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Abstract 
 
Enhancers are important noncoding elements. Unfortunately, until recently, they were 
difficult to characterize experimentally, and only a few mammalian enhancers were 
validated, making it difficult to properly train statistical models for their identification. 
Instead, postulated patterns of genomic features were used heuristically for 
identification. Recently, a large number of massively parallel assays for characterizing 
enhancers have been developed. Here, we use them to create shape-matching filters 
based on enhancer-associated metaprofiles in epigenetic features. We then combine 
different features with simple, linear models and predict enhancers in a supervised 
fashion. By cross-validating and testing our models, we show that they can be 
transferred without re-parameterization between cell lines and even between organisms. 
Finally, we predict enhancers in cell lines with many transcription-factor binding sites and 
validate these enhancers experimentally. In turn, this highlights distinct differences 
between the type of binding at enhancers and promoters, enabling the construction of a 
secondary model discriminating between these two. 
 
 
Significance Statement 
 
Enhancers are import regulatory elements in the genome. The distance between the 
enhancer and its regulating genes varies between several kilobytes to megabytes, 
making it hard annotate enhancer region both experimentally and computationally. Here 
we demonstrate that by integrating epigenetic features with supervised machine learning 
models, we can achieve high accuracy of enhancer prediction. The match filter tool 
providing a general framework to identify enhancers across cell lines. 
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Introduction 
 

Enhancers are gene regulatory elements that activate expression of target genes from a 

distance [1]. Enhancers are turned on in a space and time-dependent manner 

contributing to the formation of a large assortment of cell-types with different 

morphologies and functions even though each cell in an organism contains a nearly 

identical genome [2-4]. Moreover, changes in the sequences of regulatory elements are 

thought to play a significant role in the evolution of species[5-9]. Understanding 

enhancer function and evolution is currently an area of great interest because variants 

within distal regulatory elements are also associated with various traits and diseases 

during genome-wide association studies [10-12]. However, the vast majority of 

enhancers and their spatiotemporal activities remain unknown because it is not easy to 

predict their activity based on DNA sequence or chromatin state [13, 14]. 

Traditionally, the regulatory activity of enhancers and promoters were experimentally 
validated in a non-native context using low throughput heterologous reporter constructs 
leading to a small number of validated enhancers that function in the same mammalian 
cell-type [15, 16]. In addition to the small numbers, the validated enhancers were 
typically selected based on conserved noncoding regions [17] with particular patterns of 
chromatin [18], transcription-factor binding, [19] or noncoding transcription [20]. The 
small number and biases within the validated enhancers make them inappropriate for 
parameterizing tissue-specific enhancer prediction models [16]. As a result, most 
theoretical methods to predict enhancers could not optimally parameterize their models 
using a gold standard set of functional elements. Instead, most of these models were 
parameterized based on certain heuristic features associated with enhancers, which 
were then utilized to predict enhancers [19, 21-30]. For example, two of the widest used 
methods for predicting enhancers were based on the fact that these elements are 
expected to contain a cluster of transcription factor binding sites [24] and their activity is 
often correlated with an enrichment of certain post-translational modifications on histone 
proteins [27, 30].  These predictions were not rigorously assessed as very few putative 
enhancers could be validated experimentally and it remains challenging to assess the 
performance of different methods for enhancer prediction.  
 
In recent times, due to the advent of next generation sequencing, a number of 
transfection and transduction-based assays were developed to experimentally test the 
regulatory activity of thousands of regions simultaneously in a massively parallel fashion 
[31-37]. In these experiments, several plasmids that each contains a single core 
promoter upstream of a luciferase or GFP gene are transfected or transduced into cells. 
These plasmids are used to test the regulatory activity of different regions by placing one 
region near the core promoter in each plasmid as differences in the gene’s expression 
occur due to the differences in the activity of the tested region. STARR-seq was one 
such massively parallel reporter assay (MPRA) that was used to test the regulatory 
activity of the fly genome in several cell-types [31, 38] and was used to identify 
thousands of cell-type specific enhancers and promoters. MPRAs have confirmed that 
active enhancers and promoters tend to be depleted of histone proteins and contain 
accessible DNA on which various transcription factors and cofactors bind [39, 40]. These 
regulatory regions also tend to be flanked by nucleosomes that contain histone proteins 
with certain characteristic post-translational modifications. These attributes lead to an 
enriched peak-trough-peak (“double peak”) signal in different ChIP-Seq experiments for 
various histone modifications such as acetylation on H3K27 and methylations on H3K4. 
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The troughs in the double peak ChIP-seq signal represent the accessible DNA that leads 
to a peak in the DNase-I hypersensitivity (DHS) at the enhancer [41]. However, the 
optimal method to combine information from multiple epigenetic marks to make cell-type 
specific regulatory predictions remains unknown. For the first time, using data from 
several MPRAs, we have the ability to properly train our models based on a large 
number of experimentally validated enhancers and test the performance of different 
models for enhancer prediction using cross validation.  
 
We developed a new supervised machine-learning method that was trained and tested 
on large number of experimentally active regulatory regions identified in MPRAs to 
accurately predict active enhancers and promoters in a cell-type specific manner. Unlike 
previous prediction methods that focused on the enrichment (or signal) of different 
epigenetic datasets, we developed a method to also take into account the enhancer-
associated pattern within different epigenetic signals. As the epigenetic signal around 
each enhancer is noisy, we aggregated the signal around thousands of enhancers 
identified using MPRAs to increase the signal-to-noise ratio and identified the shape 
associated with active regulatory regions. The epigenetic signal shapes associated with 
promoters and enhancers are conserved across millions of years of evolution and these 
models can be used to predict enhancers and promoters in different cell-types and 
tissues and across diverse eukaryotic species. We further created simple to use 
transferrable statistical models with six parameters that can be used to predict 
enhancers and promoters in several eukaryotic species including fly, mouse, and 
human. We applied these models to predict active enhancers and promoters in the H1-
human embryonic stem cell (H1-hESC), a highly studied human cell-line in the ENCODE 
datasets. These analyses show that the pattern of transcription factor (TF) binding and 
co-binding varies between enhancers and promoters. The pattern of TF and co-TF 
binding at active enhancers is much more heterogeneous than the corresponding 
patterns on promoters. The pattern of TF binding can be used to distinguish enhancers 
from promoters with high accuracy. Thus, our methods provide a framework that utilizes 
different epigenetic genomics datasets to predict active regulatory regions in a cell-type 
specific manner and then utilizes further functional genomics datasets to identify key TFs 
associated with active regulatory regions within these cell-types. 
 
Results 
 
Aggregation of epigenetic signal to create metaprofile: 
 
We developed a framework to predict activating regulatory elements utilizing the 
epigenetic signal patterns associated with experimentally validated promoters and 
enhancers [31]. We aggregated the signal of histone modifications on MPRA peaks to 
remove noise in the signal and created a metaprofile of the double peak signals of 
histone modifications flanking enhancers and promoters. MPRA peaks typically consist 
of a mixture of enhancers and promoters, and at this stage, we do not differentiate 
between the two sets of regulatory elements. These metaprofiles were then utilized in a 
pattern recognition algorithm for predicting active promoters and enhancers in a cell-type 
specific manner. 
 
These metaprofiles were initially created using the histone modification H3K27ac at 
active STARR-seq peaks (see Figure 1 and Methods) identified in the S2 cell-line of fly. 
Approximately 70% of the active STARR-seq peaks contain an easily identifiable double 
peak pattern even though there is a lot of variability in the distance between the two 
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maxima of the double peak in the ChIP-chip signal (Figure S1). Even though the 
minimum tends to occur in the center of these two maxima on average, the distance 
between the two maxima in the double peaks can vary between 300 and 1100 base 
pairs. During aggregation, we aligned the two maxima in the H3K27ac signal across 
different STARR-seq peaks, followed by interpolation and smoothening the signal before 
calculating the average metaprofile. In addition, an optional flipping step was performed 
to maintain the asymmetry in the underlying H3K27ac double peak because it may be 
associated with the directionality of transcription [42]. For the first time, we also 
calculated the dependent metaprofiles for thirty other histone marks and DHS signal by 
applying the same set of transformations to these datasets. The metaprofile for the 
histone marks associated with active regulatory regions were also double peak signals 
and the maxima across different histone modification signals tended to align with each 
other on average (Figure S2). This indicates that a large number of histone modifications 
tend to simultaneously co-occur on the nucleosomes flanking an active enhancer or 
promoter. In contrast, as expected, the DHS signal displayed a single peak at the center 
of the H3K27ac double peak (Figure 1). In addition, repressive marks such as 
H3K27me3 were depleted in these regions and the metaprofile for these regions did not 
contain a double peak signal (Figure S2).  
 
Occurrence of metaprofile is predictive of regulatory activity: 
 
We evaluated whether these metaprofiles can be utilized to predict active promoters and 
enhancers using matched filters, a well-established algorithm in template recognition.  A 
matched filter is the optimal pattern recognition algorithm that uses a shape-matching 
filter to recognize the occurrence of a template in the presence of stochastic noise [43]. 
We evaluated whether the occurrence of the epigenetic metaprofiles identified for the 
histone marks and DHS can be used to predict active enhancers and promoters using 
receiver operating characteristic (ROC) and precision-recall (PR) curves. The PR curves 
are particularly useful to assess the performance of classifiers in skewed or imbalanced 
data sets in which one of the classes is observed much more frequently as compared to 
the other. On these imbalanced data sets, PR curves are useful alternative to ROC 
curves as the precision is directly related to the false detection ratio at different 
thresholds. The PR curve highlights differences in performance of different models even 
when their ROC curves remain comparable [44]. The matched filter score is higher in 
genomic regions where the template pattern occurs in the corresponding signal track 
while it is low when only noise is present in the signal (Figure 1). Due to the 
aforementioned variability in the double peak pattern, the H3K27ac signal track is 
scanned with multiple matched filters with templates that vary in width between the two 
maxima in the double peak and the highest matched filter score with these matched 
filters is used to rate the regulatory potential of this region (see Methods). The 
dependent profiles are then used on the same region with the matched filter to score the 
corresponding genomic tracks. 
 
We used 10-fold cross validation to assess the performance of matched filters for 
individual histone marks to predict active STARR-seq peaks. In Figure 2, we observe 
that the H3K27ac matched filter is the single most accurate feature for predicting active 
regulatory regions (AUROC=0.92, AUPR=0.72) identified using STARR-seq. This is 
consistent with the literature as H3K27ac enriched peaks are often used to predict active 
promoters and enhancers [23, 45, 46]. In general, several histone acetylation (H3K27ac, 
H3K9ac, H4K12ac, H2BK5ac, H4K8ac, H4K5ac, H3K18ac) marks as well as the H1, 
H3K4me2, and DHS matched filters are the most accurate marks (see Figure 2 and 
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Table S1) because the matched filter scores for these regions on these marks are higher 
for STARR-seq peaks (Figure S3). The degree to which the matched filter scores for 
promoters and enhancers are higher than the matched filter scores for the rest of the 
genome is a measure of the signal to noise ratio for regulatory region prediction in the 
corresponding feature’s genomic track and the larger the separation between positives 
and negatives, the greater the accuracy of the corresponding matched filter for 
predicting active regulatory regions. Interestingly, the distribution of matched filter scores 
for STARR-seq peaks are unimodal for each histone mark except for H3K4me1, 
H3K4me3, and H2Av, which are bimodal (Figure S3). We also show that the matched 
filter scores are more accurate for predicting active STARR-seq peaks than enrichment 
of signal alone as they outperform the histone peaks on ROC and PR curves (Figure 
S4). 
 
While a single STARR-seq experiment identifies thousands of active regulatory regions, 
these regions display core-promoter specificity and different sets of enhancers are 
identified when different core promoters are used in the same cell-type [47-51]. As we 
wanted to create a framework to predict all the enhancers and promoters active in a 
particular cell-type, we combined the peaks identified from multiple STARR-seq 
experiments in the S2 cell-type and reassessed the performance of the matched filters at 
predicting these regulatory regions. Merging the STARR-seq peaks from multiple core 
promoters in the S2 cell-type leads to higher AUROC and AUPR for the matched filters 
from most histone marks (Figure 2).  
 
Machine learning can combine matched filter scores from different epigenetic 
features: 
 
We combined the normalized matched filter scores (see Methods) from six different 
epigenetic marks (H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K9ac, and DHS) 
associated with active regulatory regions by the Roadmap Epigenomics Mapping [52] 
and the ENCODE [53] Consortia using a linear SVM [54] and the integrated model 
achieved a higher accuracy than the individual matched filter scores (Figure 2). We also 
assessed the performance of other statistical approaches for combining the features 
(including non-linear models) in Figure S6 and all these models performed similarly. By 
using only six features, we ensure that our model is capable of being applied to many 
cell-lines and tissues on which the relevant experiments have been performed. These 
models are trained to learn the patterns in the matched filter scores for different 
epigenetic marks within experimentally verified regulatory regions and we chose these 
marks as we wanted to assess the applicability of these machine learning models to 
predict active enhancers and promoters across different cell-types and species. As 
expected, the integrated models outperformed the individual matched filter scores, as 
they are able to leverage information from multiple epigenetic marks. In addition, the six-
parameter integrated model displayed higher accuracy after combining the peaks 
identified using different core promoters. In the integrated model, the normalized 
matched filter score for each epigenetic feature in a particular region is scaled by its 
optimized weight and added together to form the discriminant function. The sign of the 
discriminant function is then used to predict whether the region is regulatory. The 
features with large positive and negative weights are predicted to be important for 
discriminating regulatory regions from non-regulatory regions in such models. They can 
also be used to measure the amount of non-redundant information added by each 
feature in the integrated model. According to the model, the acetylations (H3K27ac and 
H3K9ac) are the most important feature for predicting active regulatory regions from 
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inactive regions. While the DHS matched filter performed well as an individual feature 
(AUPR in Figure 2), the information in DHS is redundant with the information in the 
histone marks as indicated by the fact that it has the lowest weight among the six 
features in the integrated model. We compared several other machine learning 
algorithms including nonlinear SVM (results not shown) to combine the machine learning 
models and found that they all displayed nearly similar accuracy and similar features 
were more important across these different models (Figure S5).  
 
To assess the information contained in other epigenetic marks, we combined the 
matched filters from all 30 measured histone marks along with the DHS matched filter in 
separate statistical models (Figure S6) and these model displayed higher accuracy 
(AUROC=0.97, AUPR=0.93 for SVM model with multiple core promoters) than the 6 
feature model presented in Figure 2. The feature weights in this model indicated that 
H3K27ac contains the most information regarding the activity of regulatory regions. 
However, we found that a few other acetylations such as H2BK5ac, H4ac, and H4K12ac 
contain additional non-redundant information regarding the activity of these regulatory 
regions and might improve the accuracy of promoter and enhancer prediction from 
machine learning models (Figure S6). 
 
Distinct epigenetic signals associated with promoters and enhancers: 
 
We proceeded to create individual metaprofiles and machine learning models for the two 
classes of regulatory activators – promoters (or proximal) and enhancers (or distal). We 
divided all the active STARR-seq peaks into promoters or enhancers based on their 
distance to the closest transcription start site (TSS) to delineate their likely function in the 
native context. Due to the conservative distance metric used in this study (1kb upstream 
and downstream of TSS in fly), the enhancers are regulatory elements that are not close 
to any known TSS even though a few of the promoters may actually function as 
enhancers. We then created metaprofiles of the different epigenetic marks on the 
promoters and enhancers and assessed the performance of the matched filters for 
predicting active regulatory regions within each category (Figure 3). The highest 
matched filter scores are typically observed on promoters and the matched filters for 
each of the six features tended to perform better for promoter prediction. The H3K27ac 
matched filter continues to outperform other epigenetic marks for predicting active 
promoters and enhancers (Figure 3). In addition, the DHS, H3K9ac, and H3K4me2 
matched filters also performed reasonably for promoter and enhancer prediction. Similar 
to previous studies [55, 56], we observed that the H3K4me1 metaprofile performs better 
for predicting enhancers while it is close to random for predicting promoters. In contrast, 
the H3K4me3 metaprofile can be utilized to predict promoters and not enhancers. The 
histogram for matched filter scores show that H3K4me1 matched filter score is higher 
near enhancers while the H3K4me3 matched filter score tends to be higher near 
promoters (Figure S7). The mixture of these two populations lead to bimodal 
distributions for H3K4me1 and H3K4me3 matched filter scores when calculated over all 
regulatory regions (Figure S3). 
 
We created two different integrated models to learn the combination of features 
associated with promoters and enhancers. These integrated models outperformed the 
individual matched filters at predicting active enhancers and promoters (Figures 3 and 
S8). In addition, the weights of the individual features identified the difference in roles of 
the H3K4me1 and H3K4me3 matched filter scores at discriminating active promoters 
and enhancers from inactive regions in the genome. The promoter-based (enhancer-
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based) model performed much more poorly at predicting enhancers (promoters) 
indicating the unique properties of these regions (Figures S10 and S11). We also 
created two integrated models utilizing matched filter scores for all thirty histone marks 
as features for predicting enhancers and promoters. The additional histone marks 
provided independent information regarding the activity of promoters and enhancers as 
these features increased the accuracy of these models (Figure S9). The weights of 
different features indicate that H2BK5ac again displays the most independent 
information for accurately predicting active enhancers and promoters (Figures S9). We 
observe similar trends and accuracy with several different machine learning models 
(Figures S8 and S9).     
 
The epigenetic underpinnings of active regulatory regions are highly conserved in 
evolution: 
 
In order to assess the transferability of these metaprofiles and machine learning models 
for predicting regulatory regions in other tissues and cell-types, we assessed the 
accuracy of these models for predicting regulatory elements identified using the 
transduction-based FIREWACh assay in mouse embryonic stem cells (mESC) [36]. The 
metaprofiles for individual histone marks learned using active promoters and enhancers 
identified with the STARR-seq assay in the S2 cell-line were used with matched filters to 
predict the regulatory activity of different regions in mESC based on the epigenetic 
signals in mESC (Figure 4). The matched filters for individual histone marks displayed 
similar accuracy for predicting enhancers and promoters in mESC as in the original S2 
cell-line. In addition, the 6-parameter SVM models learned using STARR-seq data in S2 
cell-line were also highly accurate at predicting active enhancers and promoters in 
mouse (Figure 4).  
 
This indicates that the epigenetic profiles associated with active enhancers and 
promoters are conserved over 600 million years of evolution underscoring the 
importance of such epigenetic modifications in maintaining the regulatory role of 
enhancers and promoters across different cell-types and species. As these regulatory 
regions were identified using a single core promoter in FIREWACh, the performance of 
the different models in Figure 4 is probably underestimated. The accuracy of these 
models enables us to use the metaprofiles and statistical models learned using STARR-
seq data in fly to predict enhancers in different cell-lines and eukaryotic species.  
Consistent with this, the metaprofile and machine learning models learned using 
STARR-seq experiment in BG3 cell-line (fly) can be utilized to predict active promoters 
and enhancers in the S2 cell-line (Figure S12). 

 
Validation of Enhancer Prediction Models 
 
The ENCODE consortium has ChIP-Seq data for 60 transcription related factors in H1-
hESC cell line, including a few chromatin remodelers and histone modification enzymes. 
Collectively we call all these transcription related factors “TF”s for simplicity. We utilized 
the 6 parameter integrated model to predict active enhancers and promoters in the 
hESC cell-line based on the epigenetic datasets measured by the ENCODE consortium.  
This provides us with a system to validate our enhancer prediction model as well as to 
study the patterns of TF binding within enhancers and promoters. Using these models, 
we predicted 43463 active regulatory regions, of which 22828 (52.5%) are within 2kb of 
the TSS and are labeled as promoters. A large proportion of the predicted enhancers are 
found in the introns (30.41%) and intergenic regions (13.93%) (Figure S13). The 
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predicted promoters and enhancers are significantly closer to active genes than might be 
expected randomly (Figure S14). By comparing the matched filter predicted enhancers 
and promoters with chromatin states predicted by chromHMM [30] and SegWay [27], we 
observe that a majority of the predicted enhancers and promoters are also predicted to 
be enhancers and promoters by chromHMM and SegWay respectively (Figures S15 to 
S18). 
 
A third generation, self-inactivating HIV-1 based vector system in which the eGFP 
reporter was driven by the DNA element of interest was used to validate putative 
enhancers after stable transduction of various cell lines, including H1 hESC (Figure 5). 
The predicted enhancers, ranging from 650 to 2500 bp, were PCR amplified from human 
genomic DNA and inserted just upstream of a basal Oct-4 promoter of 142 bp (a 
housekeeping promoter is used so that the activity of the putative enhancers should be 
similar across different cell lines).  VSV G-pseudotyped vector supernatants from each 
were prepared by co-transfection of 293T cells, and these were used to transduce the 
various cell lines, with empty vector and FG12 vector serving as negative and positive 
controls, respectively.  Putative enhancer activity was assessed by flow cytometric 
readout of eGFP expression 48-72 h post-transduction, normalized to the negative 
control. 
 

A total of 25 predicted intergenic enhancers were randomly selected for validation 
(Supplementary Table S3). These predictions were chosen randomly to ensure that 
these truly represented the whole spectrum of predicted enhancers and not just the top 
tier of predicted enhancers. Of these 25 putative enhancers, 23 were successfully 
amplified and cloned into the HIV vector.  To measure the distribution of gene 
expression in the absence of enhancer, we also amplified and cloned 25 non-repetitive 
elements with similar length distribution that were predicted to be inactive using the 
same HIV vector.  All positive and negative DNA elements were transduced and tested 
for activity in both forward and reverse strand orientations since enhancers are thought 
to function in an orientation-independent manner. Functional testing was performed in 
HOS, TZMBL, and A549 cell lines in addition to H1-hESCs. 
 

Insertion of twelve of the 23 putative enhancers into the HIV vector resulted in a 
significant increase in eGFP expression (P-value < 0.05 over distribution of gene 
expression for negative elements) in the H1-hESCs (Supplementary Table S3). While 
most of the positive enhancers displayed a significant increase in gene expression 
irrespective of their orientation during orientation, a few elements showed significantly 
higher levels of gene expression in one of the orientations (Supplementary Table S4).  In 
contrast, the negatives displayed much lower levels of gene expression typically (Figure 
5 and Supplementary Figure S19).  In addition, most of these elements increased gene 
expression of GFP in the four different cell lines even though some of the elements were 
preferentially active in one of the cell lines. Overall, 16 of the 23 tested predictions 
displayed statistically significant increase in gene expression of the reporter gene in at 
least one of the cell lines (Supplementary Table S3 and Supplementary Figure S19). 
Given the promoter specificity of enhancers in such assays, we would anticipate that 
some of the elements that could not be validated in this particular vector would function 
as enhancers in a more natural biological context. 
 
 
Different Transcription Factors bind to enhancers and promoters 
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We further studied the differences in TF binding at promoters and enhancers (Figure 6 
and Figure S20). Most promoters and enhancers contain multiple TF-binding sites.  
However, the TF-binding of enhancers is more heterogeneous than promoters: in 
particular, more than 70% of the promoters bind to the same set of 2-3 sequence-
specific TFs, which is not observed for enhancers. The majority of the promoters also 
contain peaks for several TATA-associated factors (TAF1, TAF7, and TBP). Overall, the 
high heterogeneity associated with enhancer TF-binding is consistent with the absence 
of a sequence code (or grammar) which can be utilized to easily identify active 
enhancers on a genome-wide fashion. 
 
In Figure 6, we show that the patterns of TF binding within regulatory regions can be 
utilized in a logistic regression model to distinguish active enhancers from promoters 
with high accuracy (AUPR = 0.89, AUROC = 0.87). We were also able to identify the 
most important features that distinguish promoters from enhancers. In addition to TATA-
box associated factors such as TAF1, TAF7, and TBP, the RNA polymerase-II binding 
patterns as well as chromatin remodelers such as KDM4A and PHF8 are some of the 
most important factors that distinguish promoters from enhancers in H1-hESC. This 
provides a framework that can be utilized to identify the most important TFs associated 
with active enhancers and promoters in each cell-type.  
 
In Figure 6A, we show that the pattern of TF binding at promoters is different from that at 
enhancers and TF-binding at enhancers displaying more heterogeneity. As the set of 
TFs binding promoters is fairly uniform, the same pairs of TF also tend to bind together 
on promoters. In contrast, for enhancers, the patterns of TF co-binding is much more 
heterogeneous and different enhancers tend to contain different TF-pairs. This can be 
observed in the patterns of TF co-binding in Figures 6C and S21. These TF co-
associations could lead to mechanistic insights of cooperativity between TFs. For 
example, similar to a previous study [57], CTCF and ZNF143 may function cooperatively 
as they are observed to co-occur frequently at distal regulatory regions in this study. 
 
Discussion 
 
Our ability to accurately predict active enhancers in a cell-type specific manner using 
transferable supervised machine learning models that were trained based on regulatory 
regions identified using new NGS-enabled MPRAs distinguishes our method from 
previous enhancer prediction methods. Currently, most existing methods were 
parameterized (not properly “trained”) with regions that had various features associated 
with promoters and enhancers and only a small number of these regions were typically 
tested for regulatory activity experimentally in an ad hoc manner. The MPRAs were able 
to firmly establish that certain histone modifications occur on nucleosomes flanking 
active regulatory regions leading to the formation characteristic double peak pattern 
within the ChIP-signal [39]. This motivated us to create matched filter models that were 
able to identify these patterns within the shape of the ChIP-signal in the presence of 
stochastic noise with the highest signal to noise ratio. Furthermore, we were able to 
combine the matched filter scores from different epigenetic features using simple 
transferrable linear SVM models and learned the most informative epigenetic features 
for regulatory region predictions.  
 
The sensitivity and selectivity of various MPRAs is currently a matter of debate. A 
majority of these MPRAs test the regulatory activity of different regions by assessing 
their ability to induce gene expression in a plasmid after transfecting it into a cell-type of 
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interest [31]. Such assays may not recapitulate the native chromatin environment found 
in chromosomes, which may be necessary for assessing whether the regulatory region 
is active in its genomic environment.  
 
Here, we show for the first time, that the patterns in the epigenetic signals associated 
with active enhancers identified using a transfection-based assay (STARR-seq) can be 
utilized to predict the activity of enhancers in a transduction-based assay (FIREWACh). 
During the FIREWACh assay, random nucleosome-free regions in mESC were captured 
and assayed for regulatory activity of the GFP gene by utilizing a lentiviral plasmid vector 
and inserted (or transduced) these vectors into the chromosome in mESC cells. As the 
FIREWACh assay tests the regulatory activity of enhancers after transduction, we 
assume that these regions were tested in their native chromatin environment and 
transduction-based assays form a more stringent test for regulatory activity. However, 
due to the shorter length of the tested region (< 300 bp) and the single core promoter 
used in the FIREWACh assay, we think that the accuracy of the statistical models in 
Figure 4 is underestimated. 
 
We were able to assess the accuracy of different epigenetic metaprofiles for predicting 
regulatory activity using our statistical models. While different acetylation modifications 
are associated with active regions of the genome, we were able to compare close to 30 
histone marks for enhancer and promoter predictions. The H3K27ac matched filter 
remains the single most important feature for predicting active regulatory regions while 
H3K4me1 and H3K4me3 are known to distinguish promoters from enhancers. However, 
our analysis characterizes the amount of redundancy in information within the 
metaprofile of different epigenetic features for predicting active regulatory regions and 
shows that ChIP-experiments of H2BK5ac, H4ac, and H2A variants could also produce 
independent information that can improve the accuracy of promoter and enhancer 
predictions. In addition to these 30-feature models, we also provide a simple to use six-
parameter SVM model for combining H3K27ac, H3K9ac, H3K4me1, H3K4me2, 
H3K4me3, and DHS to predict active promoters and enhancers in a cell-type specific 
manner. We also showed that the metaprofiles and the combination of epigenetic marks 
associated with active regulatory regions are highly conserved in evolution making these 
models highly transferable. These six histone marks have been measured for a number 
of different tissues and cell-types by the Roadmap Epigenomics Mapping Consortium 
[39], the ENCODE [53], and the modENCODE Consortium [58]. The enhancers 
predicted using our machine learning models were experimentally validated in human 
cell lines. 
 
One aspect that is discussed less frequently is the effect of core promoter on enhancer 
and promoter prediction. MPRAs show that the regulatory activity of enhancers and 
promoters in a regulatory assay depends on the core promoter used during the 
experiment [51]. As the transcription factors that bind to each regulatory region are 
thought to play a key role in core-promoter specificity [47, 51], we suspect that machine 
learning models that contain sequence or motif-based features may be biased towards 
certain transcription factor binding sites when trained with regulatory regions identified 
using a single-core promoter. To avoid such biases, it would be more appropriate to train 
models with sequence-based features when the validation experiments are performed 
with multiple core promoters. In the absence of validation data with multiple core 
promoters, it may be more suitable to train models using epigenetic features as such 
models contain no sequence-based information. In comparing the predictions from such 
models with experiments using a single core promoter, some of the strongest predictions 



 

 12 

may be mislabeled as negatives even though they contain some regulatory activity 
leading to a lower accuracy estimate as shown in Figure 2. 
 
As the epigenetic profiles and statistical models learned in this study are transferable 
across different cell-lines and species, we are able to apply these models to predict 
active enhancers and promoters in different cell-types. We applied these models to 
predict enhancers and promoters in H1-hESC, a highly studied ENCODE cell-line. This 
allowed us to analyze the differences in the patterns of TF binding at proximal and distal 
regulatory regions. The TF binding and co-binding patterns at enhancers is much more 
heterogeneous than that at promoters. We think that this heterogeneity in TF binding 
patterns makes it much more difficult to predict enhancers due to the absence of obvious 
sequence patterns in distal regulatory regions. However, we were also able to create 
highly accurate machine learning models that are able to distinguish proximal promoter 
regions from distal enhancers based on the patterns of TF ChIP-seq peaks within these 
regulatory regions. The conservation of the epigenetic underpinnings underlying active 
regulatory regions sets the stage for our method to study the evolution of tissue-specific 
enhancers and their genomic properties across different eukaryotic species. 
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Figure Captions 
 
Figure 1: Creation of metaprofile. A) We identified the “double peak” pattern in the 
H3K27ac signal close to STARR-seq peaks. The red triangles denote the position of the 
two maxima in the double peak. B) We aggregated the H3K27ac signal around these 
regions after aligning the flanking maxima, using interpolation and smoothing on the 
H3K27ac signal, and averaged the signal across different MPRA peaks to create the 
metaprofile in C). The exact same operations can be performed on other histone signals 
and DHS to create metaprofiles in other dependent epigenetic signals. D) Matched filters 
can be used to scan the histone and/or DHS datasets to identify the occurrence of the 
corresponding pattern in the genome. E) The matched filter scores are high in regions 
where the profile occurs (grey region shows an example) and it is low when only noise is 
present in the data. The individual matched filter scores from different epigenetic 
datasets can be combined using integrated model in F) to predict active promoters and 
enhancers in a genome wide fashion. 
 
Figure 2: Performance of matched filters and integrated models for predicting 
MPRA peaks. The performance of the matched filters of different epigenetic marks and 
the integrated model for predicting all STARR-seq peaks is compared here using 10-fold 
cross validation. A) The area under the receiver-operating characteristic (AUROC) and 
the precision-recall (AUPR) curves are used to measure the accuracy of different 
matched filters and the integrated model. B) The weights of the different features in the 
integrated model are shown and these weights may be used as a proxy for the 
importance of each feature in the integrated model. C) The individual ROC and PR 
curves for each matched filter and the integrated model are shown. The performance of 
these features and the integrated model for predicting the STARR-seq peaks using 
multiple core promoters and single core promoter are compared. The numbers within the 
parentheses in A) refer to the AUROC and AUPR for predicting the peaks using a single 
STARR-seq core promoter while the numbers outside the parentheses refers to the 
performance of the model for predicting peaks from multiple core promoters. 
 
 Figure 3: Performance of matched filters and integrated models for predicting 
promoters and enhancers. The performance of the matched filters of different 
epigenetic marks and the integrated model for predicting active promoters and 
enhancers are compared here using 10-fold cross validation. A) The numbers within 
parentheses refer to the AUROC and AUPR for predicting promoters while the numbers 
outside parentheses refer the performance of the models for predicting enhancers.  B) 
The weights of the different features in the integrated models for promoter and enhancer 
prediction are shown. C) The individual ROC and PR curves for each matched filter and 
the integrated model are shown. The performance of these features and the integrated 
model for predicting the active promoters and enhancers using multiple core promoters 
are compared.  

  
Figure 4: Conservation of epigenetic features. The performance of the fly-based 
matched filters and the integrated model for predicting active promoters and enhancers 
in mouse embryonic stem cells identified using FIREWACh. A Similar to Figure 3, the 
numbers within parentheses refer to the AUROC and AUPR for predicting promoters 
while the numbers outside parentheses refer the performance of the models for 
predicting enhancers.  B) The weights of the different features in the integrated models 
for promoter and enhancer prediction are shown. C) The individual ROC and PR curves 
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for each matched filter and the integrated model are shown. The performance of these 
features and the integrated model for predicting the active promoters and enhancers 
identified using FIREWACh are shown.  
 
Figure 5: Enhancer Validation Experiments. A) A schematic of the enhancer 
validation scheme is show.  At top is third generation HIV-based self-inactivating vector 
(deletion in 3’ LTR indicated by red triangle), with PCR-amplified test DNA (blue, two-
headed arrow indicates fragment was cloned in both orientations), inserted just 5’ of a 
basal (B) Oct4 promoter driving IRES-eGFP (green).  Vector supernatant was prepared 
by plasmid co-transfection of 293T cells and used to transduce cellular targets and 
analyzed by flow cytometry a few days later.  B) The fold change of gene expression of 
eGFP is compared between negative elements and putative enhancers chosen for 
experiments. The p-Value of the difference in activity is measured using a Wilcoxon 
signed-rank test. 
 
Figure 6: Differences in TF binding patterns at enhancers and promoters. A) The 
fraction of predicted promoters and enhancers that overlap with ENCODE ChIP-seq 
peaks for different TFs in H1-hESC are shown. The names of all TFs in the figure can be 
viewed in Figure S19. B) The AUROC and AUPR for a logistic regression model created 
using the pattern of TF binding at each regulatory region to distinguish enhancers from 
promoters are shown. The weight of each feature in the logistic regression model can be 
used to identify the most important TFs that distinguish enhancers from promoters. C) 
The patterns of TF co-binding at active promoters and enhancers are shown. The names 
of all the TFs in this graph can be viewed in Figure S20. 
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