observation suggests that the mark H3K27me3 in general 

marks the boundary of TADs up to a particular resolution (length scale).  

 Beside epigenetic signatures, we examined the distribution of protein-coding genes along 
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chromosomes in relation to TAD boundaries formation. Though the starting positions of genes 

tend to be enriched near TAD boundaries, the enrichment is much stronger for housekeeping 

genes as compared to tissue-specific genes (Figure 4A). As housekeeping genes are essentially 

active, the pattern resembles the active promoter mark H3K4me3 shown in Figure 3B. The 

discrepancy between housekeeping genes and tissue-specific genes was firstly reported in Ref. 

[8]. Nevertheless, by extending the idea to multiple resolutions, we found that the distribution of 

housekeeping genes follows a different length scale compared to tissue-specific genes. As shown 

in Figure 4B, housekeeping genes in general marks the boundary of TADs up to the resolution 

𝛾 = 1.5.  

 

Binding of transcription factors near TAD boundaries identified in various resolutions 

Apart from histone modifications, it is well known that certain transcription factor binding sites 

are enriched near the boundary regions of TADs [8]. Instead of looking at individual factors, we 

further explored the location of the so-called HOT regions and XOT regions on TADs. High-

occupancy target (HOT) regions and extreme-occupancy target (XOT) regions are genomic 

regions that are bound by an extensive amount of transcription factors [16]. As expected, we 

found a strong enrichment of HOT regions and an even stronger enrichment of XOT regions near 

TAD boundaries in hES cells (Figure 5A). The observation is, in general, true for all tested 

resolutions. The observation agrees with the idea that HOT regions are very accessible regions in 

open chromatin. Nevertheless, it is still widely unknown if transcription factors bind to HOT 

regions simply because of thermodynamics, or the binding will result in important biological 

consequences.  

Motivated by the observation that many factors tend to bind to the boundary regions, we 

further examine which factors are responsible for establishing the domain border, and more 

interestingly for borders in different resolutions. There are a few proteins which are widely 

known to be important in border establishment [17]; nevertheless, it is worthwhile to perform a 
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systematic analysis. To do so, we formulated a classification problem which aims to distinguish, 

for each resolution, a set of boundaries identified by MrTADFinder (positive set) from a set of 

random boundaries obtained by swapping the TADs along the chromosomes (negative set). Using 

a logistic regression model recently proposed by [18], we integrated the binding signals of 60 

transcription factors at a genomic locus to predict if it is TAD boundary (see Figure 5B and 

Methods for details). Generally speaking, with 10-fold cross validation, the model is quite 

successful in low resolutions (AUC=0.81, Figure S5). The result is consistent with an early work 

based on histone modifications [19]. Being consistent with the trend that chromatin features are 

less enriched at the boundaries of high resolution TADs, the predicting power of the model 

decreases as the resolution increases. The regression model further quantifies explicitly the 

influence of each of the transcription factors. In general, factors that are responsible for border 

formation are quite consistent across different resolutions (Figure 5B). For instance, we found 

that the well-known insulator CTCF, and Rad21 that is a part of cohesin, are direct key 

components of border establishment. In addition, the chromatin remodeler Chd7, which is often 

found at enhancers [20], is predicted to be a key component. On the other hand, factors like MYC 

have a consistently negative effect. Nevertheless, the relative importance of factors does change 

with resolutions. For instance, Rad21 has a higher predictive power in classifying high-resolution 

domains in compared with classifying low-resolution domains.  

 

Different resolutions suggest enhancer-promoter linkages in different length scales 

The contact maps of more deeply sequenced Hi-C experiments have exhibited a pattern that a 

large fraction of TADs has “peaks” in their corner [21], meaning the contact frequency between 

the endpoints of such domains is higher than those of their surrounding neighborhood. The 

configuration suggests that the boundaries of such domains form a chromatin loop. We 

investigated if a similar conclusion could be drawn from the TADs called by MrTADFinder using 
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a set of significant long-range promoter contacts identified by capture Hi-C [22]. Based on the 

Hi-C data of GM12878 in [21], we found that there are indeed potential promoter-enhancer 

linkages connecting the endpoints of domains. Moreover, by increasing the resolution parameters, 

the boundaries of the smaller TADs further capture the potential promoter-enhancer linkages in 

shorter length scales (Figure 6). It is worthwhile to point out that the linkages connecting the 

endpoints of domains form a small fraction as compared to the total number of significant 

interactions identified by capture Hi-C. Therefore, identifying the domain borders is not a direct 

method to predict potential enhancer-gene linkages. On the other hand, though the increase in the 

number of boundaries can capture a higher number of potential interactions, the same analysis for 

an ensemble of randomly reshuffled TADs shows the observation in TADs called by 

MrTADFinder is significant (Figure 6). In other words, TADs in a higher resolution are potential 

subTADs that mediate long-range interactions in a finer length scale [23].  

 

TAD boundaries and mutational burden 

We have examined the interplay between domains organization and chromatin features. Recently, 

it has been reported that epigenomic features shape the mutational landscape of cancer [24]. 

Motivated by this linkage, we further investigated the occurrence of somatic mutations near the 

boundaries. More specifically, we mapped the somatic mutations obtained from breast cancer 

samples to the TAD boundaries we identified in MCF7 cells (see Methods). In a given resolution, 

there are 85 boundary regions identified on chromosome 10. The regions can be clustered into 3 

groups based on the positional distribution of somatic mutations. As in shown in Figure 6, two of 

the clusters exhibit a step-function behavior (blue and red) in which the abrupt transition 

essentially happens at the boundary. For boundary regions in the remaining cluster, the 

mutational burden exhibits no difference across the TAD boundaries. Because of the close 

relationship between TADs and replication-timing domains [25], the observation resonates with a 
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well-known observation that genomic regions with a high mutational burden are replicated at a 

later stage during DNA-replication [26]. As shown in the inset, using Repli-seq data in S1 phase, 

the upstream regions of the boundaries found in the blue cluster have a high mutation rate but a 

low Repli-seq signal, meaning they are indeed replicated at a later stage during replication. On 

the contrary, the upstream regions of the boundaries found in the red cluster are replicated at an 

early stage and therefore exhibit a low mutation rate. 

Motivated by the relationship between TADs and DNA replication, we overlaid TADs in 

different resolutions with data from Repli-seq experiment (Figure S6). We observed that TADs 

identified in different resolutions match with the Repli-seq data in different stages of a cell cycle. 

For instance, while a TAD identified in a low resolution does not replicate at an early phase, say 

S1, its sub-structures identified in a higher resolution correspond to two separate peaks at later 

stages, say S2 and S3 (Figure S7). Nevertheless, it is worthwhile to point out that mapping Hi-C 

reads from cancer cell lines like MCF7 to the reference genome is not perfect because quite some 

reads may come from translocations or copy number variations. Computational approaches have 

recently been developed to perform correction as well as to infer those large scale genomic 

alterations [27][28]. 

 

Comparison with existing methods based on CTCF enrichment 

There are quite a few existing methods on identifying TADs using Hi-C data. Dixon et al. 

identified TADs based on the so-called directionality index using Hi-C data in hES cell and found 

an enrichment of CTCF binding sites at the boundary regions [8]. Since then the enrichment of 

chromatin features has been used as a benchmark for various TAD calling algorithms 

[29][30][31]. As a comparison, we performed the same analysis using TADs based on 

MrTADFinder. As shown in Figure 7, both methods exhibit a similar pattern. In fact, as reported 

in [29][30][31], the enrichment pattern of CTCF binding peaks is qualitatively the same for all the 
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proposed methods. By repeating the analysis in different resolutions, we observed that the level of 

enrichment depends on the resolution (Figure 7, Figure S7). At a low resolution, i.e. for larger 

TADs, the enrichment signal is stronger, and the signal tends to extend over a longer distance 

from the boundary. At a higher resolution, the signal is weaker and confined to near the 

boundary. In general, Figure 7 suggests that boundaries identified in lower resolutions are more 

likely to be bound by CTCFs. From a biological standpoint, as a boundary identified in a lower 

resolution separates two large domains, the results may bring insights on how to mediate 

chromatin loops at different length scales via an important architectural protein [32][33]. As the 

level of CTCF enrichment might be the consequence of different chromatin length scales, it might 

not be fair to use it directly for benchmarking the performance of different algorithms. 

 

Robustness, performance and implementation of MrTADFinder 

Because of the stochastic nature of the modified Louvain algorithm, we explored the robustness 

of MrTADFinder. In the current setting based on multiple runs of the modified Louvain 

procedure, we found the results of two independent callings highly robust. In fact, the normalized 

mutual information is 0.99 (see Figure S8). We further investigated the reproducibility of 

MrTADFinder in two aspects. First, we studied the agreement of TADs called in biological 

replicates. Using Hi-C data released by the ENCODE consortium, we found that TADs called in a 

pair of biological replicates agree reasonably well, with normalized mutual information about 

0.85 (see Figure S9 and Methods). Secondly, we explored the effects of sequencing depth to our 

algorithm. Specifically, we applied MrTADFinder to identify TADs from a deeply sequenced Hi-

C data of GM12878 [21]. We then reduced the number of reads included and called TADs again. 

We found that the TADs identified using a subset of reads are slightly different from the original, 

and in general, the discrepancy increases as fewer reads were used (Figure S10 and Methods). 

Despite a certain level of discrepancy, nevertheless, the resultant TADs agree well. For instance, 

in the extreme case, by comparing using contact maps constructed from 2.4 billion reads and 480 

Deleted: how MrTADFinder performs in replicates. 
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million reads respectively, the mean normalized mutual information of various pairs of 

chromosomes is about 0.88. If we compare the TADs called from 2.4 billion reads to the TADs 

called from 1 billion reads, the normalized mutual information is higher than 0.95. 

MrTADFinder is implemented in Julia. Julia programmers can import MrTADFinder as a 

library for calling various functions. It can also be run in command line if Julia and the required 

packages are installed. The performance of MrTADFinder, in general, depends on the size of the 

input contact map. We have tested the performance using the contact maps of GM12878 cell 

generated by the Aiden lab [21]. The performance is reasonable. For instance, for chromosome 

10, in a bin-size of 25kb (i.e. a contact map 5400 by 5400), the time required to arrive at all TADs 

with 10 runs of Louvain algorithm is about 20 minutes on a laptop with 2.8GHz Intel Core i7 and 

16Gb of RAM. The time required is only 6 minutes if the bin size is 50kb. We have made the 

source code available on GitHub (see software availability).  

 

Optimization based on recurrence relation 

Despite the similarity between equations (1) and (2), network modules are rather arbitrary 

collections of nodes, but domains are continuous segments along the chromosome. In fact, the 

total number of possible partitions for a chromosome is much smaller than the total number of 

ways to divide a network into modules. As a result, while the optimization of equation (1) is an 

NP-hard problem, the optimization of (2) can be quite efficiently solved using a dynamic 

programming inspired method (see Methods and Figure S11). It is instructive to explore this 

avenue because quite some algorithms for identifying TADs are based on a similar approach but 

with different objective functions [29][30][31]. Moreover, by enumerating all possible ways to 

decompose a chromosome into TADs, one could write down the partition function and define a 

probability of occurrence for each of the possible partition in a statistical mechanics’ manner. 

The time complexity of this algorithm is in order of Ο(𝑛H), where n is the size of the 
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contact map. Given the time complexity, finding the optimal partition using a bin size of 40kb is 

quite impractical. For instance, the calculation takes about an hour for chromosome 21, as 

compared to seconds by using the heuristic. Therefore, though the connection between identifying 

TADs and problems like finding RNA secondary structure is of theoretical interest, 

MrTADFinder is developed based on the modified Louvain algorithm. Nevertheless, we have 

implemented the approach based on recurrence relation and performed a comparison with the 

heuristic. Using a contact map of hES cell (chromosome 1) with a bin size of 500kb, we found the 

sub-optimal partitions based on our modified Louvain algorithm are very close to the optimal 

partition. The normalized mutual information between optimal and sub-optimal values is 

0.977±0.007.  

 

Discussion 

In this paper, we have introduced an algorithm to identify TADs from Hi-C data and performed 

several analyses to show the biological significance of the TADs identified. In particular, by 

introducing a single continuous parameter 𝛾, we can further examine domains organization and 

its interplay with a variety of chromatin features in multiple resolutions. It is important to 

emphasize that the idea of resolution we introduced in MrTADFinder is different from some other 

usages of the same term in Hi-C analysis. From an experimental standpoint, the resolution of a 

Hi-C experiment refers to the average fragment size as digested by restriction enzymes (~4kb to 

~1kb) [5][21] or more recently by micrococcal nuclease (~150bp) [34]. Regarding the 

construction of contact maps, the term resolution has been used to refer to the bin size, where the 

proper choice usually depends on the number of reads in the stage of data processing. Both 

usages are primarily technical. What we mean by resolution, however, refers to the multiple 

length scales built inside the organization of the genome. It is well known that there are structures 

in different length scales such as compartment, domains, and sub-domains [35], and chromatin 
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features like histone marks exhibit multiple length scales [36]. The concept of resolution 

introduced here points to the integration of these structures and enables one to explore the rich 

structures hidden in contact maps. From a practical point of view, 𝛾 = 1 seems to be the natural 

starting point. One could increase or decrease the value of 𝛾 in order to explore the intrinsic 

structure. Nevertheless, because of the different contact maps might have various differences like 

the read coverage, one should be cautious to directly compare the resolution parameters between 

different contact maps. 

A novel contribution of this work is the derivation of an expected model for any intra-

chromosomal contact map by solving a system of matrix equations. The null model preserves the 

coverage of each genomic bin as well as the distance dependence of contact frequencies in the 

observed map. As such features of contact maps are involved in most computational analysis of 

Hi-C data, apart from the identification of TADs, the expected model can be used for applications 

like finding compartments [5] and identifying potential enhancer-target linkages [37]. 

Mathematically, the expected matrix is solved by an iterative procedure. The procedure can be 

regarded as a generalization of a class of matrix balancing methods used for normalizing Hi-C 

matrices [38], as the later is merely a different set of matrix equations. However, it is important to 

emphasize that the so-called ICE algorithm aims to remove bias in the contact map, whereas our 

method aims to generate a background model.  While MrTADFinder focuses on intra-

chromosomal interactions, recent studies employ various clustering methods to identify inter-

chromosomal clusters using Hi-C contact frequency [39][40]. It is worthwhile to point out that 

similar expected models used in this study can also be derived for inter-chromosomal interactions 

to better separate signal and noise. 

Several methods have been developed for identifying TADs from Hi-C data [41]. One of 

the earliest methods is based on the so-called directionality index, a 1D statistic measuring 

whether the contacts have an upstream or downstream bias [8], and later the bias is exploited by 

the so-called arrowhead algorithm [21].  Later algorithms exploit the block diagonal nature of 
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TADs in a contact map [29] [30][42]. Though some of these algorithms do take the distance 

dependence into the background, but they do not take into account both the genomic distance and 

the effects of coverage in a compact mathematical formalism. The algorithm TADtree [30], and 

more recent efforts, namely Matryoshka [31] and metaTAD [43] aim to investigate the 

hierarchical organization of TADs based on a tree structure. Indeed, merging smaller TADs at the 

lower level of the hierarchy results at larger TADs similar to the TADs obtained by 

MrTADFinder at a low resolution. Nevertheless, MrTADFinder does not impose a hierarchical 

organization. The probabilistic nature of Louvain algorithm enables the definition of TAD 

boundaries in a probabilistic fashion, and therefore a possibility to define overlapping TADs. To a 

certain extent, the idea of continuous resolution used in MrTADFinder is distinct in comparison 

with algorithms based on a bottom-up approach, but similar in spirit to Ref. [29] . 

MrTADFinder is motivated by the community detection problem in network studies. 

Although a network perspective of chromosomal interactions has previously been proposed 

[44][45], a lot of widely studied concepts in networks have rarely been explored in the context of 

chromosomal organization. A network representation is arguably more flexible than a simple 

matrix representation, for instance, transcription factors binding and histone modifications can be 

easily incorporated into the network, forming a decorated network. Moreover, one could extend 

the framework by concatenating multiple Hi-C contact maps to form a multi-layer network. The 

same idea has been used for cross-species transcriptomic analysis [46]. By facilitating the 

application of a variety of graph-theoretical tools, we believe that network algorithms will be 

useful for future studies on the spatial organization of the genome.  

 

Materials and methods 

Hi-C data and their pre-processing 

The Hi-C data of human ES cells and IMR90 cells were reported in Ref. [8]. Raw reads were 
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processed using Hi-C Pro [47], arriving at contact matrices in various bin sizes. In all analysis, 

the whole-genome contact map was iteratively corrected for uniform coverage [38]. Intra-

chromosomal contact maps were then extracted from the whole-genome contact map of bin size 

40kb for downstream analysis. Hi-C data and contact maps in MCF7 cells were reported in Ref. 

[48]. The whole-genome contact map provided was binned with 40kb bin size and was 

normalized by the ICE algorithm. Data in GM12878 were reported in [21]. The bin size of the 

contact maps used for the analysis related to the number of promoter-enhancer linkages was 

25kb. The analysis on the effect of sequencing depth was performed by selectively combing the 

raw contact maps constructed from individual Hi-C libraries of the same replicates [21]. The bin 

size was chosen to be 50kb. The ENCODE Hi-C data were released by the ENCODE consortium. 

Altogether 8 cell lines with a relatively higher coverage were used in the reproducibility analysis 

including T47D, A549, Caki2, G401, NCI-H460, Panc1, RPMI-7951 and SK-MEL-5. For each 

cell line, two replicates were separately used. The ENCODE Hi-C data were processed by the 

tool cworld (https://github.com/dekkerlab/cworld-dekker). Capture Hi-C data were reported in 

Ref. [22]. Only 1618000 significant interactions linking promoters and non-promoter regions 

were included in the analysis of Figure 8. Visualization of contact maps were all generated by the 

tool HiCPlotter [49].   

 

Chromatin Data 

All chromatin data, including histone modifications, transcription factors binding, expression, 

replication timing, were downloaded from the ENCODE data portal.  

 

Deriving a background model for any given intra-chromosomal contact map 

The average number of contacts as a function of genomic distance can be estimated by 

considering all elements in matrix W. A local smoothing approach similar to the method used in 
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[50] was employed. The window size equals to 1% of the data. 

 Equation (3) and (4) can be rewritten in the form 

 𝜅*∗𝜅+∗𝑓 𝑖 − 𝑗 =
+

𝑐*				∀𝑖. (5) 

The system of non-linear equation is similar to the matrix balance approach used in [38]. As the 

aim of [38] is to remove bias, the coverage 𝑐* is the same for all bin i and f  is replaced by the 

original empirical map. Nevertheless, the unknowns 𝜅*∗ can be used by a similar iterative 

procedure as proposed in [38]. 

 

Heuristic procedures for optimizing Q  

To optimize the objective function 𝑄, we employ a modified version of Louvain algorithm [15], 

which is widely used in identifying modules in networks (see Figure 1). In a nutshell, the 

algorithm consists of two steps. The algorithm starts as every bin has its own label, and the label 

will end up as an identifier for the module it belongs. In the first step, for each bin, we update its 

label by either choosing the label of one of its two neighboring bins or by remaining unchanged 

based on whether or not the value of 𝑄 will be increased. There will be multiple rounds of 

updates in this step. For each round of update, we go through all the bins once, but the order is 

random. The updating procedure will be repeated for multiple rounds until no more update is 

possible. We will then perform the second step such that the bins with the same labels will be 

locked together, in a sense their labels will only be updated in a synchronized fashion. It is 

worthwhile to mention that the updating procedure in the first step makes sure bins with the same 

labels form a continuous segment. Once the bins are locked to form super-bins, the first step will 

be performed again but in the level of super-bins. The two steps will be repeated iteratively until 

no increase of modularity is possible.  

The output of the modified Louvain algorithm is essentially a particular partition of the 

entire chromosome. As the result of the algorithm, in general, depends on the order of updates, 
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multiple runs are performed to probe the fuzziness of the assignment. As the chromosome is 

binned into 𝑛 equally sized bins, we examine, say after 10 trials, how likely the border between 

bin 𝑖 and bin 𝑖 + 1 is indeed a domain boundary, i.e. bin 𝑖 and bin 𝑖 + 1 are called to belong to 

two different TADs by the modified Louvain algorithm. We then naturally define a boundary 

score for each of the 𝑛+1 borders as the fraction of trials in which a border is called as a 

boundary. To define a set of consensus boundaries, we choose a cut-off of 0.9. In other words, the 

border between two adjacent bins is defined as a confident boundary only if they are called to 

belong to two different domains in at least 9 out of 10 trials. The final output of MrTADFinder is 

a set of consensus TADs defined as regions between the consensus domains  

The boundary score assigned to each border is not merely an immediate but serves as a 

proxy of the degree of insulation. A border with a high boundary score is more effective in 

forbidding the contacts between its left and right regions. 

 

Quantifying the consistency between two sets of TADs 

Given two sets of TADs, say in different cell lines, or called by different algorithms, we employ 

the so-called normalized mutual information to quantify the consistency. Suppose 𝑋 and 𝑌 are 

two random variables whose values 𝑥*  and 𝑦*	represent the corresponding domain labels of bin 𝑖. 

The normalized mutual information MInorm is defined as 

 𝑀𝐼PQRS =
2𝐼(𝑋; 𝑌)

𝐻 𝑋 + 𝐻(𝑌)
	, (6) 

here 𝐻(𝑋), 𝐻(𝑌) are the entropy of 𝑋 and 𝑌, and 𝐼(𝑋; 𝑌) is the mutual information quantifying to 

what extent the domain labels in 𝑋 predict the labels in Y. A normalized form of mutual 

information is used here to make sure the value lies between 0 and 1 for comparison. To have a 

fair comparison, bins that are not assigned to any TADs in both sets of partitions are not counted. 

If two sets of partitions are identical, the value of normalized mutual information is 1.  
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Chromatin signatures within TADs in different resolutions  

Given the location of binding peaks of a transcription factor or a histone mark, the peak density 

near TAD boundaries was estimated by considering for all boundaries the region from upstream 

600kb to downstream 600kb. The regions were aligned, and the number of peaks was summed 

accordingly. To calculate the enrichment, the number of peaks was normalized by the expected 

number of peaks in a particular region under a null model that peaks are randomly distributed in 

the genome. 

 The influence of individual transcription factors on the formation of domain borders was 

formulated as a classification problem. For a particular resolution, the set of boundaries called by 

MrTADFinder was used as a positive set whereas a set of random boundaries obtained by 

swapping the TADs along the genome was chosen as the negative set. The signal values of 60 

transcription factors are used as features for classification. The combined effect of all features 

was modeled the logistic function 

 

 

𝑓 𝑋, 𝛽W, 𝜷

=
𝟏

𝟏 + 𝒆𝒙𝒑 −𝛽W + 𝜷𝑿
, 

(7) 

here X represents all features; 𝜷 is a vector determining the coefficients of influence for all 

features and 𝛽Q is a bias parameter. Given a training set, a likelihood function was defined. An 

optimal 𝜷 was inferred by optimizing the likelihood function using gradient descent with L1-

regularization. The inferred logistic function was used to predict the test set. To have a more 

accurate estimate, 10-fold cross-validation was performed, and the error bars were estimated by 

multiple negative training sets.  

 

Somatic mutations 
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The set of somatic mutations were downloaded from the data portal of the International Cancer 

Genome Consortium (ICGC). The mutations were called the breast cancer samples of 676 donors. 

The samples were sequenced in a whole-genome level. Breast cancer samples were used in this 

analysis to match the Hi-C data of MCF7 cell. 

 

Optimal partition  

The idea is to extensively enumerate all the possible partitions of the chromosome. In a nutshell, a 

binned chromosome can be considered as a sequence 1, 2,⋯ , 𝑛 − 1, 𝑛 . Rather than partitioning 

the whole sequence at a first place, we look for the optimal partition for all the possible sub-

sequences starting from sub-sequences with length 1. Let us denote the optimal value of 

modularity 𝑄 for a sequence 𝑎A𝑎` … 𝑎b@A𝑎b as 𝑜𝑝𝑡𝑄(𝑎A𝑎` … 𝑎b@A𝑎b). The value is the maximum 

of the following 𝑙 possibilities: 

 𝑜𝑝𝑡𝑂 𝑎A + 𝑜𝑝𝑡𝑂 𝑎` … 𝑎b@A𝑎b ,	

 

(8) 
𝑜𝑝𝑡𝑂 𝑎A𝑎` + 𝑜𝑝𝑡𝑂 𝑎H … 𝑎b@A𝑎b , 

⋮ 

𝑜𝑝𝑡𝑂 𝑎A𝑎`𝑎H…𝑎b@A + 𝑜𝑝𝑡𝑂 𝑎b , 

𝑄*+*+ . 

Suppose the maximum is the sum 𝑜𝑝𝑡𝑂 𝑎A𝑎` … 𝑎R + 𝑜𝑝𝑡𝑂 𝑎RiA … 𝑎b@A𝑎b , where 1 ≤ 𝑟 < 𝑙. 

The sum corresponds to the case that the optimal partition of 𝑎A𝑎` ⋯ 𝑎b is a combination of the 

optimal partitions of 𝑎A𝑎` ⋯ 𝑎R and 𝑎RiA … 𝑎b@A𝑎b	(see Figure S11). It is not necessary that 

𝑎A𝑎` ⋯ 𝑎R forms a single domain. The key is that the expression	𝑜𝑝𝑡𝑄(𝑎A𝑎` … 𝑎b@A𝑎b) can be 

found recursively because all possibilities depend on the optimal values of sub-sequences shorter 

than 𝑙. The last summation in (4) sums Q over all positions from 𝑎A to 𝑎b, meaning the 𝑙 bins 

belong to the same domain. Once the value of 𝑜𝑝𝑡𝑄(𝑎A𝑎` … 𝑎P@A𝑎P) is found, we can trace back 
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the actual partition for the whole chromosome. As shown in the source code, it takes three loops 

to enumerate all possible partitions. The procedure is analogous to the Nussinov algorithm in 

finding the optimal secondary structure of RNA [51]. 
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Figure Captions 

Figure 1: Overview of MrTADFinder. The input of MrTADFinder is an intra-chromosomal 

contact map W. A null model E is obtained from W. Given a particular resolution γ; the 

chromosome is partitioned probabilistically in a way such that the objective function Q is 
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maximized. The optimization is performed by a modification Louvain algorithm shown on the 

right. The algorithm is stochastic because the updating order of nodes is random. A boundary 

score is defined after multiple trials for all adjacent bins. Adjacent bins that are robustly assigned 

to two different TADs form a consensus boundary. The output of MrTADFinder is a set of 

consensus domains bound by the consensus domains. 

 

Figure 2. Identification of TADs in multiple resolutions. A) A part of the contact map of the 

chromosome 10 in hES cell. The greenish triangles below represent TADs called by 

MrTADFinder in three different resolutions. The TADs called agree well visually with the 

contact map. The blue triangles and red triangles represent TADs called in human ES cells and 

human IMR90 cells respectively as reported in [8]. B) The size of TADs called in different 

resolutions. The median TADs size decreases from 3 Mbp to 300 kbp as the resolution increases 

from 0.75 to 3.5. C) The number of TADs increases as the resolution increases. When 𝛾=2.25, 

there are about 2600 TADs in hES cells with a median size of roughly 1Mb. The median size 

goes down to 300kb when the resolution increases to 3.5. The number of TADs identified in [8] is 

marked by the arrow. D) Comparing TADs called by MrTADFinder with TADs called in [8]. 

Two algorithms agree the most in a particular resolution (γ ≈ 2.875 ). 

 

Figure 3. Boundary signatures of histone modifications in different resolutions. A) Histone 

modifications near the TAD boundary regions obtained in various resolutions. The peak density is 

obtained by counting the number of peaks in every 40kb bin, and normalized by a null model in 

which peaks are randomly distributed. B) Different histone marks show different levels of 

enrichment near TAD boundaries at different resolutions. Despite a general decreasing trend, the 

signal of certain marks likes H3K27me3 remains flat until a very high resolution.  
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Figure 4. A) Distribution of house-keeping genes and tissue-specific genes near TAD boundaries 

at different resolutions. House-keeping genes are more enriched near TAD boundaries as 

compared to tissue-specific genes. B) House-keeping genes and tissue-specific genes show 

different levels of enrichment near TAD boundaries at different resolutions. Tissue-specific genes 

show a general decreasing trend, whereas the number of house-keeping genes remains flat until a 

high resolution.  

 

Figure 5. Transcription factors binding in different resolutions. A) Enrichment of HOT (high-

occupancy target) and XOT (extreme-occupancy target) regions near TAD boundaries in hES 

cell. Boundaries are identified by MrTADFinder at a resolution 𝛾 = 2.75. The y-axis is 

normalized by a null model that peaks are randomly distributed in along the chromosome. B) A 

logistic regression model to classify real TAD boundaries and random boundaries based on thew 

binding pattern of 60 TFs. The most influential factors responsible for TAD boundaries formation 

at different resolutions are listed. Factors with a positive coefficient have a direct effect on border 

establishment or maintenance, whereas factors like MYC has a negative effect. The factors are 

sorted by corresponding P-values and only the significant factors are displayed. 

 

Figure 6. The number of promoter-enhancer linkages connecting the endpoints of domains in 

different resolutions. As the resolution increases, the increase in the number of boundaries can 

capture a higher number of potential interactions. The blue curve shows the increase for an 

ensemble of randomly reshuffled TADs. The number of promoter-enhancer linkages connecting 

the endpoints of real domains is higher than the random counterparts.  

 

Figure 7. Mutational burdens across TAD boundaries. The 3 clusters of boundary regions exhibit 

distinct patterns in terms of mutational burden. For blue and red clusters, the area marks the first 



	

	 29	

and the third quartiles. For the green cluster, only the mean values at different positions are 

shown for clarity. The inset shows the average Repli-seq signal for the red and blue clusters. 

	
Figure 8. Enrichment of CTCF peaks near TAD boundaries at two different resolutions. The red 

line shows the same analysis using TADs reported in [8]. 

 

Software availability  

The source code can be downloaded at https://github.com/gersteinlab/MrTADFinder. 

 

Supporting Information 

Figure S1: Dependence of contact frequency and genomic distance. The analysis was performed 

using the contact map of the chromosome 1 of MCF7, binned in 250kb sized bins. The red line 

𝑓(𝑑) is the average contact frequency as a function of distance 𝑑 obtained by smoothing. The 

green line shows a power-law function 𝑑@A. 

 

Figure S2. Effective coverage	𝜅*∗ of loci is highly correlated with the coverage	𝑐*. 

 

Figure S3. Aligning chromatin features with TADs in different resolutions. 

 

Figure S4. Boundary signatures of 8 histone modifications in different resolutions (an extension 

of Figure 3A.) 

 

Figure S5. Using transcription factors binding signals for predicting TAD boundaries. For each 

resolution, a logistic regression model based on transcription factors binding signals was trained 
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to classify the TAD boundaries versus a set of random boundaries. The error bars were estimated 

by repeating the analysis using an ensemble of random boundaries. The performance (AUC and 

ACC) decreases as the resolution increases. 

 

Figure S6. The relationship between TADs and DNA replication timing. TADs are identified for 

IMR90 using different resolutions. Signals of Repli-seq data in various stages of a cell cycle and 

a part of the contact map of the chromosome 10 are displayed. The TADs match visually well 

with the replication timing signals. The middle TAD identified in 𝛾 = 1 does not replicate at S1, 

its sub-units identified in 𝛾 = 1.25 replicate in S2 and S3.as shown by the peaks in the Repli-seq 

signal.  

 

Figure S7. Enrichment of CTCF peaks near TAD boundaries at two different resolutions. The red 

line shows the same analysis using TADs reported in [8]. This figure is an extension of Figure 5. 

 

Figure S8. Robustness of MrTADFinder. Histogram for pairs of independently called TADs. Using 

the default parameters (10 trials of the modified Louvain algorithm and a cut-off of 0.9), the 

normalized mutual information between two sets of called domains agrees extremely well 

(nMI=0.99).  

 

Figure S9: Comparing TADs in biological replicates. For each cell line, TADs were called 

separately in each replicate for all chromosomes. The boxplot shows the distribution of the 

normalized mutual information for 23 chromosomes in different cell lines. 

 

Figure S10: Effect of sequencing depth in TAD calling. An original set of TADs was identified 

from contact maps constructed for 2.4 billion reads. Subsequent sets of TADs were called by 

reducing the number of reads. The discrepancy with the original set quantified by normalized 
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mutual information. For each comparison, the average normalized mutual information of different 

pairs of chromosomes is plotted in the y-axis, whereas the errorbar shows the corresponding 

standard deviation. Despite a certain level of discrepancy, the resultant TADs agree well.  

	
	
Figure S11: Identifying TADs by dynamic programming. The optimal value of Q for a chromosome 

segment running from 𝒊 to 𝒋 is stored in 𝑴𝒊𝒋. The values of all elements in 𝑴 can be enumerated 

using dynamic programming, starting from fragments of length 1 where 𝑴𝒊𝒊 = 𝑸𝒊𝒊. There are 

different ways to divide a fragment of length l (gray lines). Suppose the optimal way is marked by 

the red line, then 𝑴𝟏𝒍 = 𝑴𝟏𝒓 + 𝑴𝒓𝒍. 

	
	

Formatted: Font:Not Bold


