
  

Introduction 
  
[[HM, SK WM PDM]] introduction,  HM with help from SK, WM, and PDM: 1-2 
pages on prostate/colon cancer by 5/28 
  
- Update from SKL: prostate cancer very likely to be considered instead of 
colon cancer 
  
- General intro to cancer 
- Learn about prostate colon cancer biology and pathways  
- Looking into tumor growth - while getting only a little into pathway related to 
metastasis 
- Is the impact of mutations at different levels consistent (molecular, cell, etc.)? 
- “State-of-the-art” of studying prostate/colon cancer 
- Come up with a pseudo-hypothesis  
  
- Colon cancer is a mutated (not a pediatric) cancer 
- Vogelstein (JHU): 4 key genes related to colon cancer and certain pathways are 
clearly related. Other genes are "marginally related" 
- Current hypotheses: colon cancer is tractable (experiments are easy to do, cells 
are easy to acquire, etc. with much understood biology) 
  

[Cancer] 

The high complexity of genetic variation associated with cancer demands 
comprehensive approaches that can assess the effects of different types of 
variants. In light of the fact that cancer cells tend to have more variants than 
normal cells, a deeper insight is needed to understand the mechanisms and rate 
according to which variation evolves in tumors. While we know that these 
variants usually alter genes that control cell growth and division, we still need to 
prioritize variants with respect to their deleteriousness, especially because 
certain variants in tumor cells might merely be a result, rather than a cause, of 
cancer. Such variant prioritization methods align with initiatives to develop the 
field of precision medicine, as they would help scientists and medical 
practitioners understand both common and unique combinations of genetic 
variants each cancer patient has. 

[Somatic vs Germline, Coding vs Noncoding, Rare vs Common (?)] 

We consider categorizations of genetic variants underlying cancer at two (three?) 
levels. The first includes heritable variants passed to offsprings through germ 
cells, called germline variants, and variants acquired during lifetime, called 
somatic. A second important level depends on the region in which a variant takes 
place. Namely, coding variants occur in protein coding regions and noncoding 



variants, which form the majority of single nucleotide variants in a genome, take 
place out of these regions. Noticeably, both types of variants can have no to high 
effect on protein formation and function. A third important distinction between 
variants leads to their classification into common and rare variants depending on 
their frequencies in the population. 

[More on Coding vs Noncoding + Why noncoding and somatic] 

Advances in sequencing technologies and efforts by consortia like ENCODE and 
1000 Genomes generated a wealth of annotated data, what engenders the need 
for comprehensive computational, mathematical, and experimental methods and 
analyses. Genetic variant types aforementioned occur at different rates across 
cancers [1], and we believe that the study of all of these types is crucial to further 
decode the genetic components underlying different cancers. There has been a 
bias towards studying germline variants that take place in coding regions 
because of their high importance. However, efforts to study noncoding regions 
has uncovered their significance as they host the majority of disease related 
variants [2], what indicates that further study of these regions might be critical to 
develop a better understanding of genetic cancer variants. Consequently, we will 
leverage our experience and tools to comprehensively prioritize coding and 
noncoding somatic variants in silico, in vitro, and in vivo (see Aims 1-4). 

[Molecular level, cellular phenotype, and phenotype in cultured organoids] 

Effects of numerous genetic variants transcend the molecular level and 
propagate into the phenotype. However, the extent to which variant effects take 
place at the level of molecular activity, cellular phenotype, and organismal 
phenotype are still unclear. The assumption that the impact of variants is 
consistent at all three levels needs to be examined. For that purpose, we plan to 
leverage our experience and use a variety of pipelines, cell-based assays, and 
CRISPR-Cas9-based methods, and realistic organoids (colon or prostate?). We 
will also study the relationship between different mutations and tumor growth and 
invasiveness (see Aims 2-4). 

[Prostate cancer: intro + state of the art] 

In our work, we will focus on prostate cancer. Significant efforts have been made 
to study genetic and non-genetic causes of this cancer type, but quantum leaps 
forward still need to be taken to develop a more complete etiology of the disease. 
Along with other major risks, more than 70 genetic susceptibility variants 
associated with prostate cancer have been identified [3], and suspected loci are 
continuously being discovered using GWAS studies [4] and genotyping arrays 
[5]. Known driver genes include BRCA1, BRCA2, HOXB13, and RNASEL. Such 
variants have shown to increase the predictability of the disease [6] and have 
been associated with altering the expression levels of several genes including 
MSMB, NUDT11, RBPMS2, NEFM, and KLHL33. These variants have also been 



preliminarily associated with multiple lipid metabolism pathways, suggesting 
potential links between them and the disease [5].  

[Prostate cancer: pseudo- hypotheses] 

In addition to prioritizing susceptible cancer variants, we will investigate the 
following related questions: (1) (in light of preface) are non-coding variants as 
deleterious as coding ones w.r.t. prostate cancer incidence?, (2) do deleterious 
variants lead to the emergence of more deleterious ones in tumor cells?, (3) is 
there a fitness benefit for heterozygous mutation v.s. homozygous in tumor 
suppressor genes?, and (4) is there a relationship between mutations that lead to 
loss of heterozygosity in tumor cells? 
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Aim 1: Prioritizing coding and non-coding 
mutations for functional analysis in prostate 
cancer 
In aim 1, we will prioritize both coding and noncoding colon cancer variants for 
investigation assays of molecular, cellular, and organoid-level phenotypes, 
simultaneously validating candidate oncogenic variants and refining tools to predict 
impactful variants. In doing this we will leverage our extensive experience in both variant 
prioritization and cancer genome analysis. We have developed numerous tools for both 
coding and noncoding variants, using a variety of approaches. 
  
A. Prior Experience 



  
Experience prioritizing protein-coding variants 
  
We have developed a number of tools that search for deleterious protein-coding 
variants. Our variant annotation tool is a utility that helps identify variants that overlap 
genes or other annotations, including, for example, whether variants induce premature 
stop codons\cite {22743228}. Since minor disruptions to some protein-coding genes can 
cause disease, while other genes can experience total loss of function with no 
observable effect, it is important to identify which genes have important functions that 
could cause disease when altered. Our netSNP tool integrates protein-protein, 
transcription factor, and metabolic networks to build a classifier that distinguishes genes 
that essential from those that are loss of function tolerant (Fig 1) \cite{23505346}. 
Building upon this, we have developed a pipeline for Analysis of Loss of Function 
Transcripts (ALoFT) that predicts whether loss of one copy or both copies of a given 
gene is sufficient to cause disease. We have applied these tools as part of the Center for 
Mendelian Genomics at Yale, and to diseases including Autism and cancer. [[MRS: 
include ALOFT? It’s not published yet, but maybe soon?)]] Beyond identification of 
genes whose mutation can cause disease, we have also developed tools that 
characterize the effects of specific variants. Our STRESS tool identifies mutations that 
might affect allosteric hotspots in proteins, which can be key to protein function 
\cite{27066750}. Along similar lines, our Frustration tool uses calculations of localized 
structural frustration to identify key functional protein regions \cite{27915290}. Finally, 
our Intensification tool searches for deleterious mutations particularly within repeat 
regions of proteins \cite{27939289}. 
  
Experience in noncoding genome analysis 
  
Our interest and expertise in prioritizing noncoding DNA variants rests on our experience 
analyzing a wide array of genomic assays to characterize noncoding genomic elements. 
Much of this work has been in connection with the ENCODE and modENCODE 
consortia \cite{22955616, 25164757, 22955619, 21177976}. We have developed widely 
used tools to identify ChIP-Seq peaks \cite{19122651, MUSIC}, perform RNA-Seq 
quantification \cite{21134889, 22238592}, identify and functionally categorize new 
noncoding transcripts \cite{21177971, 25164757}, and to predict enhancer regions 
\cite{22950945}, including some that have been functionally validated \cite{#58 from 
ncvarg grant, find PMID}. [[MRS: do we have anything published on enhancer-gene 
target linkages?]] In addition to identifying and quantifying noncoding noncoding 
genomic elements, we have been multiple linear and nonlinear models use epigenetic 
signals to predict gene expression \cite{22955978, insert others}. 
  
Experience in noncoding variant prioritization 
  
We have extensively analyzed patterns of variation in noncoding regions, along with 
their coding targets90,95,114. In recent studies26,27, we have integrated and extended these 
methods to develop a prioritization pipeline called FunSeq (Fig 2). It identifies sensitive 
and ultra-sensitive regions (i.e., those annotations under strong selective pressure, as 
determined using genomes from many individuals from diverse populations). FunSeq 
links each noncoding mutation to target genes, and prioritizes such variants based on 
scaled network connectivity. It identifies deleterious variants in many noncoding 
functional elements, including TF binding sites, enhancer elements, and regions of open 
chromatin corresponding to DNase I hypersensitive sites. Integrating large-scale data 



from various resources (including ENCODE and The 1000 Genomes Project) with 
cancer genomics data, our method is able to prioritize the known TERT promoter driver 
mutations. Using FunSeq, we identified ~100 noncoding candidate drivers in ~90 WGS 
medulloblastoma, breast and prostate cancer samples26. Drawing on this experience, we 
are currently co-leading the ICGC PCAWG-2 (analysis of mutations in regulatory 
regions) group. 
  
Experience in background mutation rate estimation and recurrence analysis 
  
In cancer research, background models for mutation rates have been extensively 
calibrated in coding regions, leading to the identification of many driver genes, 
recurrently mutated more than expected. Noncoding regions are also associated with 
disease; however, background models for them have not been investigated in as much 
detail. This is partially due to limited noncoding functional annotation. Also, great 
mutation heterogeneity and potential correlations between neighboring sites give rise to 
substantial overdispersion in mutation count, resulting in problematic background rate 
estimation.  We developed a new computational framework called LARVA, which 
integrates variants with a comprehensive set of noncoding functional elements, modeling 
the mutation counts of the elements with a beta-binomial distribution to handle 
overdispersion. LARVA, moreover, uses regional genomic features such as replication 
timing to better estimate local mutation rates and mutational hotspots. We demonstrate 
LARVA's effectiveness on 760 whole-genome tumor sequences, showing that it 
identifies well-known noncoding drivers, such as mutations in the TERT promoter. 
Furthermore, LARVA highlights several novel highly mutated regulatory sites that could 
potentially be noncoding drivers.  
  
  
Experience in cancer genome analysis consortia 
  
We have participated extensively in consortium analysis of cancer genomes as part of 
The Cancer Genome Atlas (TCGA) and the Pan Cancer Analysis of Whole Genomes 
(PCAWG) groups. Using whole genomes of kidney papillary cancer patients from TCGA, 
we uncovered noncoding mutations in the MET driver gene potentially associated with 
this cancer’s etiology and also investigated the mutational processes that underlie this 
cancer’s development \cite{28358873, 26536169}. We have also extensively used 
TCGA RNA-Seq data in the development and application of tools \cite{Loregic, 
25884877}. We are currently leading the PCAWG group investigating the impact of so-
called passenger mutations on cancer development, progression and prognosis. We are 
also conducting a study integrating cancer genomes from the PCAWG consortium with 
ENCODE data to provide a resource for studying noncoding variants in cancer. 



 
Fig 1. netSNP classifier. A. ROC curve shows distinction of LOF tolerant from Essential 
genes by netSNP score. B. netSNP score for genes with different levels of functional 
importance. 
  



 
  
Fig 2. Description of FunSeq workflow and data context 
  
  
  



 
Fig 3. Workflow of prostate cancer variant prioritization 
  
  
B. Research plan 
  
  
We will prioritize both coding and noncoding mutations for a set of genes of interest. We 
will first identify putatively important genes in prostate cancer through a combination of 
recurrence analysis and biological network analysis. We will then functionally prioritize 
both coding and noncoding mutations for this set of genes.  
  



Identification of recurrently mutated genes  
  
[[MRS text to replace SKL below?]] To identify genes whose mutation is important to the 
development of prostate cancer, we will search for genes that are recurrently mutated in 
prostate cancer patients. Since both coding and noncoding can be cancer drivers, it is 
desirable to assess recurrence on the basis of both the gene itself and the important 
noncoding elements, such as enhancers and promoters and protein binding sites in 
untranslated regions, that are linked to the gene. Specifically for enhancers, we defined 
a compact list through an ensemble method: enhancer candidate identification by 
integration of pattern recognition based algorithm on ChIP-seq and DNase-seq signals 
and STARR-seq pipeline, enhancer-target linkage prediction using JEME method, and 
then filtered through high resolution Hi-C experiments. The “extended gene 
neighborhoods” that we construct will then be tested for mutation recurrence using 
models for background mutation rate built from epigenetic data from prostate cancer 
specifically. This approach both increases power to identify recurrently mutated genes 
by considering noncoding mutations, in addition to coding mutations, and also gives an 
unbiased starting point from which to functionally prioritize both coding and noncoding 
mutations from genes identified as recurrently mutated. 
  
  
  
Identification of key regulators using TF network analysis 
  
[[SKL: shrink]] We will then investigate the global topology of  the transcriptional 
regulation network by comparing the inbound and outbound edges of each transcription 
factor (TF). TFs in different levels of the hierarchy reflect the extent to which they directly 
regulate the expression of other TFs \{cite 25880651}. When comparing the common 
regulators in approximately matched tumor and normal regulatory networks, rewiring 
(i.e., target changing) analysis may help to identify cancer-associated deregulation.  Our 
rewiring analysis not only considers direct connections associated with a given TF, but 
also the whole neighborhood of connections with which a TF associates 
through  membership and topic models, which used a mixed-membership model to look 
more abstractly at local gene neighborhoods to re-rank the TFs. 
  
[[SKL: shrink]] We then investigated the global topology of  transcriptional regulation 
network by comparing the inbound and outbound edges of each factor. TFs in different 
levels of the hierarchy reflect the extent to which they directly regulate the expression of 
other TFs \{cite 25880651}. TFs in different levels of the hierarchy reflect the extent to 
which they directly regulate the expression of other TFs \{cite 25880651}. When 
comparing the common regulators in approximately matched tumor and normal 
regulatory networks, rewiring (i.e., target changing) analysis may help to identify cancer-
associated deregulation.  Our rewiring analysis not only considers direct connections 
associated with a given TF, but also the whole neighborhood of connections with which 
a TF associates through  membership and topic models, which used a mixed-
membership model to look more abstractly at local gene neighborhoods to re-rank the 
TFs. 
  
Variant prioritization based on allelic activity  
  
Allele-specific variants(ASVs) potentially provide a most direct readout of the functional 
impact of a variant. We derive allelic elements by first identifying allelic variants from 



individuals will be amassed from The 1000 Genomes Project\cite{23128226}. We will 
match them with their corresponding RNA-Seq and ChIP-seq experiments from multiple 
disparate studies, such as gEUVADIS\cite{24037378} and ENCODE\cite{22955616}. 
After reprocessing and harmonizing the heterogeneous data,  we use the beta-binomial 
test to remove the effect of overdispersion distribution of dataset and detect the ASV in a 
uniform way. However, because ASVs are enriched for rare variants, we will prioritize by 
the ‘allelic genomic element’ with the presence of ASVs. Each element will be assigned 
an ‘allelicity’ score based on not only its enrichment of allelic variants within the element 
(in comparison to accessible variants within the elements and having sufficient coverage 
to make an allelic activity call), but also across the number of individuals having allelic 
variants in a consistent allelic direction. The scoring system by element is useful in two 
ways: (1) it allows continuous ranking of genomic elements based on its allelic impact 
across multiple individuals (as opposed to defining a threshold to make a binary decision 
of whether an element is ‘allelic’) and (2) it enables incorporation of ASE and ASB into 
the main prioritization scheme; input variants (even those which are rare, but lie in 
highly-ranked allelic genomic elements) will be up-weighted according to their scores. 
  
  
  
Functional prioritization of coding mutations 
  
Once we have identified putative driver genes through a combination of recurrence and 
biological network analysis, we will score the functional importance of mutations that 
overlap the coding regions of these genes. We will use our VAT and ALOFT tools to 
identify mutations that may completely inactivate copies of genes. For potentially 
impactful variants that do not fully eliminate gene function, we will combine GERP score, 
a measure of evolutionary conservation, FunSeq2 score, and an ensemble method that 
combines scores from many tools that score the functional impact of coding variants 
\cite{PredictSNP, 24453961} [[MRS: do we want to mention structure-based tools?]] 
  
  
Functional prioritization of noncoding mutations 
  
To integrate the various features, we will expand the weighting system in 
FunSeq\cite{24092746} and Funseq2\cite{25273974}. Constrained by selective pressure, 
common variations tend to arise in functionally unimportant regions. Thus, features that 
are enriched with common polymorphisms are less likely to contribute to the 
deleteriousness of variants and are weighted less. In general, features can be classified 
into two classes: discrete (e.g., within or outside of a given functional annotation) and 
continuous (e.g., the PWM change in ‘motif-breaking’). We will weigh these two sets of 
features with different strategies. 
For each discrete feature, we calculate the probability that it overlaps with common 
polymorphisms. We then calculate the information content to denote the value of 
discrete features . 
The situation is more complex for continuous features, as different feature values have 
different probabilities of being observed in natural polymorphisms. Thus, one weight 
cannot suffice for varied feature values. For a continuous feature , which is associated 
with a value , the probability  is first estimated using common variants: . The score of 
continuous feature is defined as . 
  



The score () is calculated as . We will also incorporate the feature dependency structure 
when calculating the scores by removing redundant features using feature selection or 
by performing dimensionality reduction 
  
  
Parameter tuning after experimental validation 
  
Let () represent the initial feature parameters chosen at random, where  is the number of 
features. will be optimized using an iterative learning scheme by incorporating new 
experimental information produced in Aims 2. Because of the high throughput of 
MegaMut and xxx-seq, our strategy is to implement for the first time a iterative learning 
scheme : the first stage initial learning, the second stage real-time experimental 
parameter optimization, and the third stage final assessment. 
  
In the first stage, we will randomly select ~500 driver gene as defined by recurrence 
analysis, PCAWG and TCGA. We will first generate the WT clones of these genes and 
promoters using xxx-seq. Then, we will select 2 coding variants in coding region and 2 
non-coding variants from the promoter region on each gene and generate all ~2,000 
variant clones through MegaMut. Their effects on coding and non-coding variants will be 
quantified by xxx. Starting from the initial tuned , we tune  according to the results of 
~2000 variants in the first stage. For a specific variant , we define  as Bernoulli 
distributed random variable with  indicates that  is functional. The expectation of  can be 
predicted through a logistic regression:xxxx  ( are scaling parameters). To update with 
experimental validation results , we implement Bayes’ rule:. We will use MCMC (Monte 
Carlo Markov Chain) sampling to search over the parameter space and find the most 
probable xxx . We will predict the functional impact of all noncoding variants genome-
wide, . 
  
In the third stage of final assessment, we will select xxx variants (400 with predicted high 
impact, 200 with medium impact, and 400 with low impact) on previously cloned driver 
genes. We will measure their impact on xxxx activities quantitatively through xx-seq. 
  
  
  
  
 
	


