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Enhancers are important noncoding elements.Unfortunately, until
recently, they were difficult to characterize experimentally, and
only a few mammalian enhancers were validated, making it diffi-
cult to properly train statistical models for their identification. In-
stead, postulated patterns of genomic features were used heuris-
tically for identification. Recently, a large number of massively
parallel assays for characterizing enhancers have been developed.
Here, we use them to create shape-matching filters based on
enhancer-associated metaprofiles in epigenetic features. We then
combine different features with simple, linear models and predict
enhancers in a supervised fashion. By cross-validating and testing
our models, we show that they can be transferred without re-
parameterization between cell lines and even between organisms.
Finally, we predict enhancers incell lines with many transcription-
factor binding sites and validate these enhancers experimentally.
In turn, this highlights distinct differences between the type of
binding at enhancers and promoters, enabling the construction of
a secondary model discriminating between these two.

Epigenetics | Transcription factors | Enhancer prediction | Matched
filter | Machine Learning

Introduction

Enhancers are gene regulatory elements that activate expression
of target genes from a distance [1]. Enhancers are turned on
in a space and time-dependent manner contributing to the for-
mation of a large assortment of cell-types with different mor-
phologies and functions even though each cell in an organism
contains a nearly identical genome [2-4]. Moreover, changes
in the sequences of regulatory elements are thought to play a
significant role in the evolution of species[5-9]. Understanding
enhancer function and evolution is currently an area of great
interest because variants within distal regulatory elements are
also associated with various traits and diseases during genome-
wide association studies [10-12]. However, the vast majority of
enhancers and their spatiotemporal activities remain unknown
because it is not easy to predict their activity based on DNA
sequence or chromatin state [13, 14].

Traditionally, the regulatory activity of enhancers and pro-
moters were experimentally validated in a non-native context
using low throughput heterologous reporter constructs leading
to a small number of validated enhancers that function in the
same mammalian cell-type [15, 16]. In addition to the small
numbers, the validated enhancers were typically selected based
on conserved noncoding regions [17] with particular patterns of
chromatin [18], transcription-factor binding, [19] or noncoding
transcription [20]. The small number and biases within the val-
idated enhancers make them inappropriate for parameterizing
tissue-specific enhancer prediction models [16]. As a result, most
theoretical methods to predict enhancers could not optimally pa-
rameterize their models using a gold standard set of functional el-
ements. Instead, most of these models were parameterized based

on certain heuristic features associated with enhancers, which
were then utilized to predict enhancers [19, 21-30]. For example,
two of the widest used methods for predicting enhancers were
based on the fact that these elements are expected to contain a
cluster of transcription factor binding sites [24] and their activity is
often correlated with an enrichment of certain post-translational
modifications on histone proteins [27, 30]. These predictions were
not rigorously assessed as very few putative enhancers could be
validated experimentally and it remains challenging to assess the
performance of different methods for enhancer prediction.

In recent times, due to the advent of next generation se-
quencing, a number of transfection and transduction-based assays
were developed to experimentally test the regulatory activity
of thousands of regions simultaneously in a massively parallel
fashion [31-37]. In these experiments, several plasmids that each
contains a single core promoter upstream of a luciferase or GFP
gene are transfected or transduced into cells. These plasmids are
used to test the regulatory activity of different regions by placing
one region near the core promoter in each plasmid as differences
in the gene’s expression occur due to the differences in the activity
of the tested region. STARR-seq was one such massively parallel
reporter assay (MPRA) that was used to test the regulatory
activity of the fly genome in several cell-types [31, 38] and was
used to identify thousands of cell-type specific enhancers and
promoters. MPRAs have confirmed that active enhancers and
promoters tend to be depleted of histone proteins and contain
accessible DNA on which various transcription factors and co-
factors bind [39, 40]. These regulatory regions also tend to be
flanked by nucleosomes that contain histone proteins with certain
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Enhancers are import regulatory elements in the genome.
The distance between the enhancer and its regulating genes
varies between several kilobytes to megabytes, making it hard
annotate enhancer region both experimentally and computa-
tionally. Here we demonstrate that by integrating epigenetic
features with supervised machine learning models, we can
achieve high accuracy of enhancer prediction. The match filter
tool providing a general framework to identify enhancers
across cell lines.
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Submission PDFFig. 1. Creation of metaprofile. A) We identified
the “double peak” pattern in the H3K27ac signal close
to STARR-seq peaks. The red triangles denote the
position of the two maxima in the double peak. B) We
aggregated the H3K27ac signal around these regions
after aligning the flanking maxima, using interpola-
tion and smoothing on the H3K27ac signal, and aver-
aged the signal across different MPRA peaks to create
the metaprofile in C). The exact same operations can
be performed on other histone signals and DHS to
create metaprofiles in other dependent epigenetic
signals. D) Matched filters can be used to scan the
histone and/or DHS datasets to identify the occur-
rence of the corresponding pattern in the genome. E)
The matched filter scores are high in regions where
the profile occurs (grey region shows an example)
and it is low when only noise is present in the data.
The individual matched filter scores from different
epigenetic datasets can be combined using integrated
model in F) to predict active promoters and enhancers
in a genome wide fashion.

characteristic post-translational modifications. These attributes
lead to an enriched peak-trough-peak (“double peak”) signal in
different ChIP-Seq experiments for various histone modifications
such as acetylation on H3K27 and methylations on H3K4. The
troughs in the double peak ChIP-seq signal represent the acces-
sible DNA that leads to a peak in the DNase-I hypersensitivity
(DHS) at the enhancer [41]. However, the optimal method to
combine information from multiple epigenetic marks to make
cell-type specific regulatory predictions remains unknown. For
the first time, using data from several MPRAs, we have the
ability to properly train our models based on a large number of
experimentally validated enhancers and test the performance of
different models for enhancer prediction using cross validation.

We developed a new supervised machine-learning method
that was trained and tested on large number of experimentally ac-
tive regulatory regions identified in MPRAs to accurately predict
active enhancers and promoters in a cell-type specific manner.
Unlike previous prediction methods that focused on the enrich-
ment (or signal) of different epigenetic datasets, we developed
a method to also take into account the enhancer-associated pat-
tern within different epigenetic signals. As the epigenetic signal

around each enhancer is noisy, we aggregated the signal around
thousands of enhancers identified using MPRAs to increase the
signal-to-noise ratio and identified the shape associated with
active regulatory regions. The epigenetic signal shapes associated
with promoters and enhancers are conserved across millions of
years of evolution and these models can be used to predict
enhancers and promoters in different cell-types and tissues and
across diverse eukaryotic species. We further created simple to
use transferrable statistical models with six parameters that can
be used to predict enhancers and promoters in several eukary-
otic species including fly, mouse, and human. We applied these
models to predict active enhancers and promoters in the H1-
human embryonic stem cell (H1-hESC), a highly studied human
cell-line in the ENCODE datasets. These analyses show that the
pattern of transcription factor (TF) binding and co-binding varies
between enhancers and promoters. The pattern of TF and co-TF
binding at active enhancers is much more heterogeneous than the
corresponding patterns on promoters. The pattern of TF binding
can be used to distinguish enhancers from promoters with high
accuracy. Thus, our methods provide a framework that utilizes
different epigenetic genomics datasets to predict active regulatory
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Fig. 2. Performance of matched filters and integrated models for predicting
MPRA peaks. The performance of the matched filters of different epigenetic
marks and the integrated model for predicting all STARR-seq peaks is com-
pared here using 10-fold cross validation. A) The area under the receiver-
operating characteristic (AUROC) and the precision-recall (AUPR) curves are
used to measure the accuracy of different matched filters and the integrated
model. B) The weights of the different features in the integrated model are
shown and these weights may be used as a proxy for the importance of each
feature in the integrated model. C) The individual ROC and PR curves for
each matched filter and the integrated model are shown. The performance
of these features and the integrated model for predicting the STARR-seq
peaks using multiple core promoters and single core promoter are compared.
The numbers within the parentheses in A) refer to the AUROC and AUPR
for predicting the peaks using a single STARR-seq core promoter while the
numbers outside the parentheses refers to the performance of the model for
predicting peaks from multiple core promoters.

regions in a cell-type specific manner and then utilizes further

Fig. 3. Performance of matched filters and integrated models for predicting
promoters and enhancers. The performance of the matched filters of differ-
ent epigenetic marks and the integrated model for predicting active promot-
ers and enhancers are compared here using 10-fold cross validation. A) The
numbers within parentheses refer to the AUROC and AUPR for predicting
promoters while the numbers outside parentheses refer the performance of
the models for predicting enhancers. B) The weights of the different features
in the integrated models for promoter and enhancer prediction are shown. C)
The individual ROC and PR curves for each matched filter and the integrated
model are shown. The performance of these features and the integrated
model for predicting the active promoters and enhancers using multiple core
promoters are compared.

functional genomics datasets to identify key TFs associated with
active regulatory regions within these cell-types.
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Fig. 4. Conservation of epigenetic features. The performance of the
fly-based matched filters and the integrated model for predicting active
promoters and enhancers in mouse embryonic stem cells identified using
FIREWACh. A Similar to Figure 3, the numbers within parentheses refer to
the AUROC and AUPR for predicting promoters while the numbers outside
parentheses refer the performance of the models for predicting enhancers.
B) The weights of the different features in the integrated models for
promoter and enhancer prediction are shown. C) The individual ROC and
PR curves for each matched filter and the integrated model are shown. The
performance of these features and the integrated model for predicting the
active promoters and enhancers identified using FIREWACh are shown.

Results
Aggregation of epigenetic signal to create metaprofile:

We developed a framework to predict activating regulatory
elements utilizing the epigenetic signal patterns associated with
experimentally validated promoters and enhancers [31]. We ag-
gregated the signal of histone modifications on MPRA peaks to
remove noise in the signal and created a metaprofile of the double
peak signals of histone modifications flanking enhancers and pro-
moters. MPRA peaks typically consist of a mixture of enhancers
and promoters, and at this stage, we do not differentiate between
the two sets of regulatory elements. These metaprofiles were then
utilized in a pattern recognition algorithm for predicting active
promoters and enhancers in a cell-type specific manner.

These metaprofiles were initially created using the histone
modification H3K27ac at active STARR-seq peaks (see Figure 1
and Methods) identified in the S2 cell-line of fly. Approximately
70% of the active STARR-seq peaks contain an easily identifiable
double peak pattern even though there is a lot of variability
in the distance between the two maxima of the double peak
in the ChIP-chip signal (Figure S1). Even though the minimum
tends to occur in the center of these two maxima on average,
the distance between the two maxima in the double peaks can
vary between 300 and 1100 base pairs. During aggregation, we
aligned the two maxima in the H3K27ac signal across different
STARR-seq peaks, followed by interpolation and smoothening
the signal before calculating the average metaprofile. In addition,
an optional flipping step was performed to maintain the asym-
metry in the underlying H3K27ac double peak because it may
be associated with the directionality of transcription [42]. For the
first time, we also calculated the dependent metaprofiles for thirty
other histone marks and DHS signal by applying the same set of
transformations to these datasets. The metaprofile for the histone
marks associated with active regulatory regions were also double
peak signals and the maxima across different histone modification
signals tended to align with each other on average (Figure S2).
This indicates that a large number of histone modifications tend
to simultaneously co-occur on the nucleosomes flanking an active
enhancer or promoter. In contrast, as expected, the DHS signal
displayed a single peak at the center of the H3K27ac double peak
(Figure 1). In addition, repressive marks such as H3K27me3 were
depleted in these regions and the metaprofile for these regions
did not contain a double peak signal (Figure S2).

Occurrence of metaprofile is predictive of regulatory activity:
We evaluated whether these metaprofiles can be utilized to

predict active promoters and enhancers using matched filters, a
well-established algorithm in template recognition. A matched
filter is the optimal pattern recognition algorithm that uses a
shape-matching filter to recognize the occurrence of a template
in the presence of stochastic noise [43]. We evaluated whether
the occurrence of the epigenetic metaprofiles identified for the
histone marks and DHS can be used to predict active enhancers
and promoters using receiver operating characteristic (ROC)
and precision-recall (PR) curves. The PR curves are particularly
useful to assess the performance of classifiers in skewed or im-
balanced data sets in which one of the classes is observed much
more frequently as compared to the other. On these imbalanced
data sets, PR curves are useful alternative to ROC curves as the
precision is directly related to the false detection ratio at different
thresholds. The PR curve highlights differences in performance of
different models even when their ROC curves remain comparable
[44]. The matched filter score is higher in genomic regions where
the template pattern occurs in the corresponding signal track
while it is low when only noise is present in the signal (Figure 1).
Due to the aforementioned variability in the double peak pattern,
the H3K27ac signal track is scanned with multiple matched filters
with templates that vary in width between the two maxima in
the double peak and the highest matched filter score with these
matched filters is used to rate the regulatory potential of this re-
gion (see Methods). The dependent profiles are then used on the
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Submission PDFFig. 5. Enhancer Validation Experiments. A) A schematic of the enhancer validation scheme is show. At top is third generation HIV-based self-inactivating
vector (deletion in 3’ LTR indicated by red triangle), with PCR-amplified test DNA (blue, two-headed arrow indicates fragment was cloned in both orientations),
inserted just 5’ of a basal (B) Oct4 promoter driving IRES-eGFP (green). Vector supernatant was prepared by plasmid co-transfection of 293T cells and used to
transduce cellular targets and analyzed by flow cytometry a few days later. B) The fold change of gene expression of eGFP is compared between negative
elements and putative enhancers chosen for experiments. The p-Value of the difference in activity is measured using a Wilcoxon signed-rank test.

same region with the matched filter to score the corresponding
genomic tracks.

We used 10-fold cross validation to assess the performance
of matched filters for individual histone marks to predict active
STARR-seq peaks. In Figure 2, we observe that the H3K27ac
matched filter is the single most accurate feature for predicting
active regulatory regions (AUROC=0.92, AUPR=0.72) identi-
fied using STARR-seq. This is consistent with the literature as
H3K27ac enriched peaks are often used to predict active pro-
moters and enhancers [23, 45, 46]. In general, several histone
acetylation (H3K27ac, H3K9ac, H4K12ac, H2BK5ac, H4K8ac,
H4K5ac, H3K18ac) marks as well as the H1, H3K4me2, and DHS
matched filters are the most accurate marks (see Figure 2 and
Table S1) because the matched filter scores for these regions
on these marks are higher for STARR-seq peaks (Figure S3).
The degree to which the matched filter scores for promoters and
enhancers are higher than the matched filter scores for the rest of
the genome is a measure of the signal to noise ratio for regulatory
region prediction in the corresponding feature’s genomic track
and the larger the separation between positives and negatives, the
greater the accuracy of the corresponding matched filter for pre-
dicting active regulatory regions. Interestingly, the distribution of
matched filter scores for STARR-seq peaks are unimodal for each
histone mark except for H3K4me1, H3K4me3, and H2Av, which
are bimodal (Figure S3). We also show that the matched filter
scores are more accurate for predicting active STARR-seq peaks
than enrichment of signal alone as they outperform the histone
peaks on ROC and PR curves (Figure S4).

While a single STARR-seq experiment identifies thousands
of active regulatory regions, these regions display core-promoter
specificity and different sets of enhancers are identified when
different core promoters are used in the same cell-type [47-51].
As we wanted to create a framework to predict all the enhancers
and promoters active in a particular cell-type, we combined the
peaks identified from multiple STARR-seq experiments in the S2
cell-type and reassessed the performance of the matched filters
at predicting these regulatory regions. Merging the STARR-seq
peaks from multiple core promoters in the S2 cell-type leads to

higher AUROC and AUPR for the matched filters from most
histone marks (Figure 2).

Machine learning can combine matched filter scores from
different epigenetic features:

We combined the normalized matched filter scores (see
Methods) from six different epigenetic marks (H3K27ac,
H3K4me1, H3K4me2, H3K4me3, H3K9ac, and DHS) associated
with active regulatory regions by the Roadmap Epigenomics
Mapping [52] and the ENCODE [53] Consortia using a linear
SVM [54] and the integrated model achieved a higher accuracy
than the individual matched filter scores (Figure 2). We also
assessed the performance of other statistical approaches for
combining the features (including non-linear models) in Figure
S6 and all these models performed similarly. By using only
six features, we ensure that our model is capable of being
applied to many cell-lines and tissues on which the relevant
experiments have been performed. These models are trained
to learn the patterns in the matched filter scores for different
epigenetic marks within experimentally verified regulatory
regions and we chose these marks as we wanted to assess
the applicability of these machine learning models to predict
active enhancers and promoters across different cell-types and
species. As expected, the integrated models outperformed the
individual matched filter scores, as they are able to leverage
information from multiple epigenetic marks. In addition, the
six-parameter integrated model displayed higher accuracy after
combining the peaks identified using different core promoters.
In the integrated model, the normalized matched filter score
for each epigenetic feature in a particular region is scaled by its
optimized weight and added together to form the discriminant
function. The sign of the discriminant function is then used to
predict whether the region is regulatory. The features with large
positive and negative weights are predicted to be important for
discriminating regulatory regions from non-regulatory regions
in such models. They can also be used to measure the amount
of non-redundant information added by each feature in the
integrated model. According to the model, the acetylations
(H3K27ac and H3K9ac) are the most important feature for
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Fig. 6. Differences in TF binding patterns at en-
hancers and promoters. A) The fraction of predicted
promoters and enhancers that overlap with ENCODE
ChIP-seq peaks for different TFs in H1-hESC are shown.
The names of all TFs in the figure can be viewed
in Figure S19. B) The AUROC and AUPR for a lo-
gistic regression model created using the pattern of
TF binding at each regulatory region to distinguish
enhancers from promoters are shown. The weight of
each feature in the logistic regression model can be
used to identify the most important TFs that distin-
guish enhancers from promoters. C) The patterns of
TF co-binding at active promoters and enhancers are
shown. The names of all the TFs in this graph can be
viewed in Figure S20.

predicting active regulatory regions from inactive regions. While
the DHS matched filter performed well as an individual feature
(AUPR in Figure 2), the information in DHS is redundant with
the information in the histone marks as indicated by the fact that
it has the lowest weight among the six features in the integrated
model. We compared several other machine learning algorithms
including nonlinear SVM (results not shown) to combine the
machine learning models and found that they all displayed nearly
similar accuracy and similar features were more important across
these different models (Figure S5).

To assess the information contained in other epigenetic
marks, we combined the matched filters from all 30 measured
histone marks along with the DHS matched filter in separate
statistical models (Figure S6) and these model displayed higher
accuracy (AUROC=0.97, AUPR=0.93 for SVM model with mul-
tiple core promoters) than the 6 feature model presented in Fig-
ure 2. The feature weights in this model indicated that H3K27ac

contains the most information regarding the activity of regulatory
regions. However, we found that a few other acetylations such as
H2BK5ac, H4ac, and H4K12ac contain additional non-redundant
information regarding the activity of these regulatory regions and
might improve the accuracy of promoter and enhancer prediction
from machine learning models (Figure S6).

Distinct epigenetic signals associated with promoters and
enhancers:

We proceeded to create individual metaprofiles and machine
learning models for the two classes of regulatory activators –
promoters (or proximal) and enhancers (or distal). We divided all
the active STARR-seq peaks into promoters or enhancers based
on their distance to the closest transcription start site (TSS) to
delineate their likely function in the native context. Due to the
conservative distance metric used in this study (1kb upstream and
downstream of TSS in fly), the enhancers are regulatory elements
that are not close to any known TSS even though a few of the
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promoters may actually function as enhancers. We then created
metaprofiles of the different epigenetic marks on the promoters
and enhancers and assessed the performance of the matched
filters for predicting active regulatory regions within each cate-
gory (Figure 3). The highest matched filter scores are typically
observed on promoters and the matched filters for each of the six
features tended to perform better for promoter prediction. The
H3K27ac matched filter continues to outperform other epige-
netic marks for predicting active promoters and enhancers (Fig-
ure 3). In addition, the DHS, H3K9ac, and H3K4me2 matched
filters also performed reasonably for promoter and enhancer pre-
diction. Similar to previous studies [55, 56], we observed that the
H3K4me1 metaprofile performs better for predicting enhancers
while it is close to random for predicting promoters. In contrast,
the H3K4me3 metaprofile can be utilized to predict promoters
and not enhancers. The histogram for matched filter scores show
that H3K4me1 matched filter score is higher near enhancers
while the H3K4me3 matched filter score tends to be higher near
promoters (Figure S7). The mixture of these two populations lead
to bimodal distributions for H3K4me1 and H3K4me3 matched
filter scores when calculated over all regulatory regions (Figure
S3).

We created two different integrated models to learn the com-
bination of features associated with promoters and enhancers.
These integrated models outperformed the individual matched
filters at predicting active enhancers and promoters (Figures
3 and S8). In addition, the weights of the individual features
identified the difference in roles of the H3K4me1 and H3K4me3
matched filter scores at discriminating active promoters and
enhancers from inactive regions in the genome. The promoter-
based (enhancer-based) model performed much more poorly at
predicting enhancers (promoters) indicating the unique prop-
erties of these regions (Figures S10 and S11). We also created
two integrated models utilizing matched filter scores for all
thirty histone marks as features for predicting enhancers and
promoters. The additional histone marks provided independent
information regarding the activity of promoters and enhancers
as these features increased the accuracy of these models (Figure
S9). The weights of different features indicate that H2BK5ac
again displays the most independent information for accurately
predicting active enhancers and promoters (Figures S9). We ob-
serve similar trends and accuracy with several different machine
learning models (Figures S8 and S9).

The epigenetic underpinnings of active regulatory regions are
highly conserved in evolution:

In order to assess the transferability of these metaprofiles
and machine learning models for predicting regulatory regions
in other tissues and cell-types, we assessed the accuracy of these
models for predicting regulatory elements identified using the
transduction-based FIREWACh assay in mouse embryonic stem
cells (mESC) [36]. The metaprofiles for individual histone marks
learned using active promoters and enhancers identified with the
STARR-seq assay in the S2 cell-line were used with matched
filters to predict the regulatory activity of different regions in
mESC based on the epigenetic signals in mESC (Figure 4). The
matched filters for individual histone marks displayed similar
accuracy for predicting enhancers and promoters in mESC as
in the original S2 cell-line. In addition, the 6-parameter SVM
models learned using STARR-seq data in S2 cell-line were also
highly accurate at predicting active enhancers and promoters in
mouse (Figure 4).

This indicates that the epigenetic profiles associated with
active enhancers and promoters are conserved over 600 million
years of evolution underscoring the importance of such epigenetic
modifications in maintaining the regulatory role of enhancers
and promoters across different cell-types and species. As these
regulatory regions were identified using a single core promoter in

FIREWACh, the performance of the different models in Figure 4
is probably underestimated. The accuracy of these models enables
us to use the metaprofiles and statistical models learned using
STARR-seq data in fly to predict enhancers in different cell-lines
and eukaryotic species. Consistent with this, the metaprofile and
machine learning models learned using STARR-seq experiment
in BG3 cell-line (fly) can be utilized to predict active promoters
and enhancers in the S2 cell-line (Figure S12).

Validation of Enhancer Prediction Models
The ENCODE consortium has ChIP-Seq data for 60 tran-

scription related factors in H1-hESC cell line, including a few
chromatin remodelers and histone modification enzymes. Collec-
tively we call all these transcription related factors “TF”s for sim-
plicity. We utilized the 6 parameter integrated model to predict
active enhancers and promoters in the hESC cell-line based on
the epigenetic datasets measured by the ENCODE consortium.
This provides us with a system to validate our enhancer prediction
model as well as to study the patterns of TF binding within en-
hancers and promoters. Using these models, we predicted 43463
active regulatory regions, of which 22828 (52.5%) are within 2kb
of the TSS and are labeled as promoters. A large proportion of
the predicted enhancers are found in the introns (30.41%) and in-
tergenic regions (13.93%) (Figure S13). The predicted promoters
and enhancers are significantly closer to active genes than might
be expected randomly (Figure S14). By comparing the matched
filter predicted enhancers and promoters with chromatin states
predicted by chromHMM [30] and SegWay [27], we observe that
a majority of the predicted enhancers and promoters are also
predicted to be enhancers and promoters by chromHMM and
SegWay respectively (Figures S15 to S18).

A third generation, self-inactivating HIV-1 based vector sys-
tem in which the eGFP reporter was driven by the DNA element
of interest was used to validate putative enhancers after stable
transduction of various cell lines, including H1 hESC (Figure 5).
The predicted enhancers, ranging from 650 to 2500 bp, were PCR
amplified from human genomic DNA and inserted just upstream
of a basal Oct-4 promoter of 142 bp (a housekeeping promoter
is used so that the activity of the putative enhancers should be
similar across different cell lines). VSV G-pseudotyped vector
supernatants from each were prepared by co-transfection of 293T
cells, and these were used to transduce the various cell lines, with
empty vector and FG12 vector serving as negative and positive
controls, respectively. Putative enhancer activity was assessed
by flow cytometric readout of eGFP expression 48-72 h post-
transduction, normalized to the negative control.

A total of 25 predicted intergenic enhancers were randomly
selected for validation (Supplementary Table S3). These predic-
tions were chosen randomly to ensure that these truly represented
the whole spectrum of predicted enhancers and not just the top
tier of predicted enhancers. Of these 25 putative enhancers, 23
were successfully amplified and cloned into the HIV vector. To
measure the distribution of gene expression in the absence of
enhancer, we also amplified and cloned 25 non-repetitive ele-
ments with similar length distribution that were predicted to be
inactive using the same HIV vector. All positive and negative
DNA elements were transduced and tested for activity in both for-
ward and reverse strand orientations since enhancers are thought
to function in an orientation-independent manner. Functional
testing was performed in HOS, TZMBL, and A549 cell lines in
addition to H1-hESCs.

Insertion of twelve of the 23 putative enhancers into the HIV
vector resulted in a significant increase in eGFP expression (P-
value < 0.05 over distribution of gene expression for negative el-
ements) in the H1-hESCs (Supplementary Table S3). While most
of the positive enhancers displayed a significant increase in gene
expression irrespective of their orientation during orientation, a
few elements showed significantly higher levels of gene expression
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in one of the orientations (Supplementary Table S4). In contrast,
the negatives displayed much lower levels of gene expression
typically (Figure 5 and Supplementary Figure S19). In addition,
most of these elements increased gene expression of GFP in the
four different cell lines even though some of the elements were
preferentially active in one of the cell lines. Overall, 16 of the
23 tested predictions displayed statistically significant increase in
gene expression of the reporter gene in at least one of the cell lines
(Supplementary Table S3 and Supplementary Figure S19). Given
the promoter specificity of enhancers in such assays, we would
anticipate that some of the elements that could not be validated
in this particular vector would function as enhancers in a more
natural biological context.

Different Transcription Factors bind to enhancers and pro-
moters

We further studied the differences in TF binding at promoters
and enhancers (Figure 6 and Figure S20). Most promoters and
enhancers contain multiple TF-binding sites. However, the TF-
binding of enhancers is more heterogeneous than promoters: in
particular, more than 70% of the promoters bind to the same set
of 2-3 sequence-specific TFs, which is not observed for enhancers.
The majority of the promoters also contain peaks for several
TATA-associated factors (TAF1, TAF7, and TBP). Overall, the
high heterogeneity associated with enhancer TF-binding is con-
sistent with the absence of a sequence code (or grammar) which
can be utilized to easily identify active enhancers on a genome-
wide fashion.

In Figure 6, we show that the patterns of TF binding within
regulatory regions can be utilized in a logistic regression model to
distinguish active enhancers from promoters with high accuracy
(AUPR = 0.89, AUROC = 0.87). We were also able to identify
the most important features that distinguish promoters from
enhancers. In addition to TATA-box associated factors such as
TAF1, TAF7, and TBP, the RNA polymerase-II binding patterns
as well as chromatin remodelers such as KDM4A and PHF8 are
some of the most important factors that distinguish promoters
from enhancers in H1-hESC. This provides a framework that can
be utilized to identify the most important TFs associated with
active enhancers and promoters in each cell-type.

In Figure 6A, we show that the pattern of TF binding at
promoters is different from that at enhancers and TF-binding
at enhancers displaying more heterogeneity. As the set of TFs
binding promoters is fairly uniform, the same pairs of TF also
tend to bind together on promoters. In contrast, for enhancers,
the patterns of TF co-binding is much more heterogeneous and
different enhancers tend to contain different TF-pairs. This can
be observed in the patterns of TF co-binding in Figures 6C and
S21. These TF co-associations could lead to mechanistic insights
of cooperativity between TFs. For example, similar to a previous
study [57], CTCF and ZNF143 may function cooperatively as they
are observed to co-occur frequently at distal regulatory regions in
this study.

Discussion

Our ability to accurately predict active enhancers in a cell-type
specific manner using transferable supervised machine learning
models that were trained based on regulatory regions identified
using new NGS-enabled MPRAs distinguishes our method from
previous enhancer prediction methods. Currently, most existing
methods were parameterized (not properly “trained”) with re-
gions that had various features associated with promoters and
enhancers and only a small number of these regions were typically
tested for regulatory activity experimentally in an ad hoc manner.
The MPRAs were able to firmly establish that certain histone
modifications occur on nucleosomes flanking active regulatory re-
gions leading to the formation characteristic double peak pattern
within the ChIP-signal [39]. This motivated us to create matched

filter models that were able to identify these patterns within the
shape of the ChIP-signal in the presence of stochastic noise with
the highest signal to noise ratio. Furthermore, we were able to
combine the matched filter scores from different epigenetic fea-
tures using simple transferrable linear SVM models and learned
the most informative epigenetic features for regulatory region
predictions.

The sensitivity and selectivity of various MPRAs is currently a
matter of debate. A majority of these MPRAs test the regulatory
activity of different regions by assessing their ability to induce
gene expression in a plasmid after transfecting it into a cell-
type of interest [31]. Such assays may not recapitulate the native
chromatin environment found in chromosomes, which may be
necessary for assessing whether the regulatory region is active in
its genomic environment.

Here, we show for the first time, that the patterns in the
epigenetic signals associated with active enhancers identified
using a transfection-based assay (STARR-seq) can be utilized
to predict the activity of enhancers in a transduction-based
assay (FIREWACh). During the FIREWACh assay, random
nucleosome-free regions in mESC were captured and assayed
for regulatory activity of the GFP gene by utilizing a lentiviral
plasmid vector and inserted (or transduced) these vectors into
the chromosome in mESC cells. As the FIREWACh assay tests
the regulatory activity of enhancers after transduction, we assume
that these regions were tested in their native chromatin environ-
ment and transduction-based assays form a more stringent test
for regulatory activity. However, due to the shorter length of the
tested region (< 300 bp) and the single core promoter used in
the FIREWACh assay, we think that the accuracy of the statistical
models in Figure 4 is underestimated.

We were able to assess the accuracy of different epigenetic
metaprofiles for predicting regulatory activity using our statis-
tical models. While different acetylation modifications are as-
sociated with active regions of the genome, we were able to
compare close to 30 histone marks for enhancer and promoter
predictions. The H3K27ac matched filter remains the single most
important feature for predicting active regulatory regions while
H3K4me1 and H3K4me3 are known to distinguish promoters
from enhancers. However, our analysis characterizes the amount
of redundancy in information within the metaprofile of differ-
ent epigenetic features for predicting active regulatory regions
and shows that ChIP-experiments of H2BK5ac, H4ac, and H2A
variants could also produce independent information that can
improve the accuracy of promoter and enhancer predictions. In
addition to these 30-feature models, we also provide a simple to
use six-parameter SVM model for combining H3K27ac, H3K9ac,
H3K4me1, H3K4me2, H3K4me3, and DHS to predict active
promoters and enhancers in a cell-type specific manner. We also
showed that the metaprofiles and the combination of epigenetic
marks associated with active regulatory regions are highly con-
served in evolution making these models highly transferable.
These six histone marks have been measured for a number of
different tissues and cell-types by the Roadmap Epigenomics
Mapping Consortium [39], the ENCODE [53], and the mod-
ENCODE Consortium [58]. The enhancers predicted using our
machine learning models were experimentally validated in human
cell lines.

One aspect that is discussed less frequently is the effect of
core promoter on enhancer and promoter prediction. MPRAs
show that the regulatory activity of enhancers and promoters in
a regulatory assay depends on the core promoter used during
the experiment [51]. As the transcription factors that bind to
each regulatory region are thought to play a key role in core-
promoter specificity [47, 51], we suspect that machine learning
models that contain sequence or motif-based features may be
biased towards certain transcription factor binding sites when
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trained with regulatory regions identified using a single-core
promoter. To avoid such biases, it would be more appropriate to
train models with sequence-based features when the validation
experiments are performed with multiple core promoters. In the
absence of validation data with multiple core promoters, it may
be more suitable to train models using epigenetic features as such
models contain no sequence-based information. In comparing the
predictions from such models with experiments using a single core
promoter, some of the strongest predictions may be mislabeled
as negatives even though they contain some regulatory activity
leading to a lower accuracy estimate as shown in Figure 2.

As the epigenetic profiles and statistical models learned in
this study are transferable across different cell-lines and species,
we are able to apply these models to predict active enhancers
and promoters in different cell-types. We applied these models to
predict enhancers and promoters in H1-hESC, a highly studied

ENCODE cell-line. This allowed us to analyze the differences
in the patterns of TF binding at proximal and distal regulatory
regions. The TF binding and co-binding patterns at enhancers
is much more heterogeneous than that at promoters. We think
that this heterogeneity in TF binding patterns makes it much
more difficult to predict enhancers due to the absence of obvious
sequence patterns in distal regulatory regions. However, we were
also able to create highly accurate machine learning models that
are able to distinguish proximal promoter regions from distal
enhancers based on the patterns of TF ChIP-seq peaks within
these regulatory regions. The conservation of the epigenetic un-
derpinnings underlying active regulatory regions sets the stage for
our method to study the evolution of tissue-specific enhancers
and their genomic properties across different eukaryotic species.
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