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Abstract 
Most somatic mutations in cancer are non-coding while the characterized drivers are 

predominantly located in coding regions, creating a conundrum as to whether the non-coding 
regions are important for oncogenesis. Here we endeavor to create a companion resource to the 
main ENCODE encyclopedia to address this issue. In particular, we integrate diverse ENCODE 
data to precisely calibrate background mutation rates and we utilize advanced functional-genomic 
assays, especially STARR-seq and Hi-C, to develop compact annotations and accurate extended 
gene models (linking enhancers to coding regions), achieving better statistical power for burden 
analysis. We also construct detailed regulatory networks to interpret tumor gene expression and 
mutation profiles, pinpointing effects of key regulators such as the transcription factor MYC and 
the RNA-binding-protein SUB1 and then validating them. We build cell-type specific networks to 
directly measure regulatory "rewiring" during oncogenesis, classifying changes as either moving 
toward or away from a stem-like state. Finally, we integrate the overall ENCODE resource, 
comprising networks and a compact annotation, to prioritize non-coding elements and mutations 
and then we validate a subset of them through targeted experiments. 
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Introduction 
A small fraction of mutations associated with cancer have been well characterized, particularly those 

in coding regions of key oncogenes and tumor suppressors. However, the overwhelming majority of 
mutations in cancer genomes – especially those discovered over the course of recent whole-genome cancer 
genomics initiatives – lie within non-coding regions \cite{25261935}. Whether these mutations 
substantially impact cancer progression remains an open question \cite{26781813}. 

Several recent studies have begun to address this question by incorporating limited functional 
genomics data\{cite 25261935, 27064257, 27807102}. For example, Hoadley et al. integrated five 
genomics platforms and one proteomic platform to uniformly classify various tumor types \{cite 25109877}. 
Torchia et al. integrated various genomic and epigenetic signals to identify promising therapeutic targets in 
rhabdoid tumors \cite{27960086}. Lawrence et al. incorporated large-scale genomics profiles to identify 
cancer drivers \{cite 23770567}. However, there is no systematic integration of thousands of functional 
genomic data sets from a broad spectrum of assays to interpret cancer genomes. 

The rich functional assays and annotation resources developed by the ENCODE Consortium allow us 
to characterize these non-coding regions in depth \cite{22955616}. Given that around eighty percent of 
ENCODE cell lines are associated with cancer (see supplement), ENCODE data are particularly suited for 
interpreting cancer gene regulation[[JZ2MG: this is Shirley’s suggestion, but then where is the variant?]]. 
In the initial release of the ENCODE annotation sets, this was predominantly accomplished by using RNA-
seq and ChIP-seq assays on a limited number of cell types \cite{22955616}. The new release of ENCODE 
took two new directions. First, it considerably broadened the number of cell types to conduct RNA-seq, 
ChIP-seq, and DNase-seq profiles. As such, the main ENCODE encyclopedia aims to utilize these to 
provide a general and unified annotation resource applicable across many cell types. Second, ENCODE 
also expanded the number of advanced assays, such as STARR-seq, Hi-C, ChIA-PET, eCLIP and 
RAMPAGE, on several top-tier cell lines. Many of these top-tier cell lines are associated with various 
cancer types (Figure 1A), including those of the blood (K562), breast (MCF-7), liver (HepG2), lung (A549), 
and cervix (HeLa-S3). In addition, another data-rich top-tier cell line is the human embryonic stem cell line 
H1-hESC. For decades, the prevailing paradigm has held that at least a subpopulation of tumor cells have 
the ability to self-renew, differentiate, and regenerate, in a manner that is similar to stem cells 
\cite{24333726}. Hence, H1-hESC can serve as a valuable comparison when investigating the degree to 
which the oncogenic transformation represents stem cell like activities\cite{24333726}. [[JZ2MG: suggest 
not to mention the differentiated or undifferentiated direction since we do not have the data]] 

Here, we endeavor to collect the data catalog to provide deep annotations of cancer genomes. We 
performed large-scale integration to construct an in-depth cancer-related companion resource to the general 
encyclopedia. We compiled these resources as the “companion ENCODE encyclopedia resource for 
Cancer” (or “EN-CODEC” for short) to interpret cancer-related genomic data, such as mutational and 
transcriptional profiles. 

Multi-level data integration improves variant recurrence 
analysis in cancer 

One of the most powerful ways of identifying key elements in cancer genomes is through mutation 
recurrence analysis, the objective of which is to discover regions that undergo more mutation than expected. 
Hence, we first attempted to construct an accurate background mutation rate (BMR) model in a wide range 
of cancer types. However, BMR estimation is a challenging problem: the somatic mutation process can be 
influenced by numerous confounding factors (in the form of both external genomic factors and local 
sequence context factors), and these confounders can result in wrong conclusions if not appropriately 
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corrected \{cite 23770567}. [[JZ2MG: basically no difference of her version and our version, but hers might 
be easier to experimentalists to understand?]] 

We address the issues associated with confounding factors in a cancer-specific manner. Specifically, 
we separated the whole-genome into bins (1Mb) and calculated mutation counts per bin under each local 
context category. For each category, we used a negative binomial regression of the mutation counts against 
475 features across 229 cell types, including replication timing, chromatin accessibility, Hi-C, and 
expression profiles for BMR prediction. In contrast to methods that use data from unmatched cell types 
\{cite 23770567}, our approach automatically selects the most relevant features, thereby providing 
noticeable improvements in BMR estimation (Fig 2A). Notably the combination of many different genomic 
features significantly improves the estimation accuracy in multiple cancer types (Fig 2 B). In addition, due 
to the correlated nature of these genomic features across cell types, imperfect matching of some cancer with 
an ENCODE cell line can still improve BMR precision. Hence, our analyses may easily be extended to 
other cancer types. 

  A second step to utilize the ENCODE data in the mutation recurrence analysis in cancer is to 
maximize the statistical power of burden tests. In traditional analysis, a comprehensive set of annotations 
is usually thought to be beneficial. However, testing every possible nucleotide in the genome in mutation 
recurrence analysis will significantly reduce statistical power (see supplements). First, in terms of an 
individual test, focusing on shorter core regions with true functional impact would significantly improve 
detectability. Hence, we trimmed the conventional annotations, such as enhancers, to the key regions by 
looking into shapes of various signal tracks (see supplements). Second, burden tests would be subject to 
large penalty from multiple testing correction on a large number of annotations, which might include 
inaccurate or inactive regulatory elements. We therefore focused on a minimum number of high-confidence 
annotations in our search for burdened regions. With a particular focus on enhancers, we started by 
searching for regions supported by multiple types of evidence. We first proposed a machine learning 
algorithm (CASPER) to combine shapes of signal tracks from DNase-seq and a battery of 5 to 10 histone 
modification marks. We then assembled the CASPER predictions with peaks called by our computational 
method ESCAPE from STARR-seq experiments, which directly read out candidate enhancers in the 
genome. Such an integrative approach enables accurate enhancer definitions (see supplement). We also 
reconciled these enhancers with the main encyclopedia annotations by reporting the overlapping regions 
and providing new IDs to the novel regions. 

A final aspect to increase the statistical power is to link the compact noncoding regulatory elements to 
protein-coding genes to form an extended gene region as a whole test unit. As with the exon regions within 
genes, a natural consequence of this is a set of discrete regions that potentially affect gene expression. Such 
a unified annotation enables a joint evaluation of the mutational signals from distributed yet biologically 
relevant genomic regions. Traditional methods solely rely on computational correlation, resulting in 
problematic extended gene definitions. Here we use direct experimental evidence and physical interactions 
from Hi-C and ChIA-PET experiments, combined with a machine learning algorithm that takes into 
consideration the wide variety of histone modification marks and gene expression to achieve accurate 
enhancer-target gene linkages. Finally, the conserved enhancer-target linkages, refined promoters, and 
RNA-binding sites from eCLIP experiments within genes constitute a so-called extended gene 
neighborhood (Fig1C), which usually results in much more interpretable burdened regions. 

We demonstrate that our multi-level integration scheme can effectively remove false positives and 
discover meaningful regions with higher-than-expected mutation counts (Fig 2C). For example, in the 
context of chronic lymphocytic leukemia (CLL), our analysis identified well-known highly mutated genes, 
such as TP53 and ATM, which have been reported from previous coding region analysis. It also discovered 
genes that were missed by the exclusive analysis of coding regions, such as BCL6. Note that BCL6 has 
strong prognostic value with respect to patient survival (Fig. 2D), indicating that the extended gene 
neighborhood may be used as an annotation set for recurrence analysis. 
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Integrating regulatory networks and tumor expression 
profiles identifies key regulators in cancer 
 

The ENCODE annotation set also provides detailed regulatory networks instantiated from 
experimental assays suitable for cancer research. Specifically, for the transcription factor (TF) network, we 
first built distal and proximal TF regulatory networks by linking TFs to genes, either directly by TF-gene 
promoter interactions or indirectly via TF-enhancer-gene interactions in each cell type. We then pruned 
these networks to include only the strongest edges using another signal shape algorithm \{cite 22039215}. 
In addition, we merged the cell-type-specific networks to get a generalized pan-cancer network. Similarly, 
we also defined an analogous RNA binding protein (RBP) network (in a simpler format). Compared to 
imputed networks from gene expression or motif analysis, our ENCODE TF and RBP regulatory networks 
were built using actual ChIP-seq and eCLIP experiments, which provide much more accurate regulatory 
interactions between functional elements. 

The integrated networks are useful for interpreting the oncogenic changes evident in cancer gene 
expression data from tumor samples. In particular, using a machine learning method, we integrated 8,202 
tumor expression profiles from TCGA to systematically search for the TFs and RBPs that most strongly 
drive tumor-specific expression patterns. For each patient, our method tests the degree to which regulators’ 
activity is correlated with their targets’ tumor-normal expression changes. We then calculated the 
percentage of patients with these relationships in each cancer type, and presented the overall trends for key 
TFs and RBPs in Fig. 3A. 

As expected we found that the target genes of MYC are significantly up-regulated in numerous 
cancers, which is consistent with its well-known role as an oncogenic TF and transcriptional activator 
\cite{22464321}. We further validated MYC’s regulatory effect through knockdown experiments (Fig 3). 
Consistent with our predictions, the expression of MYC targets is significantly reduced after MYC 
knockdown (Fig 3A). We then used the regulatory network to understand how MYC works with other TFs. 
We first looked at all triplets involving MYC by requiring that a second TF both interacts and shares a 
common target with MYC. In all cancer types, we found that MYC’s expression levels are positively 
correlated with the expression levels of most of its targets, while the second TF shows only limited influence 
as determined by partial correlation analysis.  

We further investigated the exact structure of regulatory relationships of MYC with other TFs. The 
most common triplet interaction mode is a well-understood feed-forward loop (FFL) whereby, in this case, 
MYC regulates both another TF and a common target of both MYC and that TF (Figure 3 C). Since MYC 
amplification is a major determinant of many cancers, understanding which TFs appear to further amplify 
MYC effects through FFLs may yield insights for efforts aimed at MYC inhibition /cite{PMC4200208}. 
Most of these FFLs we observed involve well-known MYC partners such as MAX and MXL1. However, 
we also discovered that many involve another factor NRF1. Upon further examination, we found that that 
the MYC-NRF1 FFL relationships were mostly coherent, i.e., "amplifying" in nature. We further studied 
these FFLs by organizing these triplets into logic gates, in which the two TFs act as inputs and the target 
gene expression represents the output \{cite 25884877}. We show that most of these gates follow either OR 
or MYC-always-dominant logic gate. Thus, the ENCODE regulatory network not only helps find key 
regulators, but also demonstrates how they work in combination with other regulators. 

We also analyzed the RBP-network derived from ENCODE eCLIP data, and found key regulators 
associated with cancer. For example, the ENCODE eCLIP profile for the RBP SUB1 has peaks enriched 
on the 3’UTR regions of genes, and the predicted targets of SUB1 were significantly up-regulated in many 
cancer types (Fig. 3C). As an RBP, SUB1 has not previously been associated with cancer, so we sought to 
validate its role. Knocking down of SUB1 in HepG2 cells significantly down-regulated its target genes 
relative to other genes (Fig. 3D), and the decay rate of SUB1 target genes is significantly lower than non-
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targets (see supplements). Moreover, we found that the up-regulation of SUB1 target genes is correlated 
with a poorer patient survival in some cancer types, such as lung cancer (Fig. 3D). These results suggest 
that SUB1 may have oncogenic roles by binding to the 3’UTR regions to stabilize its target transcripts.  

We further presented the overall regulatory network by systematically arranging the network into a 
hierarchy. TFs are placed into different levels such that those on the top tend to regulate the expression of 
other TFs and those at the bottom are in turn more regulated by higher-level TFs \{cite 25880651}. A final 
hierarchical network structure is shown in Fig 4. We found that the top-layer TFs not only enriched in 
cancer associated-genes, but also more significantly drive differential gene expressions in tumors.[[JZ2MG: 
Shirley’s comment is reasonable, For such a big figure, the textual explanation is too brief and vague]] 

Extensive rewiring events in the regulatory network 
For the top-tier cell types with numerous TF ChIP-seq experiments, we constructed cell-type-specific 

regulatory networks and compared them with networks built from their paired normal cell types. We 
proposed the concept of a “composite normal” by reconciling multiple related normal cell types, as shown 
in Fig. 5. The pairings -- relating cancerous cell lines to specific tumors and then matching them to normal 
cell types -- are approximate in nature. However, many of these pairings have been widely used in the 
literature before (see supplement). Furthermore, with the enrichment of functional characterization assays 
in ENCODE, they provide us with a novel opportunity to directly understand the regulatory alterations in 
cancer by looking at specific network changes that are "rewired" in the process of oncogenesis. 

In "tumor-normal pairs", we measured the signed, fractional number of edges changing (i.e., what we 
call the “rewiring index”), to study how the targets of each common TF changed (i.e., become rewired) 
over the course of oncogenic transformation. We first ranked TFs according to this index (Fig. 5 A). In 
leukemia, well-known oncogenes (such as MYC and NRF1) were among the top edge gainers, while the 
well-known tumor suppressor IKZF1 is the most significant edge loser (Fig 5A). Mutations in IKZF1 serve 
as a hallmark of various forms of high-risk leukemia \cite{26202931, 26713593, 26069293}. Interestingly, 
IKZF1 loss has been found to be associated with the well-known BCR-ABL fusion transcript which is 
present in K562, and usually confers poor clinical outcome \cite{26069293}. In contrast, several 
ubiquitously distributed TFs retain their regulatory linkages (Fig 5A). We observed a similar trend in TFs 
using a distal, proximal, and combined network (see details in supplement). The trend was consistent across 
highly rewired TFs such as BHLHE40, JUND, and MYC in lung, liver, and breast cancers (Fig 5). 

In addition to the simple direct TF-to-gene connection-based model, we also measured rewiring using 
a more complex gene community model. The targets within the TF regulatory network were characterized 
by heterogeneous network modules (so called “gene communities”), which usually come from multiple 
biologically relevant genes. Instead of directly measuring the TF’s target changes for each gene, we 
determined the change in gene communities via a mixed-membership model. This enabled us to evaluate 
each TF’s overall changes to these gene communities in tumor and normal cells. Similar rewiring patterns 
were observed using this model (Fig 5A). 

We next tested whether the gain or loss events from the normal-to-tumor transition result in a network 
that is more similar to or different from those in stem cells like H1-hESC. Interestingly, the gainer group 
tends to rewire away from the stem cell’s regulatory network, while the loser groups are more likely to 
rewire toward the stem cell. 

The majority of rewiring events were associated with noticeable gene expression and chromatin status 
changes, but not necessarily with variant-induced motif loss or gain events (Fig. 5A). This is consistent 
with previous discoveries that most non-coding risk variants are not well-explained by the current model 
\cite{25363779}. For example, JUND is a top gainer in CLL. The majority of its gained targets in tumor 
cell lines demonstrate higher gene expression, stronger active and weaker repressive histone modification 
mark signals, yet few of its binding sites are mutated. We found a similar trend for the rewiring events 
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associated with JUND in liver cancer. On a related thread, we organized the cell-type-specific networks to 
cell-type-specific hierarchies, as shown in Figure 3. Specifically, in blood cancer the more mutationally 
burdened TFs actually sit at the bottom of the hierarchy, whereas the TFs that are more associated with 
driving cancer gene expression changes tend to be at the top. 

Step-wise prioritization schemes pinpoint deleterious 
SNVs in cancer 

Summarizing the analysis above, the EN-CODEC resource consists of numerous annotations 
summarized in Fig.  6 : (1) a BMR model with matching procedure for relevant functional genomics data 
and a list of regions with higher-than-expected mutation burdens in a diverse selection of different cancer 
types, (2) accurate and refined enhancers and promotors by integrating tens of different functional assays, 
including STARR-seq, and their comparison with those in ENCODE; (3) enhancer-target-gene linkages 
and extended gene neighborhoods, obtained by integrating experimentally determined linkages from Hi-C 
and detailed histone mark and expression correlation, (4) tumor-normal differential expression, chromatin, 
and regulatory changes, (5) TF regulatory networks, both merged and cell type specific; (6) TFs’ position 
in the network hierarchy and their rewiring status; (7) an analogous but less-annotated network for RBPs. 

Collectively, these resources allow us to prioritize key features as being associated with oncogenesis. 
The workflow in Fig. 6A describes this prioritization scheme in a systematic fashion. We first search for 
key regulators that are frequently rewired, located at the network hubs or at top of the network hierarchy, 
or significantly drive expression changes in cancer. We then prioritize functional elements that are 
associated with top regulators, undergo large regulatory changes with respect to gene expression, TF 
binding, and chromatin status, or are highly mutated in tumors. Finally, on a nucleotide level, we can 
pinpoint impactful SNVs for small-scale functional characterization by their ability to disrupt or introduce 
specific binding sites, or which otherwise occur in positions under strong purifying selection. 

Using this framework, we subjected a number of key regulators, such as MYC and SUB1, to 
knockdown experiments in order to validate their regulatory effects in particular cancer contexts (Fig 3D). 
We also identified several candidate enhancers in noncoding regions associated with breast cancer, and 
validated their ability to influence transcription using luciferase assays in MCF-7. We selected key SNVs, 
based on mutation recurrence in breast cancer cohorts, within these enhancers that are important for 
controlling gene expression. Of the eight motif-disrupting SNVs that we tested, six exhibited consistent up- 
or down-regulation relative to the wild type in multiple biological replicates. One particularly interesting 
example, illustrating the unique value of ENCODE data integration, is in an intronic region of CDH26 in 
chromosome 20 (Fig. 6C). Both histone modification and chromatin accessibility (DNase-seq) signals 
indicate an active regulatory role in MCF-7, which was further confirmed as an enhancer by both CASPER 
and ESCAPE (STARR-seq; Fig. 5D). Hi-C and ChIA-PET data indicated that the region is within a 
topologically associated domain (TAD) and validated a regulatory linkage to the downstream breast-cancer-
associated gene SYCP2 \cite{26334652, 24662924}. We observed strong binding of many TFs in this 
region in MCF-7. Our motif-based analysis predicts that the particular mutation from a breast cancer patient 
can significantly disrupt the binding affinity of several TFs, such as FOSL2, in this region (Fig. 6D). 
Luciferase assays demonstrated that this mutation introduces a 3.6-fold reduction in expression relative to 
the wild type, indicating a strong repressive effect on this enhancer’s functionality. 

Conclusion 
This study highlights the value of our EN-CODEC companion to the main ENCODE encyclopedia as 

a resource for cancer research. By integrating many different types of assays, we first demonstrate that we 
can build an accurate BMR model for a wide range of cancer types, and improve the quality and quantity 
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of annotations to look for regions with higher-than-expected mutation burdens. We also build extensive 
regulatory networks of various forms from thousands of ChIP-seq and eCLIP experiments to directly study 
the regulatory changes that accompany transformation to cancer, as well as pinpoint key regulators. Finally, 
we leverage the companion resource to provide a prioritization scheme to pinpoint key features for small-
scale experimental follow-up studies. 

EN-CODEC comprises two resources: 1) generalized annotations, such as the BMR model and merged 
networks and hierarchies for pan-cancer studies; and 2) cancer-specific annotations from pairing the top-
tier cell lines to particular cancer types. We did realize that the representative tumor and normal cell types 
and their pairings used here are rough in nature. However, some pairings have already been widely used in 
other literatures. In addition, cancer is a heterogeneous disease that even the tumor cells from one patient 
usually show distinct molecular, morphological, and genetic profiles \cite{24048065}. It is difficult to 
obtain a "perfect" match even from data of real tumor and normal tissues.  

This study underscores the value of large-scale data integration, and we note that expanding the scale 
of these approaches is straightforward. We also anticipate that an additional step may entail carrying out 
many of the ENCODE assays on specific tissues and tumor samples. For example, a larger number of 
genomic features from matched cell types could result in better BMR estimation; more advanced functional 
characterization assays may generate compact and accurate annotation sets with larger statistical power in 
burden analyses; and more ChIP-seq/eCLIP experiments would provide more detailed regulatory networks 
to understand regulatory alterations during cancer progression. In addition, larger cohorts of expression and 
mutation profiles from many cancer types may be used to discover novel key features in cancer genomes. 
We demonstrate that such a framework is technically feasible and provides further opportunities for the 
future. 
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