Cancer genomics
Less is more in the hunt for driver mutations

An analysis of 360 breast-cancer genomes has identified cancer-driving mutations in nine non-coding DNA sequences called promoters that regulate gene expression, hinting at the prevalence of such drivers. See Article p.XXX	Comment by Microsoft Office User: Necessary to be this introductory? It sounds too elementary, even for a general audience.	Comment by Microsoft Office User: This does not logically follow from the previous text. The logic of the sent is like this: “A recent study has identified cancer-driving SNVs, which hints at the prevalence of these drivers”
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A typical cancer genome contains thousands of mutations, the overwhelming majority of which are fall outside of in non-protein-coding sequencesregions. Classical models of tumour evolution posit that cancer progression is driven by only a few of these variants (often simply termed “drivers”), which are under strong positive selection. But almost all known driver mutations are in coding sequences1,2, raising the question of how many drivers lurk in non-coding regions. Recently published work in In a paper online in Nature, by Rheinbay et al.3 make outlines progress a foray towards the addressing this questionanswer.	Comment by Microsoft Office User: This definition is necessary for all of the below text
 
Identification of non-coding drivers is challenging, owing to tThe vastness complexity of the genome and the difficulty of characterizing the precise location boundaries of non-coding regulatory elements regions that might may harbour contain drivers (such as promoters and enhancers) g reatly complicates the identification of non-coding drivers. — for example, regulatory regions such as promoters and enhancers that modulate gene expression. Drivers in coding regions are easier to identify, because we have a better understanding of the boundaries of coding regions and of the impact that mutations in themtherein might have on the production and function ofconfer on protein functionality proteins. However, our this better understanding potentially creates introduces an ascertainment bias toward coding drivers. Consequently, there has been interest in identifying non-coding drivers using whole-cancer-genome analyses4. Previous studies have provided a few examples5–7, but our understanding is far from complete.	Comment by Microsoft Office User: 

Rheinbay et al. set out to identify coding and non-coding driver mutations in an unbiased fashion, using samples from 360 people who had breast cancer patients. To find the non-coding drivers, they researchers identified non-coding elements that harboured significantly more mutations than expected, or that containedin addition to regions containing clusters of mutations around transcription-factor binding sites, at to which regulatory proteins bind.

The authors identified putative drivers in nine promoters, and showed that three of these significantly altered gene-expression levels (those these are associated with the genes FOXA1, RMRP and NEAT1 genes). Their analysis of mutations that recur in many individuals indicated that those in promoters are as common as those in coding genes. Furthermore, they found that the per-base mutation rate of promoters that contained drivers was similar to that of coding regions with drivers. This suggests that that fewer drivers have been found in promoters than in coding regions simply because their “functional territory” is smaller. (Here we use the term “functional territory” to suggest the true nucleotide sequences/motif that confer the disease-related activity).) 	Comment by Microsoft Office User: This seems unclear to me

Though This this work describes state-of-the-art identification of non-coding drivers, but tmore work remains to be donehere is more to do. The authors’ power analysis — statistical calculations estimating the sample numbers needed to detect an effect on a of a given size — indicated that 85% of all drivers could reliably be reliably identified if they occurred in at least 10% of the 360 samples studied, but only 70% of drivers present in 5% of patients would be identified. To understand directions for improvemenThust, it is worth considering how non-coding elements are defined, and how this plays into statistical power (Fig. 1).

Many non-coding elements are annotated as being fairly large genomic segments (~1000 bases). However, this is partly because our techniques for determining the positions of these elements are imprecise — the real functional territory of a regulatory element is often considerably smaller than annotated. For As an example, consider transcription-factor binding sites. These regions are identified by isolating protein–DNA complexes and sequencing that DNA. Sequences longer than the binding site are often isolated and, when the experiment involves many cells, the resultant signal can be noisy. As such, regions of 1 kilobase can be annotated as binding sites, despite the fact that  when the actual true functional site might only be only tens of nucleotides long. Analysing recurrent mutations across over-sized regions can thus dilute the true signal of positive selection and hinder driver identification.

One approach to better define functional territories is to identify evolutionarily conserved regions, which are likely to be functionally important. Moreover, non-coding elements, similar to genes, often consist of discontinuous blocks of functional territories. Linking Aggregatingup these blocks, and skipping over non-functional regions, is also important for maximally enriching the true signal of selection required for driver identification.  However, the connections between non-coding elements are less well understood than they are those are for genes (where coding regions are joined up after transcription around well-characterized sequences called splice junctions). Furthermore, they can potentially be complex: genes can be connected to multiple promoters and enhancers, and one enhancer can affect multiple genes. 	Comment by Microsoft Office User: Seems redundant with stuff written in previous paragraphs

After defining the functional territory of a non-coding element, the next step is to test for mutational burden (the relative prevalence of mutations in a given region) over many elements. Testing more elements imposes the statistical burden of greater prevalence to be to be considered statistically significant (i.e., as a result of multiply hypothesis testing correction). The more elements one tests, the higher the prevalence of a given driver will need to be to be considered statistically significant, owing to a statistical approach of multiple testing. Thus, one can increase the power of driver detection by making the element set as small and accurate as possible. This suggests that the best way to increase power for non-coding elements is, perhaps non-intuitively, to analyse a compact and highly accurate annotation set containing as few elements as possible, in which each element corresponds as closely as possible to an underlying functional territory, rather than to investigate every base in the genome.	Comment by Microsoft Office User: ?

Another difficulty is evaluating the impact of non-coding mutations. It is unclear whether each substitution of a nucleotide in a regulatory region has confers an equal impact. In some circumstances, the what effect of a mutation will have can be predicted  — if it breaks a transcription-factor binding site or creates a new one, for instance8. But better metrics of functional impact are needed over the whole genome to find non-coding equivalents of the coding mutations known to alter protein production or behaviourfunctionality. Finally, the power to detect drivers in non-coding regions depends on how uniform the underlying background mutation rate is. Rates are irregular across wide expanses of the genome9, so current approaches will require further refinement.

An effective approach to deal with some of these challenges is sequencing many patients. This approach is feasible only through large-scale collaborations. Such efforts will generate comprehensive catalogues of non-coding variants, which give us better statistics that can be leveraged to detect more driver mutations. However, these large-scale studies require uniform cohorts, which will be a challenge owing to the highly heterogeneous nature of cancer. The development of a more compact functional annotation of the non-coding genome represents a compelling alternative. Here, systematic annotation compendiums consortia such as the ENCODE project10 have a vital role to play. As evident evidenced byfrom this study, more drivers can be found by focussing on less of the genome.
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[Thanks for sending your revised figure. I like the simplified graph, but I suggest that we use just this — it will give readers enough to get to grips with, without having to also understand the depiction of non-coding elements and peak signals. Is this OK? Could we change power on the y axis to a percentage, to fit the description you’ve given in the caption?]
[I’ve made some more changes to your figure caption to reflect the need to explain all the technical terms again, and to try and outline a bit more about the power calculation used, so that readers can follow the graph easily. Please amend further as needed for accuracy]


[bookmark: _GoBack]Figure 1 | Improving the discovery of cancer-driving mutations in the non-coding genomegenomic elemenets. Rheinbay et. al.3 analysed genomes from 360 patients who had breast cancer and identified cancer-driving mutations in nine non-coding sequences called promoters. They then performed a statistical ‘power analysis’ to determine the percentage of the time (i.e., the power with which) a driver present in 5% of patients could be identified using varying sample numbers, given that the authors analysed 20,000 promoters defined as being 650 base pairs long. Their analysisanalyses (green curve) reveals a power of about 0.7 to detect driver mutations in 360 samples, meaning that they probably identified 70% of the drivers present in 5% of patients. However, if 100,000 promoters were are analysed, the associated power would be decreased, owing to a statistical phenomenon called multiple-testing burden (red curve). By contrast, analyzing 20,000 promoters 450 bases long (but still containing the true binding sites) would enrich for the true signal and increase power (blue curve), pointing tosuggesting an effective means of identifying a way to identify more non-coding drivers in the future by using a more compact annotation. (The green curve is an approximate representation of the authors’ analysis taken from fig. 4a of the paper).)
 
