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SPECIFIC AIMS 

In this proposal, briefly, we plan to develop mathematical models to prioritize and rank non-coding 
and coding mutations in similar terms. These models will rank the impact of mutations causing cancer 
in terms of their underlying genomic alteration. We will then assay the actual phenotypes produced by 
these mutations on three scales: molecular activity, cellular phenotypes, and phenotypes in cultured 
organoids. Doing these experiments will produce a data resource of prioritized mutations and iterated 
mathematical models for prioritizing them as a product. It will also allow us to address a number of 
questions about cancer.  

First of all, cancer genomics has revealed that there are often thousands of mutations per tumor 
genome but only a small fraction of them are in coding regions. Yet, almost all of the known driver 
mutations in cancer are in coding regions. Is this because, fundamentally, non-coding mutations have 
less impact than coding ones, or just simply because of an ascertainment bias on our part?  

Second of all, is it the case that a mutation prioritized to give a strong impact in terms of effect on 
molecular networks binding will also have a strong effect on cellular phenotype and this will have also 
a strong effect on organismal phenotypes such as contracting cancer. It's not clear that we'll see a 
similarity between these three levels and we will be able to ascertain that here.  

To focus our analysis, we will prioritize both coding and noncoding variants in linked enhancers and 
promoters on a matched set of genes, including both validated and putative cancer drivers, as well as 
some control genes with no known cancer association. Non-coding mutations are potentially directly 
involved in our regulatory networks sitting in regulatory regions of the genome and they can be 
matched, in a system sense, to many of the coding mutations which directly effect protein-protein 
interfaces involved in protein networks. One question we will investigate is 'Are these mutations in 
any sense comparable or are, fundamentally, the coding mutations more deleterious?'  

AIM 1 Computational prioritization of coding and non-coding somatic mutations  

First, we will do this in a classical sense by looking for mutations under positive selection in cohorts 
that are recurrent in particular regions of the genome i.e. in particular domains of a protein or in 
particular non-coding elements and to do this we will use the recently constructed large datasets, e.g. 
from TCGA and PCAWG consortia. We will also prioritize mutations computationally by looking at 
their sequence level molecular impact. This will be done from using a variety of metrics such as: the 
degree to which the mutation directly breaks the functional site i.e. breaks the TF motif or protein- 
protein bind interface; the degree to which it effects central positions in the overall network; the 
degree to which it's associated with a site that has an obvious allelic effect and sensitivity to 
sequence; the degree to which it sits in a functional element; and the degree to which it shows 
obvious conservation across organisms or within the human population, for instance as measured 
from GERP score.  

From the combination of positive selection and functional impact, we will develop mathematical 
models to prioritize mutations and lists to prioritize mutations that we will then hand off to the 
validation components of the proposal. We will take the results each year from the validation 
components and use it to refine our models by a variety of simple iterate machine running tactics 
such as a Bayesian or online conjugate gradient updates.  

AIM 2 High-throughput in vitro quantification of molecular phenotypes of ~2500 non-coding 
and ~1500 coding mutations We will select ~500 coding and ~1000 non-coding mutations and 
subject them to a number of high-throughput in vitro assays to look at their molecular readout. We will 
take advantage of our novel Clone-seq pipeline to generate these mutant clones in large-scale. As an 
integral part of the Clone-seq pipeline, each mutant clone will be fully sequence verified by next-



generation sequencing to ensure quality. Furthermore, we will assay the non-coding mutations using 
eSTARR-Seq and Promoter-seq the coding mutations to quantify their effect on enhancer and 
promoter activities. We will also assay the coding mutations using our high-throughput protein-protein 
interactome screening methodology described in our previous publications8-11, INtegrated PrOtein 
INteractome perTurbation screening (InPOINT). This pipeline combines six different functional assays 
to examine experimentally the impact of hundreds of coding variants on protein stability and specific 
protein-protein interactions. From this we will be able to rank this pool of ~1500 variants in terms of 
their strongest molecular readouts.  

AIM 3 Medium-throughput in vivo quantification of cellular phenotypes and validation of 10 
coding and non-coding variants in prostate organoids 

  In this aim we will look at cellular phenotypes associated with hundreds of mutations and then 
investigate the effects of a smaller number of mutations in organoids that are more realistic models 
tumor environments. We will evaluate ~150 coding and ~150 non-coding mutations in terms of their 
phenotypes for cell growth and also invasiveness, which is related to metastasis, using a variety of 
cell-based assays. The mutations will be introduced into CCD-18Co [[Replace with prostate!]] cells 
through CRISPR/Cas9 mutagenesis. We then will select the top 10 coding and non-coding mutations 
and evaluate them in a realistic tissue system – organoids derived from normal prostate samples. We 
will see if these mutations are actually associated with promoting cancer in this model system and 
then show the degree to which we can find non-coding mutations with as much functional impact as 
coding ones. We will further investigate the mechanisms through which mutations lead to cancer. For 
non- coding mutations, we will test alterations in transcript levels, H3K27Ac/H3K4me3 marks and 
transcription factor binding, comparing gene-edited and isogenic control prostate organoids. For 
coding mutations, we will perform co-IP, protein stability and selected functional assays in gene 
edited and isogenic control organoids. Throughout the process, we will feedback the results of each 
of the assays into our overall computational model and prioritization scheme developing a more 
accurate scheme. So with each year of the grant we will develop a more accurate model, eventually 
culminating near the end of the grant with a highly accurate model and a refined prioritization list.  

 
 
 
 
 
 
 
  



  

SIGNIFICANCE 

The complexity of genetic variation associated with cancer demands approaches that can assess the 
effects of different types of variants. A wealth of annotated data are available due to advances in 
sequencing technologies and efforts by consortia like ENCODE and 1000 Genomes, what engenders 
the need for comprehensive computational, mathematical, and experimental methods and analyses. 
Accordingly, we will leverage our experience and tools to prioritize variants in silico, in vitro, and in 
vivo (see Aims 1-3). These variant prioritization methods align with initiatives to develop the field of 
precision medicine and help scientists and medical practitioners understand the significance of 
unique combinations of genetic variants of each cancer patient. 

While we know that driver variants usually alter genes that control cell growth and division, we still 
need to prioritize variants with respect to their deleteriousness, especially because certain variants in 
tumor cells may be the result rather than the cause of cancer. In addition, driver-passenger dichotomy 
might be simplistic. Recent studies \cite{26456849} \cite{23388632} suggest that some passenger 
mutations may have a weak effect on tumor cell fitness and may in turn promote or inhibit tumor 
growth. These mutations have been called “mini-drivers”  or “deleterious passengers.” From a tumor 
fitness perspective, three categories can thus emerge: positively-selected driver variants, neutrally-
selected passenger variants, and negatively-selected deleterious passenger variants. We think that 
studying the interplaying effects of both weak positive and negative selection variants may also reveal 
valuable insights into tumor growth patterns.  

According to the philosophy of molecular reductionism, there is a functional impact associated with 
any positively or negatively selected variant. On the one hand, evidence of such impact is well-
established for positively-selected variants promoting tumor growth. On the other hand, the impact of 
rapid accumulation of weak and deleterious passenger variants - which undergo negative selection - 
needs to be further studied as it could adversely alter tumor cell fitness \cite{23388632}. In fact, our 
previous studies suggest that an intermediate category of variants between high-impact putative 
driver variants and low impact neutral passengers exists and does have an observable functional 
impact that varies across cancer types and genome elements. We hypothesize that this intermediate 
functional category includes undiscovered drivers, deleterious passengers, or both. Further 
investigation should be done to better understand the functional ramifications of deleterious 
passengers and their effects on the fitness of cancer cells. 

We will concentrate on somatic variants in cancer. Such alterations occur in protein coding and 
noncoding regions of the genome, and both coding and noncoding variants may vary in degree of 
impact on cancer development or protein formation and function. Historically, there has been a bias 
towards studying coding variants due to the functional significance of protein coding regions. 
However, as noncoding alterations constitute the majority of disease associated variants [1], further 
study of noncoding regions may also be critical to a better understanding of cancer biology. 
Accordingly, we will consider a combination of coding and noncoding variants. 

Effects of numerous genetic variants transcend the molecular level and propagate into the phenotype. 
However, the extents to which variant effects take place at the levels of molecular activity, cellular 
phenotype, and organismal phenotype are still unclear. The assumption that the impact of variants is 
consistent at all three levels needs to be examined. For that purpose, we plan to leverage our 
experience and use a variety of pipelines, cell-based assays, CRISPR-Cas9-based methods, and 
realistic prostate organoids. We will also study the relationship between different mutations and tumor 
growth and invasiveness (see Aims 2-3). 



In our work, we will focus on prostate cancer. Significant efforts have been made to study genetic and 
environmental causes of this cancer type, but major leaps forward are still needed to develop a more 
complete etiology of the disease. Along with other major factors associated with prostate cancer such 
as the hormonal action of androgens and estrogens [2], more than 70 genetic susceptibility variants 
have been identified [3]. Suspected loci are continuously being discovered using GWAS studies [4] 
and genotyping arrays [5]. Such variants increase the predictability of the disease and have been 
associated with altering the expression levels of several genes.  

Important genetic alterations associated with prostate cancer have effects on hormonal levels or take 
place in a variety of pathways. Among the known driver genes that prostate cancer shares with other 
cancer types — especially breast cancer being also a hormonal cancer — are tumor suppressing 
BRCA1 and BRCA2 [6]. Pathways targeted by DNA methylation in both prostate and breast cancers 
are also altered as a result of epigenetic modifications that depend on hormone receptor status and 
tumor recurrence. These modifications are associated with genes coding for zinc finger transcription 
factors and calcium binding proteins [7]. 

Other genetic variants detected across different types of prostate cancer take place in genes involved 
in lipid metabolism pathways. Among these genes are MSMB, NUDT11, RBPMS2, NEFM, and 
KLHL33 [5]. Differential expression levels of genes active in focal adhesion, cell death, cell motility, 
and integrin signaling pathways have also been observed in the early stages of prostate cancer 
development [8]. Other important hormone-related alterations include the overexpression of MYC, 
ERBB2 and BCL2 genes [9]. 

In addition to prioritizing susceptible cancer variants, we will investigate the following related 
questions: (1) are noncoding variants as deleterious as coding ones w.r.t. prostate cancer incidence?, 
(2) do deleterious variants lead to the emergence of more deleterious ones in tumor cells?, (3) is 
there a fitness benefit for heterozygous v.s. homozygous mutation in tumor suppressor genes?, and 
(4) is there a relationship between mutations that lead to loss of heterozygosity in tumor cells? 
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AIM 1 Computational prioritization of coding and non-coding somatic mutations  

In aim 1, we will prioritize both coding and noncoding colon cancer variants for investigation assays of 
molecular, cellular, and organoid-level phenotypes, simultaneously validating candidate oncogenic variants 
and refining tools to predict impactful variants (Figure 1). In doing this we will leverage our extensive 
experience in both variant prioritization and cancer genome analysis. We have developed numerous tools for 
both coding and noncoding variants, using a variety of 
approaches.  
 
  
A. Prior Experience 
  
Experience prioritizing protein-coding variants 
  
We have developed a number of tools that search for deleterious 
protein-coding variants. Since minor disruptions to some protein-
coding genes can cause disease, while other genes can 
experience total loss of function with no observable effect, it is 
important to identify which genes have important functions that 
could cause disease when altered. Our netSNP tool integrates 
protein-protein, transcription factor, and metabolic networks to 
build a classifier that distinguishes genes that essential from 

those that are loss of function tolerant (Fig 1) \cite{23505346}. To 
analyze specific mutations within genes, our variant annotation 
tool is a utility that helps identify variants that overlap genes or other annotations, including, for example, 
whether variants induce premature stop codons\cite {22743228}. Building upon this, we have developed a 
pipeline for Analysis of Loss of Function Transcripts (ALoFT) that predicts whether mutations will cause loss of 
function in genes, and whether loss of one copy or both copies of a given gene is sufficient to cause disease 
and have applied this tool to cancer genomes, showing an enrichment for predicted loss of function mutations 
in known cancer-associated genes.  Beyond identification of genes whose mutation can cause disease, we 
have also developed tools that characterize the effects of specific variants. Our STRESS tool identifies 
mutations that might affect allosteric hotspots in proteins, which can be key to protein function \cite{27066750}. 
Along similar lines, our Frustration tool uses calculations of localized structural frustration to identify key 
functional protein regions \cite{27915290}. Finally, our Intensification tool searches for deleterious mutations 
particularly within repeat regions of proteins \cite{27939289}. 
  
Experience in noncoding genome analysis and allelic analysis 
  
Our interest and expertise in prioritizing noncoding DNA variants rests on our experience analyzing a wide 
array of genomic assays to characterize noncoding genomic elements. Much of this work has been in 
connection with the ENCODE and modENCODE consortia \cite{22955616, 25164757, 22955619, 21177976}. 
We have developed widely used tools to identify ChIP-Seq peaks \cite{19122651, MUSIC}, perform RNA-Seq 
quantification \cite{21134889, 22238592}, identify and functionally categorize new noncoding transcripts 
\cite{21177971, 25164757}, and to predict enhancer regions \cite{22950945}, including some that have been 
functionally validated \cite{#58 from ncvarg grant, find PMID}. We have further linked enhancers to target 
genes \cite{25273974}, and have developed related tools to process HiC data, which show chromosome 
conformations that can aid enhancer-target linkage inference \cite{28369339, 
http://biorxiv.org/content/early/2016/12/29/097345}. In addition to identifying, quantifying, and linking noncoding 
noncoding genomic elements, we have been multiple linear and nonlinear models use epigenetic signals to 
predict gene expression \cite{22955978, insert others}. Moreover, we have extensive experience building 
genomics data into networks that help explain gene regulation and to identify key regulators \cite{22955619}. 
  
We have also made focused investigations of allele-specific activity in the genome, which can provide a direct 
readout of the effects of an allele-specific variant (ASV). We developed the AlleleSeq pipeline to quantify allele-
specific expression \cite{21811232}. More recently, we conducted a study of allele-specific activity from RNA-

Figure	1.	Overall	variant	prioritization	workflow 



Seq  and ChIP-Seq experiments conducted on 1000 Genomes Project \cite{23128226, 27089393}individuals, 
including from the gEUVADIS \cite{24037378} and ENCODE \cite{22955616}. After uniformly reprocessing all 
data, we detected ASVs using a beta-binomial test to correct for overdispersion. Since most  
ASVs are rare variants, we also combined the effects of many variants to assign allelicity scores to genome 
elements, indicating that these elements are particularly sensitive to mutations. 
  
Experience in noncoding variant prioritization 
  
We have extensively analyzed patterns of variation in noncoding regions, along with their coding targets90,95,114. In 
recent studies26,27, we have integrated and extended these methods to develop a prioritization pipeline called 
FunSeq (Fig 2). It identifies sensitive and ultra-sensitive regions (i.e., those annotations under strong selective 
pressure, as determined using genomes from many individuals from diverse populations). FunSeq links each 
noncoding mutation to target genes, and prioritizes such variants based on scaled network connectivity. It 
identifies deleterious variants in many noncoding functional elements, including TF binding sites, enhancer 
elements, and regions of open chromatin corresponding to DNase I hypersensitive sites. Integrating large-
scale data from various resources (including ENCODE and The 1000 Genomes Project) with cancer genomics 
data, our method is able to prioritize the known TERT promoter driver mutations.  

  
Experience in background mutation rate 
estimation and recurrence analysis 
  
A major method to search for driver variants is to find 
genes or regions of the genome that are highly 
enriched for mutations. However, this search can be 
confounded by the fact that different regions of the 
genome have different mutation rates. Moreover, 
great mutation heterogeneity and potential 
correlations between neighboring sites give rise to 
substantial overdispersion in mutation counts, which 
complicates background rate estimation. We 
developed a computational framework called LARVA, 
which integrates variants with a set of noncoding 
functional elements, modeling the mutation counts of 
the elements with a beta-binomial distribution to 
handle overdispersion \cite{26304545}. Importantly, 
this method incorporates regional genomic features 
such as replication timing to better estimate local 
mutation rates and find mutational hotspots. Applying 
LARVA to 760 whole-genome tumor sequences 
shows that it identifies well-known noncoding drivers, 
such as mutations in the TERT promoter, in addition 
to uncovering new potential noncoding driver regions. 
  
Experience in cancer genome analysis consortia 

  
We have participated extensively in consortium analysis of cancer genomes as part of The Cancer Genome 
Atlas (TCGA) and the Pan Cancer Analysis of Whole Genomes (PCAWG) groups. We participated in the 
TCGA consortium studies of prostate \cite{26544944} and kidney \cite{26536169} cancers, and recently 
conducted a detailed investigation of the noncoding variants in TCGA kidney papillary cancer samples 
\cite{28358873}. We have developed tools for somatic variant calling \cite{26381235}. We have also 
extensively used TCGA RNA-Seq data in the development and application of tools \cite{Loregic, DREISS, 
25884877}. We are currently leading the PCAWG group investigating the impact of so-called passenger 
mutations on cancer development, progression and prognosis. We are also conducting a study integrating 
cancer genomes from the PCAWG consortium with ENCODE data to provide a resource for studying 
noncoding variants in cancer. 
 
B. Research plan  

Figure	2.	FunSeq2	workflow 



  
We will prioritize both coding and noncoding mutations for a set of genes of interest. We will first identify 
putatively important genes in prostate cancer through a combination of recurrence analysis and biological 
network analysis. We will then functionally prioritize both coding and noncoding mutations for this set of genes.  
 
Definition of a compact annotation for variant analysis 
 
We will first focus on identifying non-coding regulatory regions and linking them to genes by constructing 
“extended gene neighborhoods”. Specifically for enhancers, we will define a compact list through an ensemble 
method: enhancer candidate identification by integration of pattern recognition based algorithm on ChIP-seq 
and DNase-seq signals and STARR-seq pipeline, enhancer-target linkage prediction using JEME method, and 
then filter through high resolution Hi-C experiments. We  will also extract the cis-acting TF and RBP binding 
sites and incorporate them into the extended genes.  As with the exon regions within genes, a natural 
consequence of this is a set of discrete regions that potentially affect gene expression. This unified annotation 
will enable joint evaluation of the mutational signals from distributed yet biologically relevant genomic regions.  
  
  
Identification of key regulators using TF network analysis 
 
We will then investigate the global topology of the transcriptional regulation network by comparing the inbound 
and outbound edges of each transcription factor (TF). TFs in different levels of the hierarchy reflect the extent 
to which they directly regulate the expression of other TFs \cite{25880651}. When comparing the common 
regulators in approximately matched tumor and normal regulatory networks, rewiring (i.e., target changing) 
analysis may help to identify cancer-associated deregulation.  Our rewiring analysis not only considers direct 
connections associated with a given TF, but also the whole neighborhood of connections with which a TF 
associates through membership and topic models, which used a mixed-membership model to look more 
abstractly at local gene neighborhoods to re-rank the TFs. 
  
  
Identification of recurrently mutated elements & genes  
  
To identify genes whose mutation is important to the development of prostate cancer, we will search for genes 
that are recurrently mutated in prostate cancer patients. We will do this using the compact annotation 
described above, which incorporates both coding and noncoding elements associated with a given gene. 
  
We also propose a Negative binomial regression based Integrative Method for mutation Burden analysis 
(NIMBus), which first intuitively treats mutation rates from different individuals as random variables with a 
gamma distribution, and resultantly models the pooled mutation counts from a heterogeneous population as a 
negative binomial distribution to handle overdispersion. Furthermore, to capture the effect of covariates, 
NIMBus integrates extensive features in all available tissues from Roadmap Epigenomics Mapping 
Consortium  (REMC) and the Encyclopedia of DNA Elements (ENCODE) project to create a covariate matrix to 
predict the local mutation rate with high precision through regression. In addition, it also customizes the most 
comprehensive noncoding annotations from ENCODE to facilitate interpretation of results. This integrative 
approach will enables us to effectively pinpoint mutation hotspots associated with disease progression and to 
better understand the biological mechanisms therein.  
  
  
Functional prioritization of coding mutations 
  
Once we have identified putative driver genes through a combination of recurrence and biological network 
analysis, we will score the functional importance of mutations that overlap the coding regions of these genes. 
We will use our VAT and ALOFT tools to identify mutations that may completely inactivate copies of genes. For 
potentially impactful variants that do not fully eliminate gene function, we will combine GERP score, a measure 
of evolutionary conservation, FunSeq2 score, and an ensemble method that combines scores from many tools 
that score the functional impact of coding variants \cite{GERP, FunSeq2, 24453961} In addition to the above 
general scores for coding variants, for proteins with known structures, we will apply our STRESS 
\cite{27066750} and Frustration \cite{27915290} tools to search for allosteric hotspots and sites of localized 



structural frustration, respectively. We will also use our Intensification tool to provide additional scores within 
protein repeat regions  \cite{27939289}. 
  
  
  
Functional prioritization of noncoding mutations 
  
We will first use Funseq2 \cite{25273974} to annotate and score the 
predicted molecular impact of each variant, including SNVs in the 
pan-cancer dataset. A closer inspection of the pan-cancer impact 
score distributions for non-coding variants demonstrate three distinct 
peaks, which indicates a multimodal distribution of functional impact of 
non-coding variants (Figure 3).  The upper and the lower extremes of 
this distribution correspond to traditional definitions of high-impact 
putative driver variants and low impact neutral passengers respectively. 
In contrast, the middle peak in the intermediate molecular functional impact 
regime corresponds to what we term impactful nominal passengers. 
This intermediate functional impact category could include 
undiscovered drivers (strong & weak) as well as potentially 
deleterious passengers.  
  
To integrate the various features, we will expand the weighting system in FunSeq\cite{24092746} and 
Funseq2\cite{25273974}. Constrained by selective pressure, common variations tend to arise in functionally 
unimportant regions. Thus, features that are enriched with common polymorphisms are less likely to contribute 
to the deleteriousness of variants and are weighted less. In general, features can be classified into two 
classes: discrete (e.g., within or outside of a given functional annotation) and continuous (e.g., the PWM 
change in ‘motif-breaking’). We will weigh these two sets of features with different strategies. 
For each discrete feature, we calculate the probability that it overlaps with common polymorphisms. We then 
calculate the information content to denote the value of discrete features . 
The situation is more complex for continuous features, as different feature values have different probabilities of 
being observed in natural polymorphisms. Thus, one weight cannot suffice for varied feature values. For a 
continuous feature , which is associated with a value , the probability  is first estimated using common variants: 
. The score of continuous feature is defined as . 
  
The score () is calculated as . We will also incorporate the feature dependency structure when calculating the 
scores by removing redundant features using feature selection or by performing dimensionality reduction 
  
*** insert text from paper E showing the multimodal distribution of functional impact scores 
We've already observed that functional impact score distribution is complex...  Done 
  
  
Modify variant prioritization for both & noncoding based on allelic activity  
  
Allele-specific variants(ASVs) potentially provide a most direct readout of the functional impact of a variant. 
We  have previously defined allelic elements throughout the genome by conducting a survey of ChIP-Seq and 
RNA-Seq experiments conducted on 1000 Genomes Project individuals. Gene expression and protein binding 
are sensitive to mutations in these regions. Our scoring system takes into account not only enrichment of 
allelic variants within a given element (in comparison to accessible variants within the elements and having 
sufficient coverage to make an allelic activity call), but also across the number of individuals having allelic 
variants in a consistent allelic direction. The scoring system by element is useful in two ways: (1) it allows 
continuous ranking of genomic elements based on its allelic impact across multiple individuals (as opposed to 
defining a threshold to make a binary decision of whether an element is ‘allelic’) and (2) it enables 
incorporation of ASE and ASB into the main prioritization scheme; input variants (even those which are rare, 
but lie in highly-ranked allelic genomic elements) will be up-weighted according to their scores. 
  
Parameter tuning after experimental validation 
  
  

Figure	3.	Distribution	of	FunSeq2	score	in	
Pan	Cancer	Analysis	of	Whole	Genomes	
dataset 



Let () represent the initial feature parameters chosen at random, where  is the number of features. will be 
optimized using an iterative learning scheme by incorporating new experimental information produced in Aims 
2. Because of the high throughput of iSTARR-seq, our strategy is to implement for the first time a iterative 
learning scheme : the first stage initial learning, the second stage real-time experimental parameter 
optimization, and the third stage final assessment. 
  
In the first stage, we will randomly select ~500 driver gene as defined by recurrence analysis, PCAWG and 
TCGA. We will first generate the WT clones of these genes and promoters using xxx-seq. Then, we will select 
2 coding variants in coding region and 2 non-coding variants from the promoter region on each gene and 
generate all ~2,000 variant clones through Clone-seq. Their effects on coding and non-coding variants will be 
quantified by InPoint and iSTARR-seq pipeline respectively. Starting from the initial tuned , we tune  according 
to the results of ~2000 variants in the first stage. For a specific variant , we define  as Bernoulli distributed 
random variable with  indicates that  is functional. The expectation of  can be predicted through a logistic 
regression:xxxx  ( are scaling parameters). To update with experimental validation results , we implement 
Bayes’ rule:. We will use MCMC (Monte Carlo Markov Chain) sampling to search over the parameter space 
and find the most probable xxx . We will predict the functional impact of all noncoding variants genome-wide, . 
  
In the third stage of final assessment, we will select xxx variants (400 with predicted high impact, 200 with 
medium impact, and 400 with low impact) on previously cloned driver genes. We will measure their impact on 
xxxx activities quantitatively through xx-seq. 
  
  



	
Fig 2. Our modified iSTARR-seq pipeline. The 
random molecular barcodes (red) uniquely label each 
mRNA molecule produced before the amplification 
step during the sequencing library preparation, 
enabling us to quantitatively determine the enhancer 

 
  
AIM 2 High-throughput in vitro quantification of molecular phenotypes of ~2500 non-coding 
and ~1500 coding mutations 
  
 
a. SIGNIFICANCE AND PREMISE 
 

a.3. The importance of investigating functional relevance of coding variants through protein 
interactome networks 
An increasingly accepted view of the cell 
is that of a complex network of interacting 
macromolecules and metabolites, 
sometimes referred to as the 
“interactome network”1. In particular, 
protein-protein interactome networks are 
of great importance because most 
proteins carry out their functions by 
interacting with other proteins1,2. More 
importantly, many proteins are pleiotropic 
and carry out diverse functions through 
interacting with different proteins3. On 
average, a protein interacts with >5 other 
protein partners in the human 
interactome network. Recently, studies have been conducted on genetic coding mutations in the 
context of the human interactome network4-7. However, our approach is novel in that we 
systematically use several agnostic functional assays in parallel.  

Previously, as described in Nature Biotechnology, Science, and AJHG8-10, improved upon here in 
preliminary results (see c.1.1.3, c.2.1.2, and c.2.1.4), our team has successfully used our high-
throughput InPOINT pipeline to screen >2,000 coding genetic variants and successfully identified 
many deleterious genetic mutations, for example, in the Wiskott-Aldrich Syndrome Protein (WASP, 
see Fig. 1). This strategy also provided important insights into mutation mechanisms, in particular 
that many coding mutations only affect a subset of specific interactions, rather than all interactions, 
and that mutations in the same protein disrupting different protein-protein interactions often lead to 
clinically distinct disorders10-13. Overall, our InPOINT screen both effectively nominates candidate 
mutations and gives insights into specific mechanisms to be tested in follow up confirmatory 
assays. 
 
b. INNOVATION 
 

b.2. Our site-directed mutagenesis 
Clone-seq pipeline is unique 
Our recently-published Clone-seq pipeline 
allows massively-parallel site-directed 
mutagenesis to generate one and only 
one specific mutation per DNA molecule 
for thousands of genes/TREs (enhancers 
and promoters). We have used our Clone-
seq pipelines to generate thousands of 
gene/enhancer WT and mutant clones with 
an average length of ~2kb. We will have 
no problem cloning enhancers (up to 4kb) 
and their mutations in their entirety. Clone-
seq is entirely different from previously 

	
	
	
	
	
	
	
	
	
	

 
 

Fig 1. Illustration of WASP’s interaction interfaces with 
CDC42 and VASP and effects on the WASP-CDC42 
interaction by mutations on WASP. Mutations causing 
two distinct diseases are located on two separate 
interaction interfaces and disrupt different interactions as 
described in our Nature Biotechnology paper. 



described random mutagenesis approaches50-53: each mutant clone has a separate stock with one 
and only one pre-defined mutation. Finally, we implemented a smart-pooling strategy and a 
customized variant-calling algorithm such that we can fully sequence each mutant clone in its entirety 
and ensure that there are no other unwanted mutations introduce on clones used in all downstream 
experiments (e.g., iSTARR-seq, InPOINT, or other in vivo functional assays).  
 

b.3. iSTARR-seq: highly parallel transcriptional readout of candidate regulatory variants  
STARR-seq (self-transcribing active regulatory region-sequencing) is a recently-established method 
that can identify enhancer elements genome-wide14. Briefly, short genomic fragments are cloned en 
masse into the 3’ untranslated region of a simple transcription unit between paired-end sequencing 
primers. After transfection of this fragment library into cells, enhancer activity is quantified by counting 
the number of unique fragments from a particular genomic locus that give rise to detectable mRNA. 
Importantly, STARR-seq does not quantify the enhancer activity of individual candidate fragments, 
but instead requires creation of a complex library of unique but overlapping fragments for each 
candidate region to be tested. Thus the original STARR-seq protocol cannot be directly used to 
measure enhancer activities from a clonal library of WT and mutant enhancer elements, where each 
element has one and only one clone with defined boundaries, as is the case for our proposed 
research. Furthermore, >98% of sequencing reads are discarded in STARR-seq because multiple 
mRNA molecules are often produced from a single unique DNA fragment (see Supplemental Figure 
2E of Arnold et al14). To circumvent these difficulties, we developed the chromosome-integrated 
STARR-seq (iSTARR-seq) transcriptional readout assay to incorporate a unique molecular barcode 
to the cDNA of each mRNA molecular produced at the reverse transcription step, allowing direct 
quantification of enhancer activity for each individual enhancer by counting RNA sequence reads with 
unique molecular barcodes (Fig. 2). In our preliminary study (c.1.1.4), >80% of the reads were used 
for enhancer activity quantification (>40-fold increase in sequencing efficiency). In summary, these 
improvements will significantly simplify high-throughput studies of candidate enhancer sequences, 
and increase assay sensitivity compared with the original STARR-seq protocol.  
 

b.4. Our high-throughput InPOINT pipeline that directly examines the biochemical 
consequences of coding variants on protein stability and interactions is innovative 
As described in our previous publications (e.g., Nature Biotechnology, Science, PLoS Genetics and AJHG8-10,12), our 
InPOINT pipeline incorporate six high-throughput approaches: Clone-seq (to generate specific mutant clones), 
GFP (to examine SNP’s impact on protein stability), and four orthogonal interaction assays (PCA, LUMIER to 
examine SNP’s impact on specific protein-protein interactions).  
 

b.5. Results of our InPOINT assays are physiologically relevant in vivo 
In our previously published PLoS Genetics study12, we examined 
204 disease-associated mutations using our high-throughput 
InPOINT pipeline. We find that pairs of mutations in the same genes 
that are either both stable or both unstable cause the same disease 
in 68% and 70% of cases, respectively. However, pairs comprising 
one stable and one unstable mutation cause the same disease in 
only 30% of cases (Fig. 3a) Furthermore, when pairs of mutation 
disrupt the same set of interactions (i.e., same disruption profile) are 
significantly more likely to cause the same disease than those that 
do not (Fig. 3b). Overall, these results confirm that the molecular 
phenotypes measured by our high-throughput InPOINT pipeline are 
biologically relevant in vivo. Furthermore, by comparing the 
molecular phenotypes, in particular the interaction disruption 
profiles, of SNVs to those of known disease mutations, potential 

candidate mutations for a variety of diseases can be identified12.  
 
c. APPROACH 

 
Fig 3. Mutations with similar 
molecular phenotypes 
measured by our InPOINT 
assays tend to cause the same 



c.2. Specific Aim 2.  High-throughput in vitro quantification of molecular phenotypes of ~2500 non-
coding and ~1500 coding mutations. 
 

c.2.1. Preliminary Studies 
c.2.1.1. Performance, throughput, and cost of our Clone-seq pipeline. Clone-seq is currently the highest-throughput 

site-directed mutagenesis pipeline for generating 
thousands of targeted mutations on many genes. Clone-
seq is entirely different from previously described random 
mutagenesis approaches50-53: each mutant clone has a 
separate stock with one and only one pre-defined 
mutation. Other methods, such as Dial-out PCR15, are not 
comparable because it can only generate clones of short 
fragments limited by the Illumina read length. In Clone-
seq, we routinely clone genes of length >4 kb; each clone 
is fully sequence-verified at part of the pipeline (Fig. 5) to 
ensure it has one and only one pre-defined mutation. 
Every step of Clone-seq has been significantly optimized 
for high-throughput operations. We have also implemented 
customized variant calling software because existing 

pipelines (e.g., GATK16) cannot be applied due to our pooling strategy12. This customized variant calling software allows 
us to carefully examine whether other unwanted mutations have been inadvertently introduced during PCR-mutagenesis 
throughout the entire clone.   

The Clone-seq pipeline can easily be adapted to clone WT TREs and genes. To date, we have 
used the Clone-seq pipeline12 to successfully generate 678 WT TRE clones and 4,026 mutant clones 
on 2,438 TREs/genes. The results confirm the scalability, accuracy, and throughput of our Clone-seq 
pipeline. We are confident that this approach can successfully generate all WT and mutant clones as 
proposed.  

	
	
	
	
	
			
	
	
	
	
	
	
	
	

	Fig 5. Our massively-parallel Clone-seq pipeline. 



c.2.1.2. We have successfully implemented our iSTARR-seq assay to quantitatively measure 
enhancer activities of 678 TREs and their mutations. To make the STARR-seq compatible with 
our high-throughput cloning/mutagenesis pipeline, we modified the original STARR-seq vector by 
substituting the flanking homology arms with a Gateway cassette (attR1-R2) and retaining the 

Developmental Core Promoter (dCP). Our modified vector (called pDEST-iSTARR-dCP) behaves like 
the original vector in transfection assays. We generated entry clones carrying four genomic DNA 
fragments (HS001, 002, 005, 006) that showed enhancer activity and one (HS018) that did not as 
measured by STARR-seq previously14 as controls. Additionally, we used Clone-seq to generate WT 
and mutant clones for 678 TREs. We cloned all WT and mutant TREs in pDEST-iSTARR-dCP by 
Gateway LR reaction and quantified their enhancer activity through our iSTARR-seq assay (Fig. 6a). 
49 of the 346 (14.2%) TRE mutations examined show significantly lower enhancer activities 
measured by iSTARR-seq as compared to their corresponding WT TREs. Additionally, all five control 
fragments were also cloned into pGL4.23-DEST-dCP vector and their enhancer activity was also 
confirmed by the dual luciferase assay. Both experiments (Fig. 6bc) successfully replicated the data 
published in the original STARR-seq paper14. Thus, the Gateway-compatible iSTARR-seq vector is 
compatible with our high-throughput cloning/mutagenesis pipeline, and provides reliable quantification 
of the enhancer activity of target DNA fragments. To ensure coverage of the main classes of 
enhancers, we will use iSTARR-seq vectors representing the two major classes of core promoters17: 
one that is responsive to developmental enhancers (pDEST-hSTARR-dCP) and one responsive to 
housekeeping enhancers (pDEST-hSTARR-hkCP).  
 

c.2.1.2. Using our high-throughput InPOINT pipeline (GFP assay) to examine the stability of 
mutant proteins. After we generated clones for 204 known disease mutations using Clone-seq12, we 
examined whether the mutant proteins could be stably expressed in human cells using the GFP 
assay. Compared with the corresponding wild-type proteins, the expression levels of 17 of the 204 
(8.3%) mutants are significantly diminished (Fig. 7a). To validate these findings, we performed 

a.                                                                                                     b. 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
                                                                                                                                                c. 
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Fig 6. Our iSTARR-seq results agree well with published 
data. (A) Our iSTARR-seq results on 678 WT and mutant 
TREs, including 5 elements from the previous STARR-seq 
study. (B) Our iSTARR-seq results on the 5 elements 
agree well (R2 = 0.860) with published STARR-seq 
results. (C) Our high-throughput dual luciferase assay 
results agree well (R2 = 0.998) with published luciferase 



western blotting for 10 random mutants that are stably expressed and 10 random mutants with 
significantly diminished expression levels (Fig. 7b). All western blotting results agree perfectly with 
our GFP readings12.  
c.2.1.3. Four orthogonal high-throughput high-quality interaction-
detection assays in our InPOINT pipeline. Current high-throughput 
interaction-detection technologies can benefit from an increase in sensitivity18-

20. To address this, we have developed a high-throughput interaction-detection 
tool-kit18,20,21 consisting of four complementary high-quality assays: Protein 
Complementation Assay (PCA)22, yeast two-hybrid (Y2H), LUminescence-
based Mammalian IntERactome mapping (LUMIER)23, and 96-well-plate-
based Nucleic Acid Programmable Protein Array (wNAPPA)24. With a large set 
of positive and negative controls for human proteins, we found that all four 
assays are of high quality and combining four assays significantly improves 
both sensitivity and specificity in detecting true protein interactions19.  
c.2.1.4. Using our high-throughput InPOINT pipeline to examine the 
effects of disease mutations on protein interactions. We investigated 
whether these 204 mutations could affect protein-protein interactions using the 
four assays in our InPOINT pipeline. We found that 21 of the 27 (78%) 
“interface residue” mutations, 57 of the 100 (57%) “interface domain” 
mutations, and only 22 of the 77 (29%) “away from the interface” mutations 
disrupt the corresponding interactions, confirming that structural information of 
interactions greatly improves our understanding of the impact of disease 
mutations12. Y2H has been applied by us and other groups to examine 
hundreds of disease mutations and has been proven to be an effective 
approach10-13,25. The novelty of our InPOINT pipeline is that it combines four 
orthogonal assays (PCA, Y2H, LUMIER, and wNAPPA). Combining four 
orthogonal assays and using only consistent results by two or more assays will 
ensure scientific rigor and practically eliminate false-positives in our results. 

c.2.2. Research Design 
c.2.2.1. High-throughput cloning of ~500 WT TREs and ~2500 non-coding 
SNPs on these TREs using Clone-seq. Sequence-specific forward and 
reverse primers containing attB1 and attB2 sequences for 769 WT TREs will 
be designed by our automated online primer design website 
“http://primer.yulab.org”12, and synthesized in bulk as “Trumer Oligo” plates by 
Eurofins Genomics. Using human genomic DNA as template, the selected 
TREs will be PCR amplified in 96-well format with high-fidelity Phusion DNA 
polymerase to minimize introduction of unintended mutations. We will perform 
large-scale Gateway BP reactions to clone each PCR product into pDONR223 
vector. Entry clones containing the intended TREs will be identified through our Clone-seq protocol12. Briefly, 
E. coli transformation is performed and a 20 µL aliquot of the cells is then spread onto LB + Spectinomycin 
plates in high-throughput using the Tecan robot. The next day, four colonies per allele are picked for Illumina 
sequencing using QPix-HT. After identifying successful clones without any unwanted mutations through our 
customized variant calling pipeline, we robotically picked out these 769 WT TRE clones for downstream 
experiments. 

Primers for site-directed mutagenesis are designed by our automated online primer design website 
“http://primer.yulab.org”12, and synthesized in bulk as “Trumer Oligo” plates by Eurofins Genomics. The mutant 
clones will be generated using our Clone-seq protocol12. Briefly, 50 µL mutagenesis PCR reactions are set up 
on ice in 96-well PCR plates using Phusion polymerase (NEB M0530) according to manufacturer’s manual with 
WT TRE clones generated above. PCR products are digested by DpnI (NEB R0176L) overnight at 37 °C. E. 
coli transformation, colony picking, and Illumina sequencing will be performed as described above through our 
high-throughput protocol using Tecan and QPix-HT robots. After identifying successful clones with the 
designed SNP but without any unwanted mutations through our customized variant calling pipeline, we 
robotically pick out the 1,407 successful mutant TRE clones for downstream experiments. 

These fully sequence-verified WT and mutant entry clones will be subjected to Gateway LR reaction to 
transfer TREs in the entry vector to our modified pDEST-iSTARR destination vectors via recombination. The 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Fig 7. (a) GFP images of 
WT HPRT1 and its unstable 
mutant allele. (b) Western 
blot confirming results of 
our GFP assay. 
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resulting expression clones will be pooled, maxipreped, and subjected to iSTARR-seq analysis in colon 
organoids.  
c.2.2.2. Quantitatively measuring enhancer activity of WT and mutant TREs using iSTARR-seq. 
The 1,407 SNPs and their corresponding WT entry clones generated in c.1.2.1 will be cloned into 
both pDEST-iSTARR-dCP and pDEST-iSTARR-hkCP vectors by Gateway LR reaction. In order to 
produce lentiviral particles carrying an iSTARR-seq library, the iSTARR-seq library plasmids will be 
transfected into HEK293T cells together with the envelope plasmid and the packaging plasmids. The 
viral particles will be collected from the culture medium of the transfected cells at 60h post 
transfection and then titrated with qRT-PCR targeting the viral RNA. Colon organoids will be 
transduced with the harvested lentiviral particles at desired MOI and selected with puromycin. 
Towards the end of the selection process, the integration rate will be confirmed by qPCR with 
genomic DNA (gDNA) extracted from a small portion of the transduced cells. The cells will then be 
collected for gDNA and total RNA extraction. mRNA derived from iSTARR-seq vectors will first be 
reverse transcribed and then PCR-amplified according to previous publication14 with minor 
modifications. Briefly 1st-strand cDNA will be synthesized by reverse transcription with a vector 
backbone-specific primer annealing to 3’-end of the transcripts. Each primer molecule will contain a 
unique 15 nt molecular barcode to label each cDNA molecule (Fig. 2). Two rounds of nested PCR 
with low cycle numbers will be performed to amplify the TRE region in the cDNA without introducing 
contamination from transfected plasmid DNA or copy number bias. The cDNA library will be subjected 
to tagmentation with Tn5 transposase and customized sequencing adaptors containing indexing 
barcodes. After another round of low-cycle PCR for enriching successfully tagmented cDNA 
fragments, the barcoded library will then be sequenced with Illumina HiSeq or NextSeq. 

Another sequencing library targeting gDNA-integrated TREs in the transduced cells will also be prepared 
and sequenced using the similar procedure as that for the mRNA. In addition, the lentiviral library will also be 
processed and sequenced as a control for overall library quality. The total number of the mRNA or DNA 
molecules of a given TRE (WT and all the mutants) will be the number of unique molecular barcodes 
associated with it. The proportion of each mutant is calculated based on the number of sequencing reads at its 
corresponding mutation site. The transactivity of a specific allele of a TRE (WT or mutant) will be calculated as 
the ratio of the number of mRNA molecules derived from the allele over the number of the TRE allele 
integrated into the gDNA. 
c.2.2.3. High-throughput dual luciferase assays to further confirm and nominate functional non-coding 
risk variants. The canonical luciferase reporter vector pGL4.23 (Promega) was modified into two Gateway 
compatible vectors, pGL4.23-DEST-dCP and pGL4.23-DEST-hkCP. These vectors contain a Gateway 
cassette upstream of the corresponding core promoter (dCP and hkCP) followed by a luc2 (synthetic firefly 
luciferase) reporter gene. All WT and mutant TREs will be LR-cloned into these reporter vectors accordingly. 
pGL4.75 vector (Promega), which contains a CMV enhancer/promoter and a downstream hRluc (synthetic 
Renilla luciferase) gene, is used as transfection control. TRE-containing reporter vector and control vector will 
be co-transfected into normal colon organoid cells by electroporation. The activity of each of the WT and 
mutant TREs as indicated by the intensity of bioluminescence will be measured by with Dual-Glo luciferase 
assay system (Promega).  
c.2.2.4. High-throughput site-directed mutagenesis to generate ~1500 coding mutants through Clone-
seq. Clone-seq will be carried out as described in our previous publication12 and c.1.2.1. All WT clones are 
obtained from the Human ORFeome 8.126, which is a fully sequence-verified Gateway-compatible ORF clone 
library for human genes that we have purchased and maintained for the past five years. After Illumina 
sequencing, correct clones without any unwanted mutations are identified using our customized variant calling 
software12.  
c.2.2.5. High-throughput InPOINT pipeline (GFP assay) to test the stability of the ~1500 mutant 
proteins. All WT and mutant clones are first moved into the pDEST-GFP-mCherry vector using 
automated Gateway LR reactions in 96-well format. A 100 ng aliquot of the expression clone is used 
for transfection into HEK293T cells in 96-well plates using polyethylenimine. At approximately 48 hrs 
post-transfection, fluorescence intensities of transfected cells are measured with a Tecan M1000 at 
395/507 nm for cycle 3 GFP (Invitrogen) and 580/612 nm for mCherry, denoted as Ig and Ir, 
respectively. As negative controls, the GFP and mCherry fluorescence intensities corresponding to 
cells transfected with the empty pDEST-GFP-mCherry vector (with a plate-specific mean Igb and s.d. 



) and empty pcDNA-DEST47 vector (with a plate-
specific mean Irb and s.d. ) are measured. A plate-
specific Zg and Zr are calculated as  
and . A WT clone is considered to have stable expression if its Zg and Zr  values are 
both > K. Here, K = 1.645, corresponding to the single tail P value of 0.05 for a normal distribution 
(i.e., it has significantly higher expression than background for both GFP and mCherry). For mutants 
with corresponding stable WTs, we remove transfection failures (Zr ≤ K) and then calculate 
normalized quantitative stability scores for both WT and mutant: 
 
 
All experiments will be performed in triplicate. Mutations that significantly affect protein stability will be identified 
by comparing the means of log(SWT) and log(Smut) scores using a t-test (the log transformed stability scores 
follow a normal-like distribution). We will calculate a quantitative relative stability index, 𝑅𝑆𝐼 = 	 𝑆&'( 𝑆)*, for 
mutations that significantly affect protein stability. To further ensure the quality of our results, we will perform 
an ELISA assay using anti-FLAG antibody for all 121 mutants. This is part of the LUMIER assay that we 
routinely apply to test the presence of the bait protein. Only mutants with consistent results between GFP and 
ELISA assays will be kept for downstream analyses, ensuring data quality and scientific rigor. 
c.2.2.6. High-throughput InPOINT pipeline to test the effects on interactions of the ~1500 mutant 
proteins. Next, we will examine the impact of mutations on specific interactions: (1) PCA. Briefly, mutant ORF 
clones will be transferred by Gateway LR reactions into vectors encoding the two fragments of YFP (Venus 
variant) fused to the N-terminus of the tested proteins. Baits were fused to the F1 fragment (amino acids 1-158 
of YFP) and preys to the F2 fragment (amino acids 159-239 of YFP). Plasmids encoding the two proteins are 
used for transfection into HEK293T cells in 96-well plates, using Lipofectamine2000 (Invitrogen). 48 hrs post-
transfection cells are processed with Tecan M1000. A pair are considered interacting if the YFP fluorescence 
intensity is ³2 fold higher over background. (2) LUMIER. ORFs are cloned into Gateway-compatible LUMIER 
vectors by LR reactions and minipreped. HEK293T cells were transfected in 96-well plates. After transfection, 
cells are processed for immunoprecipitation. LUMIER intensity ratio (LIR) values are obtained for the 
immunoprecipitates (LIR-IP) and calculated similarly for the total lysates (LIR-TOT). Normalized LIR (NLIR) 
was calculated as the ratio LIR-IP/LIR-TOT. A pair with NLIR score of ≥ 33.2 are considered to be interacting. 
(3) Y2H. ORFs are cloned into pDEST-AD and pDEST-DB vectors by LR reactions. All DB-X and AD-Y 
plasmids will be transformed individually into the Y2H strains MATα Y8930 and MATa Y8800, respectively. 
After mating, only yeast cells containing interacting pairs of DB-X and AD-Y will grow on selective media (i.e., 
expression of HIS3 and ADE2 reporter genes). (4) wNAPPA. ORFs are cloned into pCITE-HA and pCITE-GST 
vectors by LR reactions. Both prey and bait plasmids are added to Promega TnT coupled transcription-
translation mix and incubated to express proteins. The whole mix is then added to anti-GST antibody-coated 
96-well plates. After binding and capture, plates are incubated with primary and secondary antibody and 
visualized using chemiluminescence with Tecan M1000. Wells with ³3 fold higher intensity over background in 
either configuration are scored positives. Only disruptions confirmed by two or more assays (including Y2H) 
will be considered disrupted for all downstream analyses. Combining four orthogonal assays and using 
only consistent results by two or more assays will ensure the quality and practically eliminate false-
positives in our results, ensuring scientific rigor. 
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AIM 3 Medium-throughput in vivo quantification of cellular phenotypes and validation of 10 
coding and non-coding variants in prostate organoids 

 
 
 
 
A. Medium-throughput in vivo quantification of cellular phenotypes 
 
[[Still waiting for section from Andre Levchenko]] 
 
B. Validation of 10 coding and non-coding variants in prostate organoids 

 

 
Background for Aim 4 
We have recently described our Precision Medicine program and our ability to develop patient derived 
organoids.  In that study, we presented data on 56 tumor-derived organoid cultures, and 19 patient-derived 
xenograft (PDX) models established from the 769 patients enrolled in an IRB approved clinical trial at Weill 
Cornell (REF).   This expertise has given Dr. Rubin’s group over 3 years experience in working with organoids.  
The focus of this Aim will be on benign prostate organoids that will be derived from patients undergoing 
surgery in Bern, Switzerland.  Since moving to Bern, Dr. Rubin has set up active collaborations with the 
Urology group, led by George Thallman (see letter of support) and Marianna Di Julio (see letter) to start 
developing benign prostate organoids for this proposal. 
 
Large-scale drug screens of cell line panels - such as the NCI60 by the National Cancer Institute or the Cancer 
Cell Line Encyclopedia (CCLE) - have addressed compound sensitivity in cancer cells to identify mechanisms 
of growth inhibition and tumor-cell death 1-3. A more recent study of pharmacogenomic interactions in cancer 
links genotypes with cellular phenotypes with the purpose of targeting select cancer sub-populations 4. 
Unfortunately, for many cancer types, traditional cell culture methodologies do not adequately model the 
biology of the native tumor. The high failure rate of preclinical compounds in clinical trials clearly demonstrates 
the limitations of existing preclinical models 5,6. The accuracy of in vitro drug screens is therefore dependent on 
the optimization of cell culture tools that more closely mirror patient disease.  
 
For this Aim, we propose using Organoid technology as an intermediate model between in vitro cancer cell 
lines and xenografts as shown for colorectal, pancreatic and prostate cancer 7-12. This technique differs from 
traditional cell culture by maintaining cancer cells in three-dimensional (3D) cultures. Benign and cancer cells 
that are grown in 3D retain cell-cell and cell-matrix interactions that more closely resemble those of the original 
tumor compared to cells grown in two dimensions on plastic 13-20.  
 
Preliminary Results 
 
Patient-derived tumor organoids as a tool for precision cancer care.  We recently demonstrated that we 
can develop cancer and benign organoids. From a cohort of 145 specimens from patients with advanced 
cancers including prostate (52).  We were able to develop tumor organoids from 38.6%. We define successful 
establishment of PDTO cultures when they contain viable cells that form spheroid-like structures and can be 
propagated after the initial processing for at least five passages. These specimens are characterized, stored in 
our living biobank and are used for functional studies. Cell viability was assessed in the first ten established 
cultures at passages 2-4, and in 9 out of 10 cases, > 90% of cells were viable. Tumor and benign organoids 
are characterized using cytology and histology as previously described 21.  As the data is now published we 
only note that we have been able to perform extensive studies with these organoids including CRIPSR-cas9 
manipulation (FANCA PAPER), drug screens (PAULI REFERENCE), and lenti-viral SH infection.  With many 
years experience, we are confident that developing benign prostate cell lines for this Aims should be readily 
accomplished.  



 
Approach 
 
Specimen procurement. Patient-derived fresh tissue samples will be collected with written informed patient 
consent in accordance with the Declaration of Helsinki and with the approval of the Ethics Board at the 
University of Bern and the Inselspital (Bern Hospital Group). Fresh tissue biopsies and resection specimens 
are taken directly in the procedure rooms. Fresh tissue biopsies will be transported to the laboratory to 
establish primary tumor organoid cultures. Macroscopically different appearing tumor areas will be collected 
and processed individually. The time between harvesting fresh tissue specimens and placing them in transport 
media [Dulbecco’s modified Eagle medium (DMEM, Invitrogen) with Glutamax (1x, Invitrogen), 100U/ml 
penicillin, 100ug/ml streptomycin (Gibco), Primocin 100ug/ml (InvivoGen), 10 uM Rock inhibitor Y-27632 
(Selleck Chemical Inc)] should be less than 30 minutes.  
 
Tissue processing and cell culture conditions. Tissue samples will be washed a minimum of three times 
with transport media and placed in a sterile 3 cm petri dish (Falcon) for either total mechanical dissociation or 
dissection into smaller pieces (∼2 mm diameter) prior to enzymatic digestion. Enzymatic digestion was done 
with 2/3rd of 250 U/mL collagenase IV (Life Technologies) in combination with 1/3rd of 0.05% Trypsin-EDTA 
(Invitrogen) in a volume of at least 20 times the tissue volume. The cells will be resuspended in a small volume 
of tissue-type specific primary culture media with a 1:2 volume of growth factor reduced Matrigel (Corning).  
 
CRISPR-cas9 Experiments.  We will employ CRISPR-cas9 gene exiting approaches to modify benign luminal 
prostate organoids.  Analysis with regards to downstream effects will be compared to scrambled guide RNA 
treated cell lines.  (QUESTIONS FOR GROUP CAN WE DEFINE OUR READOUTS HERE) 
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